中考数学复习第10讲四边形试题【含解析】

合集下载

中考数学复习《多边形与平行四边形》

中考数学复习《多边形与平行四边形》

证明:∵BD垂直平分AC, ∴AB=BC,AD=DC.
在△ADB与△CDB中,
∴△ADB≌△CDB(SSS). ∴∠BCD=∠BAD. ∵∠BCD=∠ADF,∴∠BAD=∠ADF, ∴AB∥FD. ∵BD⊥AC,AF⊥AC,∴AF∥BD. ∴四边形ABDF是平行四边形.
考题再现
1. (2015广州)下列命题中,真命题的个数有 ( B )
(5)面积:①计算公式:S□=底×高=ah.
②平行四边形的对角线将四边形分成4个面积相等的三角形.
4. 平行四边形的判定 (1)定义法:两组对边分别平行的四边形是平行四边形. (2)两组对角分别相等的四边形是平行四边形. (3)两组对边分别相等的四边形是平行四边形. (4)对角线互相平分的四边形是平行四边形. (5)一组对边平行且相等的四边形是平行四边形. 5. 三角形中位线定理 (1)三角形的中位线:连接三角形两边的中点,所得线段叫 做该三角形的中位线. (2)三角形中位线定理:三角形的中位线平行于第三边并且 等于第三边的一半.
中考考点精讲精练
考点1 多边形的内角和与外角和
考点精讲
【例1】(2016临沂)一个正多边形的内角和为540°,则这
个正多边形的每一个外角等于
()
A. 108°
B. 90°
C. 72° D. 60°
思路点拨:首先设此多边形为n边形,根据题意,得180·
(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,
5. (2016梅州)如图1-4-6-6,平行
四边形ABCD中,BD⊥AD,∠A=45°, E,F分别是AB,CD上的点,且BE=DF, 连接EF交BD于点O. (1)求证:BO=DO; (2)若EF⊥AB,延长EF交AD的延长线于点G,当FG=1时,求 AE的长.

华师大数学九年级下第10讲 中考第二轮复习之几何题精选(1)

华师大数学九年级下第10讲 中考第二轮复习之几何题精选(1)

第10讲 中考第二轮复习之几何题精选一、 旋转精选题【例1】 ⑴如图,P 是等腰直角△ABC 外一点,把BP 绕点B 顺时针旋转90°到BP ′,已知∠AP ′B =135°,P′A :P ′C =1:3,则P ′A :PB =( )A .1:2B .1:2C .3:2D .1:3⑵如图,在平面直角坐标系中,矩形OEFG 的顶点F 的坐标为(4,2), 将矩形OEFG 绕点O 逆时针旋转,使点F 落在y 轴上,得到矩形OMNP ,OM 与GF 相 交于点A .若经过点A 的反比例函数(0)ky x x=>的图象交EF 于点B ,则点B 的坐标为 .⑶如图,把一个斜边长为2且含有30°的直角三角板ABC 绕直角顶点C 顺时针旋转90°到 △A 1B 1C ,则在旋转过程中这个三角板扫过的图形的面积是( ) A .πB 3C .334π D .11312π⑷(如图,正方形ABCD 与正三角形AEF 的顶点A 重合,将△AEF 绕顶点A 旋转,在旋转过程中,当BE=DF 时,∠BAE 的大小可以是 .FEABC DP 'PCB AOEF NMG Py xBA30°A 1B 1CBA二、圆精选题【例2】如图△ABC内接于⊙O,CD平分∠ACB交⊙O于D,过点D作PQ∥AB分别交CA、CB延长线于P、Q,连接BD.(1)求证:PQ是⊙O的切线;(2)求证:BD2=AC•BQ;(3)若AC、BQ的长是关于x的方程x+=m的两实根,且tan∠PCD=,求⊙O的半径.【例3】如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接BD,BE.(1)求证:△ABD∽△AEB;(2)当=时,求tanE;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.三.三角形、四边形精选题例4.问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD ⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.中考真题演练:1.如图,在Rt△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E是AC的中点,OE交CD于点F.(1)若∠BCD=36°,BC=10,求的长;(2)判断直线DE与⊙O的位置关系,并说明理由;(3)求证:2CE2=AB•EF.2.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O 于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)3.我们知道,三角形的内心是三条角平分线的交点,过三角形内心的一条直线与两边相交,两交点之间的线段把这个三角形分成两个图形.若有一个图形与原三角形相似,则把这条线段叫做这个三角形的“內似线”.(1)等边三角形“內似线”的条数为;(2)如图,△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求证:BD是△ABC的“內似线”;(3)在Rt△ABC中,∠C=90°,AC=4,BC=3,E、F分别在边AC、BC上,且EF是△ABC的“內似线”,求EF的长.4.在平面直角坐标系中,A,B,C三点坐标分别为A(﹣6,3),B(﹣4,1),C(﹣1,1).(1)如图1,顺次连接AB,BC,CA,得△ABC.①点A关于x轴的对称点A1的坐标是,点B关于y轴的对称点B1的坐标是;②画出△ABC关于原点对称的△A2B2C2;③tan∠A2C2B2=;(2)利用四边形的不稳定性,将第二象限部分由小正方形组成的网格,变化为如图2所示的由小菱形组成的网格,每个小菱形的边长仍为1个单位长度,且较小内角为60°,原来的格点A,B,C分别对应新网格中的格点A′,B′,C′,顺次连接A′B′,B′C′,C′A′,得△A′B′C′,则tan∠A′C′B′=.5.已知点O是正方形ABCD对角线BD的中点.(1)如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB 于点M,交CD于点N.求证:①∠AEM=∠FEM;②点F是AB的中点;(2)如图2,若点E是OD上一点,点F是AB上一点,且使==,请判断△EFC的形状,并说明理由;(3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当=时,请猜想的值(请直接写出结论).课后作业(定时练习30分钟)一.选择题(共6小题)1.下列实数中,无理数是()A.0 B.C.﹣2 D.2.下列方程中,没有实数根的是()A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1=0 D.x2﹣2x+2=03.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<04.数据2、5、6、0、6、1、8的中位数和众数分别是()A.0和6 B.0和8 C.5和6 D.5和85.下列图形中,既是轴对称又是中心对称图形的是()A.菱形 B.等边三角形C.平行四边形D.等腰梯形6.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB二.填空题(共12小题)7.计算:2a•a2=.8.不等式组的解集是.9.方程=1的解是.10.如果反比例函数y=(k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y的值随x的值增大而.(填“增大”或“减小”)11.某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是微克/立方米.12.不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是.13.已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是.(只需写一个)14.某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是万元.15.如图,已知AB∥CD,CD=2AB,AD、BC相交于点E,设=,=,那么向量用向量、表示为.16.一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是.17.如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A内,点B在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是.18.我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6=.三.解答题1.当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.2.2017年6月2日,贵阳市生态委发布了《2016年贵阳市环境状况公报》,公报显示,2016年贵阳市生态环境质量进一步提升,小颖根据公报中的部分数据,制成了下面两幅统计图,请根据图中提供的信息,回答下列问题:(1)a=,b=;(结果保留整数)(2)求空气质量等级为“优”在扇形统计图中所占的圆心角的度数;(结果精确到1°)(3)根据了解,今年1~5月贵阳市空气质量优良天数为142天,优良率为94%,与2016年全年的优良率相比,今年前五个月贵阳市空气质量的优良率是提高还是降低了?请对改善贵阳市空气质量提一条合理化建议.3.随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为;(2)将条形统计图补充完整;(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.。

特殊四边形的计算与证明问题(真题10道+模拟30道)-中考数学重难题型押题培优导练案【原卷版】

特殊四边形的计算与证明问题(真题10道+模拟30道)-中考数学重难题型押题培优导练案【原卷版】

专题14特殊四边形的计算与证明问题(北京真题10道+模拟30道)【方法归纳】题型概述,方法小结,有的放矢考点考查年份考查频率十年8考特殊四边形的计算与证明(大题)2013.2014.2015.2016.2017.2020.2021.2022以四边形为载体的计算与证明是北京市中考数学常考的一类解答题,要求学生理解和掌握平行四边形、矩形、菱形、正方形的性质定理和判定定理,会画出四边形全等变换后的图形,并会结合其他知识解答一些有探索性、开放性的问题,提高解决问题的能力.解决此类问题的关键是要牢牢把握四边形的性质与特征,挖掘相关图形之间的联系,利用所给图形及图形之间形状、大小、位置关系,进行观察、实验、比较、联想、类比、分析、综合等.常用到的矩形、菱形、正方形的解题策略有:(1)对于矩形:①判定四边形是矩形,一般先判定是平行四边形,然后再判定是矩形;②矩形的内角是直角和对角线相等,相对于平行四边形来说是矩形特殊的性质;③利用矩形的性质计算或证明时,常常运用勾股定理,锐角三角函数或相似三角形求解.(2)对于菱形:①判定四边形是菱形,一般先判定是平行四边形,然后再判定是菱形;②菱形的邻边相等和对角线垂直,相对于平行四边形来说是菱形特殊的性质;③利用菱形的性质计算或证明时,常常运用勾股定理,锐角三角函数或相似三角形求解;④求线段和的最小值时,往往运用菱形的轴对称的性质转化为求线段的长度.(3)对于正方形:①判定四边形是正方形,一般先判定是平行四边形,然后再判定是矩形或菱形,最后判定这个四边形是正方形;②正方形是最特殊的四边形,在正方形的计算或证明时,要特别注意线段或角的等量转化.【典例剖析】典例精讲,方法提炼,精准提分【例1】(2021·北京·中考真题)如图,在四边形ABCD中,∠ACB=∠CAD=90°,点E在BC上,AE//DC,EF⊥AB,垂足为F.(1)求证:四边形AECD是平行四边形;,求BF和AD的长.(2)若AE平分∠BAC,BE=5,cosB=45【例2】(2022·北京·中考真题)如图,在▱ABCD中,AC,BD交于点O,点E,F在AC上,AE=CF.(1)求证:四边形EBFD是平行四边形;(2)若∠BAC=∠DAC,求证:四边形EBFD是菱形.【真题再现】必刷真题,关注素养,把握核心1.(2014·北京·中考真题)如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.2.(2016·北京·中考真题)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.3.(2017·北京·中考真题)如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,BC=1,求AC的长.4.(2017·北京·中考真题)数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程.证明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(____________+____________).易知,S△ADC=S△ABC,_____________=______________,______________=_____________.可得S矩形NFGD= S矩形EBMF.5.(2013·北京·中考真题)如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=1BC,连结DE,2CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长.6.(2015·北京·中考真题)在▱ABCD,过点D作DE∠AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.7.(2020·北京·中考真题)如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF∠AB,OG∠EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.8.(2016·北京·中考真题)如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.【模拟精练】押题必刷,巅峰冲刺,提分培优一、解答题1.(2022·北京房山·二模)已知:如图,在四边形ABCD中,AB∥DC,AC⊥BD,垂足为M,过点A作AE⊥AC,交CD的延长线于点E.(1)求证:四边形ABDE是平行四边形;(2)若AC=8,sin∠ABD=4,求BD的长.52.(2022·北京西城·二模)如图,菱形ABCD的对角线AC,BD交于点O,点E,F分别在DA,BC的延长线上,且BE∠ED,CF=AE.(1)求证:四边形EBFD是矩形;(2)若AB=5,cos∠OBC=4,求BF的长.53.(2022·北京朝阳·二模)如图,在菱形ABCD中,O为AC,BD的交点,P,M,N分别为CD,OD,OC 的中点.(1)求证:四边形OMPN是矩形;(2)连接AP,若AB=4,∠BAD=60∘,求AP的长.4.(2022·北京东城·二模)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=√10,tan∠DCB=3,求菱形AEBD的边长.5.(2022·北京平谷·二模)如图,在□ABCD中,连接AC,点E是AB中点,点F是AC的中点,连接EF,过E作EG∥AF,交DA的延长线于点G.(1)求证:四边形AGEF是平行四边形;(2)若sin∠G=3,AC=10,BC=12,连接GF,求GF的长.56.(2022·北京北京·二模)如图,在等边△ABC中,D是BC的中点,过点A作AE∥BC,且AE=DC,连接CE.(1)求证:四边形ADCE是矩形;(2)连接BE交AD于点F,连接CF.若AB=4,求CF的长.7.(2022·北京丰台·二模)如图,在∠ABC中,∠BAC=90∘,AD∠BC,垂足为D,AE∠BC,CE∠DA.(1)求证:四边形AECD是矩形;(2)若AB=5,cosB=3,求AE的长.58.(2022·北京密云·二模)如图,在平行四边形ABCD中,AC平分∠BAD,点E为AD边中点,过点E作AC的垂线交AB于点M,交CB延长线于点F.(1)求证:平行四边形ABCD是菱形;(2)若FB=2,sinF=3,求AC的长.59.(2022·北京市十一学校模拟预测)如图,在四边形ABCD中,AD=CD,BD⊥AC于点O,点E是DB延长线上一点,OE=OD,BF⊥AE于点F.(1)求证:四边形AECD是菱形;(2)若AB平分∠EAC,OB=3,tan∠CED=3,求EF和AD的长.410.(2022·北京昌平·二模)如图,在矩形ABCD中,对角线AC,BD交于点O,分别过点C,D作BD,AC的平行线交于点E,连接OE交AD于点F.(1)求证:四边形OCED是菱形;(2)若AC=8,∠DOC=60°,求菱形OCED的面积.11.(2022·北京海淀·二模)如图,在Rt∠ABC中,∠A =90°,点D,E,F分别为AB,AC,BC的中点,连接DF,EF.(1)求证:四边形AEFD是矩形;(2)连接BE,若AB = 2,tan C =1,求BE的长.212.(2022·北京东城·一模)如图,在正方形ABCD中,E为对角线AC上一点(AE>CE),连接BE,DE.(1)求证:BE=DE;(2)过点E作EF⊥AC交BC于点F,延长BC至点G,使得CG=BF,连接DG.∠依题意补全图形;∠用等式表示BE与DG的数量关系,并证明.13.(2022·北京东城·一模)如图,在四边形ABCD中,AC与BD相交于点O,且AO=CO,点E在BD上,∠EAO=∠DCO.(1)求证:四边形AECD是平行四边形;(2)若AB=BC,CD=5,AC=8,tan∠ABD=2,求BE的长.314.(2022·北京市十一学校二模)如图,在平行四边形ABCD中,CE⊥AD于点E,延长DA至点F,使得AF=DE,连接BF,CF.(1)求证:四边形BCEF是矩形;(2)若AB=6,CF=8,DF=10,求EF的长.15.(2022·北京石景山·一模)如图所示,△ABC中,∠ACB=90°,D,E分别为AB,BC的中点,连接DE 并延长到点F,使得EF=DE,连接CD,CF,BF.(1)求证:四边形BFCD是菱形;(2)若cos A=5,DE=5,求菱形BFCD的面积.1316.(2022·北京大兴·一模)如图,在平面四边形ABCD中,点E,F分别是AB,CD上的点,CF=BE.(1)求证:四边形AEFD是平行四边形;(2)若∠A=60°,AD=2,AB=4,求BD的长.17.(2022·北京丰台·一模)如图,在四边形ABCD中,∠DCB=90°,AD∥BC,点E在BC上,AB∥DE,AE 平分∠BAD.(1)求证:四边形ABED为菱形;(2)连接BD,交AE于点O.若AE=6,sin∠DBE=3,求CD的长.518.(2022·北京市师达中学模拟预测)如图,四边形ABCD是平行四边形,AE∠BC,AF∠CD,垂足分别为E,F,且BE=DF.(1)求证:四边形ABCD是菱形;(2)连接EF并延长,交AD的延长线于点G,若∠CEG=30°,AE =2,求EG的长.19.(2022·北京四中模拟预测)如图,在四边形ABCD中,AD=CD,BD∠AC于点O,点E是DB延长线上一点,OE=OD,BF∠AE于点F.(1)求证:四边形AECD是菱形;(2)若AB平分∠EAC,OB=3,BE=5,求EF和AD的长.20.(2021·北京丰台·一模)如图,在菱形ABCD中,对角线AC、BD交于点O,过点A作AE∠BC于E,延长BC到点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)连接OE,若AD=10,EC=4,求OE的长度.21.(2022·北京市燕山教研中心一模)如图,在菱形ABCD中,对角线AC与BD相交于点O,过点D作DE⊥BD 交BC的延长线于点E.(1)求证:四边形ACED是平行四边形;(2)若BD=4,AC=3,求sin∠CDE的值.22.(2022·北京平谷·一模)如图,∠ABC中,∠ACB=90°,点D为AB边中点,过D点作AB的垂线交BC 于点E,在直线DE上截取DF,使DF=ED,连接AE、AF、BF.(1)求证:四边形AEBF是菱形;(2)若cos∠EBF=3,BF=5,连接CD,求CD的长.523.(2022·北京市第一六一中学分校一模)在矩形ABCD中,AC,BD相交于点O,过点C作CE∠BD交AD的延长线于点E.(1)求证:∠ACD=∠ECD;(2)连接OE,若AB=2,tan∠ACD=2,求OE的长.24.(2022·北京房山·一模)如图,在平行四边形ABCD中,过点B作BE∠CD交CD的延长线于点E,过点C作CF∥EB交AB的延长线于点F.(1)求证:四边形BFCE是矩形;(2)连接AC,若AB=BE=2,tan∠FBC=1,求AC的长225.(2022·北京朝阳·一模)如图,在矩形ABCD中,AC,BD相交于点O,AE//BD,BE//AC.(1)求证:四边形AEBO是菱形;(2)若AB=OB=2,求四边形AEBO的面积.26.(2022·北京·中国人民大学附属中学分校一模)如图,正方形ABCD中,P为BD上一动点,过点P作PQ⊥AP 交CD边于点Q.(1)求证:PA=PQ;(2)用等式表示PB、PD、AQ之间的数量关系,并证明;(3)点P从点B出发,沿BD方向移动,若移动的路径长为4,则AQ的中点M移动的路径长为(直接写出答案).BC,27.(2022·北京市三帆中学模拟预测)已知:△ABC中,AB=AC,AD⊥BC于点D,过点A作AE,且AE=12连结DE.(1)求证:四边形ABDE是平行四边形;(2)作FG⊥AB于点G,AG=4,cos∠GAF=4,求FG和FD的长.528.(2022·北京西城·一模)如图,在∠ABC中,BA=BC,BD平分∠ABC交AC于点D,点E在线段BD上,点F在BD的延长线上,且DE=DF,连接AE,CE,AF,CF.(1)求证:四边形AECF是菱形;(2)若BA∠AF,AD=4,BC=4√5,求BD和AE的长.29.(2022·北京顺义·一模)如图,在四边形ABCD中,AD∥BC,AC⊥BD,垂足为O,过点D作BD的垂线交BC的延长线于点E.(1)求证:四边形ACED是平行四边形;(2)若AC=4,AD=2,cos∠ACB=4,求BC的长.530.(2022·北京通州·一模)如图.在∠ABC中,AB=BC,BD平分∠ABC交AC于点D.点E为AB的中点,连接DE,过点E作EF∥BD交CB的延长线于点F.(1)求证:四边形DEFB是平行四边形;(2)当AD=4,BD=3时,求CF的长.。

中考数学一轮教材复习-第四章 三角形 平行四边形与多边形

中考数学一轮教材复习-第四章  三角形  平行四边形与多边形
AB,BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数

72
度.
(第五章 四边形和多边形)
考点1 多边形(10年1考)
1-1 [2024遵义十一中模拟改编]风铃,又称铁马,古称“铎”,常见于中国
传统建筑屋檐下[如图(1)].如图(2),是六角形风铃的平面示意图,其
底部可抽象成正六边形ABCDEF,连接CF,则∠AFC的度数为
A.45°
B.60°
C.110°
D.135°
F在BC的延长线上,且CF=BE.
(1)求证:四边形AEFD是平行四边形.
(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.
(第五章 四边形和多边形)
(1)证明:∵四边形ABCD是矩形, (2)如图,连接DE.
∴AD∥BC,AD=BC.
∵BE=CF,
∴BE+EC=CF+EC,即BC=EF,
E,AF⊥CD 于点F
1.两组对边分别①平行 ,即AD//BC,AB∥CD

2.两组对边分别相等,即AD=BC,AB=CD

3.两组对角分别② 相等 ,即∠BAD=




∠BCD, ∠ABC= ∠ADC
4.对角线互相平分,即AO=CO,BO=DO
5.平行四边形是③中心 对称图形,
对称中心是两条对角线的交点
(2)在▱ABCD中,AB=CD,
∴CD∥BE.
在▱DBEC中,CD=BE,∴AB=BE.
∵CE∥BD,
∵CE⊥AC,∴BC=AB=BE=5,
∴四边形DBEC为平行四边形.
∴AE=10.
∵AC=8,∴CE= 2 − 2 =6,

专题73 四边形中的新定义问题(解析版)-中考数学解题大招复习讲义

专题73 四边形中的新定义问题(解析版)-中考数学解题大招复习讲义

例题精讲【例1】.定义:有一组对角互余的四边形叫做对余四边形,如图,在对余四边形ABCD中,AB=BC,AD=2,CD=5,∠ABC=60°,则线段BD=3.解:∵对余四边形ABCD中,∠ABC=60°,∴∠ADC=30°,∵AB=BC,∴将△BCD绕点B逆时针旋转60°,得到△BAF,连接FD,如图所示,∴△BCD≌△BAF,∠FBD=60°∴BF=BD,AF=CD,∠BDC=∠BFA,∴△BFD是等边三角形,∴BF=BD=DF,∵∠ADC=30°,∴∠ADB+∠BDC=30°,∴∠BFA+∠ADB=30°,∵∠FBD+∠BFA+∠ADB+∠AFD+∠ADF=180°,∴60°+30°+∠AFD+∠ADF=180°,∴∠AFD+∠ADF=90°,∴∠FAD=90°,∴AD2+AF2=DF2,∴AD2+CD2=BD2,∴BD2=(2)2+52=45,∵BD>0,∴BD=3,故答案为:3.变式训练【变1-1】.定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径,即损矩形外接圆的直径.如图,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,点D是菱形ACEF对角线的交点,连接BD.若∠DBC=60°,∠ACB=15°,BD=2,则菱形ACEF的面积为12.解:如图1,取AC的中点G,连接BG、DG,,∵四边形ACEF是菱形,∴AE⊥CF,∴∠ADC=90°,又∵∠ABC=90°,∴A、B、C、D四点共圆,点G是圆心,∴∠ACD=∠ABD=90°﹣∠DBC=90°﹣60°=30°,∵∠AGB=15°×2=30°,∠AGD=30°×2=60°,∴∠BGD=30°+60°=90°,∴△BGD是等腰直角三角形,∴BG=DG=,∴AC=2,∴AD=2,∴,∴菱形ACEF的面积为:3==故答案为:12.【变1-2】.定义:有一组对角互补的四边形叫做“对补四边形”,例如:四边形ABCD中,若∠A+∠C=180°或∠B+∠D=180°,则四边形ABCD是“对补四边形”.【概念理解】(1)如图1,四边形ABCD是“对补四边形”.①若∠A:∠B:∠C=3:2:1,则∠D=90度.②若∠B=90°.且AB=3,AD=2时.则CD2﹣CB2=5.【类比应用】(2)如图2,在四边形ABCD中,AB=CB,BD平分∠ADC.求证:四边形ABCD是“对补四边形”.(1)解:①∵∠A:∠B:∠C=3:2:1,∴设∠A=3x°,则∠B=2x°,∠C=x°,∵四边形ABCD是“对补四边形”,∴∠A+∠C=180°,∴3x+x=180,∴x=45°.∴∠B=2x=90°.∵四边形ABCD是“对补四边形”,∴∠B+∠D=180°,∴∠D=90°.故答案为:90;②连接AC,如图,∵∠B=90°,∴AB2+BC2=AC2.∵四边形ABCD是“对补四边形”,∴∠B+∠D=180°.∴∠D=90°.∴AD2+CD2=AC2.∴AB2+BC2=AD2+CD2,∴CD2﹣CB2=AB2﹣AD2,∵AB=3,AD=2,∴CD2﹣CB2=32﹣22=5.故答案为:5;(2)证明:在DC上截取DE=DA,连接BE,如图,∵BD平分∠ADC,∴∠ADB=∠EDB.在△ADB和△EDB中,,∴△ADB≌△EDB(SAS),∴∠A=∠DEB,AB=BE,∵AB=CB,∴BE=BC,∴∠BEC=∠C.∵∠DEB+∠BEC=180°,∴∠DEB+∠C=180°,∴∠A+∠C=180°,∴四边形ABCD是“对补四边形”.【例2】.定义:有一组邻边相等的凸四边形叫做等邻边四边形.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1,将△ABC沿∠ABC的平分线BB'的方向平移,得到A'B'C',连接AC',CC',若四边形ABCC'是等邻边四边形,则平移距离BB'的长度是1或.解:∵将Rt△ABC平移得到△A′B′C′,∴BB′=CC′,A′B′∥AB,A′B′=AB=2,B′C′=BC=1,A′C′=AC=,①如图1,当CC′=BC时,BB′=CC′=BC=1;②如图1,当AC′=AB=2时,∵∠ABC=90°,BB′是∠ABC的角平分线,∴∠B′BA=45°,延长C′B′交AB于H,∵A′B′∥AB,∠A′B′C′=90°,∴∠AHC′=∠A′B′C′=90°,∴∠BHB′=90°,设BH=B′H=x,∴BB′=x,AH=2﹣x,C′H=1+x,∵AC′2=AH2+C′H2,∴22=(2﹣x)2+(1+x)2,整理方程为:2x2﹣2x+1=0,∵△=4﹣8=﹣4<0,∴此方程无实数根,故这种情况不存在;③如图2,当AC′=C′C时,则AC′=BB′,延长C′B′交AB于H,∵A′B′∥AB,∠A′B′C′=90°,∴∠AHC′=∠A′B′C′=90°,∴∠BHB′=90°,设BH=B′H=x,∴BB′=AC′=x,AH=2﹣x,C′H=1+x,∵AC′2=AH2+C′H2,∴(x)2=(2﹣x)2+(1+x)2,解得:x=,∴BB′=,综上所述,若四边形ABCC'是等邻边四边形,则平移距离BB'的长度是1或,故答案为:1或.变式训练【变2-1】.已知在Rt△ABC中,∠C=90°,AC=6,BC=3.我们定义:“四个顶点都在三角形边上的正方形是三角形的内接正方形”.(1)如图1,四边形CDEF是△ABC的内接正方形,则正方形CDEF的边长a1等于2;(2)如图2,四边形DGHI是(1)中△EDA的内接正方形,那么第2个正方形DGHI 的边长记为a2;继续在图2中的△HGA中按上述方法作第3个内接正方形,依此类推,……则第n个内接正方形的边长a n=.(n为正整数)解:(1)四边形CDEF是正方形,∴EF=FC,EF∥FC,∴△BFE∽△BCA,∴=,∴=,∴a1=2,故答案是:2;(2)如图(2)四边形DGHI是正方形,∴IH=ID,IH∥AD,∴△EIH∽△EDA,∴=,∴=,∴a2=,如图3中,由以上同样的方法可以求得正方形PGQS的边长为:=,第4的个正方形的边长为:=,…第n个内接正方形的边长a n=,故答案为:=.【变2-2】.定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形.根据以上定义,解决下列问题:(1)如图1,正方形ABCD中E是CD上的点,将△BCE绕B点旋转,使BC与BA重合,此时点E的对应点F在DA的延长线上,则四边形BEDF是(填“是”或“不是”)“直等补”四边形;(2)如图2,已知四边形ABCD是“直等补”四边形,AB=BC=10,CD=2,AD>AB,过点B作BE⊥AD于E.①过C作CF⊥BF于点F,试证明:BE=DE,并求BE的长;②若M是AD边上的动点,求△BCM周长的最小值.解:(1)∵将△BCE绕B点旋转,BC与BA重合,点E的对应点F在DA的延长线上,∴∠ABF=∠CBE,BF=BE,∵四边形ABCD是正方形,∴∠ABC=∠D=90°,∴∠ABE+∠CBE=90°,∴∠ABE+∠ABF=90°,即∠EBF=∠D=90°,∴∠EBF+∠D=180°,∵∠EBF=90°,BF=BE,∴四边形BEDF是“直等补”四边形.故答案为:是;(2)①证明:∵四边形ABCD是“直等补”四边形,AB=BC=10,CD=2,AD>AB,∴∠ABC=90°,∠ABC+∠D=180°,∴∠D=90°,∵BE⊥AD,CF⊥BE,∴∠DEF=90°,∠CFE=90∴四边形CDEF是矩形,∴DE=CF,EF=CD=2,∵∠ABE+∠A=90°,∠ABE+∠CBE=90°,∴∠A=∠CBF,∵∠AEB=∠BFC=90°,AB=BC,∴△ABE≌△BCF(AAS),∴BE=CF,AE=BF,∵DE=CF,∴BE=DE;∵四边形CDEF是矩形,∴EF=CD=2,∵△ABE≌△BCF,∴AE=BF,∴AE=BE﹣2,设BE=x,则AE=x﹣2,在Rt△ABE中,x2+(x﹣2)2=102,解得:x=8或x=﹣6(舍去),∴BE的长是8;②∵△BCM周长=BC+BM+CM,∴当BM+CM的值最小时,△BCM的周长最小,如图,延长CD到点G,使DG=CD,连接BG交AD于点M′,过点G作GH⊥BC,交BC的延长线于点H,∵∠ADC=90°,∴点C与点G关于AD对称,∴BM+CM=BM+MG≥BG,即BM+CM≥BM′+M′C,∴当点M与M′重合时,BM′+M′C的值最小,即△BCM的周长最小,在Rt△ABE中,AE===6,∵四边形ABCD∴∠A+∠BCD=180°,∵∠BCD+∠GCH=180°,∴∠A=∠GCH,∵∠AEB=∠H=90°,∴△ABE∽△CGH,∴===,即=,∴GH=,CH=,∴BH=BC+CH=10+=,∴BG===2,∴△BCM周长的最小值为2+10.1.如图,四边形ACDE是证明勾股定理时用到的一个图形,a,b,c是Rt△ABC和Rt△BED边长,易知AE=c,这时我们把关于x的形如ax2+cx+b=0的一元二次方程称为“勾系一元二次方程”.请解决下列问题:(1)判断下列方程是否是“勾系一元二次方程”:①2x2+x+1=0不是(填“是”或“不是”);②3x2+5x+4=0是(填“是”或“不是”)(2)求证:关于x的“勾系一元二次方程”ax2+cx+b=0必有实数根;(3)若x=﹣1是“勾系一元二次方程”ax2+cx+b=0的一个根,且四边形ACDE的周长是12,求△ABC面积.(1)解:2x2+x+1=0不是“勾系一元二次方程”,理由:∵c=,∴c=,∵a=2,b=1,∴a2+b2≠c2,∴以a、b、c为三边长的三角形是不是直角三角形,且c为斜边的长,∴2x2+x+1=0不是“勾系一元二次方程”,3x2+5x+4=0是“勾系一元二次方程”,理由:∵c=5,∴c=5,∵a=3,b=4,∴a2+b2=c2,∴以a、b、c为三边长的三角形是直角三角形,且c为斜边的长,∴3x2+5x+4=0是“勾系一元二次方程”,故答案为:不是,是;(2)证明:∵ax2+cx+b=0是“勾系一元二次方程“,∴a、b、c为同一直角三角形的三边长,且c为斜边的长,∴c2=a2+b2,∵Δ=(c)2﹣4ab=2c2﹣4ab=2(a2+b2)﹣4ab=2(a﹣b)2≥0,∴关于x的“勾系一元二次方程”ax2+cx+b=0必有实数根.(3)解:∵x=﹣1是“勾系一元二次方程”ax2+cx+b=0的一个根,∴a﹣c+b=0,∴a+b=c,∵四边形ACDE的周长是12,∴2(a+b)+c=12,∴2c+c=12,∴c=2,∴a+b=×2=4,∴(a+b)2=16,∴a2+2ab+b2=16,∵a2+b2=c2=(2)2=8,∴2ab+8=16,∴ab=4,=ab=×4=2.∴S△ABC∴△ABC面积是2.2.我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称;(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB;(3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连接AD,DC,∠DCB=30°.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.(1)解:正方形、长方形、直角梯形.(任选两个均可)(2)解:答案如图所示.M(3,4)或M′(4,3).(3)证明:连接EC,∵△ABC≌△DBE,∴AC=DE,BC=BE,∵∠CBE=60°,∴EC=BC=BE,∠BCE=60°,∵∠DCB=30°,∴∠DCE=90°,∴DC2+EC2=DE2,∴DC2+BC2=AC2.即四边形ABCD是勾股四边形.3.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图I,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD 上的点.求证:四边形ABEF是邻余四边形;(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上;(3)如图3,已知四边形ABCD是以AB为邻余线的邻余四边形,AB=15,AD=6,BC =3,∠ADC=135°,求CD的长度.(1)证明:∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠FAB与∠EBA互余,∴四边形ABEF是邻余四边形;(2)解:如图所示(答案不唯一),(3)解:如图3,延长AD,CB交于点H,∵四边形ABCD是以AB为邻余线的邻余四边形,∴∠A+∠B=90°,∵∠ADC=135°,∴∠HDC=45°,∴∠HDC=∠HCD=45°,∴CH=DH,∵AB2=AH2+BH2,∴225=(6+DH)2+(3+DH)2,∴DH=6(负值舍去),∴CD=6.4.定义:我们把一组对边平行另一组对边相等且不平行的四边形叫做等腰梯形.【性质初探】如图1,已知,▱ABCD,∠B=80°,点E是边AD上一点,连结CE,四边形ABCE恰为等腰梯形.求∠BCE的度数;【性质再探】如图2,已知四边形ABCD是矩形,以BC为一边作等腰梯形BCEF,BF =CE,连结BE、CF.求证:BE=CF;【拓展应用】如图3,▱ABCD的对角线AC、BD交于点O,AB=2,∠ABC=45°,过点O作AC的垂线交BC的延长线于点G,连结DG.若∠CDG=90°,求BC的长.【性质初探】解:过点A作AG⊥BC交于G,过点E作EH⊥BC交于H,∵▱ABCD,∴AE∥BC,∴AG=EH,∵四边形ABCE恰为等腰梯形,∵AB=EC,∴Rt△ABG≌Rt△ECG(HL),∴∠B=∠ECH,∵∠B=80°,∴∠BCE=80°;【性质再探】证明:∵四边形ABCD是矩形,∴AE∥BC,∵四边形BCEF是等腰梯形,∴BF=CE,由(1)可知,∠FBC=∠ECB,∴△BFC≌△CEB(SAS),∴BE=CF;【拓展应用】解:连接AC,过G点作GM⊥AD交延长线于点M,∵四边形ABCD是平行四边形,∴O是AC的中点,∵GO⊥AC,∴AC=CG,∵AB∥CD,∠ABC=45°,∴∠DCG=45°,∴∠CDG=90°,∴CD=DG,∴BA=DG=2,∵∠CDG=90°,∴CG=2,∴AG=2,∵∠ADC=∠DCG=45°,∴∠CDM=135°,∴∠GDM=45°,∴GM=DM=,在Rt△AGM中,(2)2=(AD+)2+()2,∴AD=﹣,∴BC=﹣.5.给出如下定义:有两个相邻内角互余的四边形称为“邻余四边形”,这两个角的夹边称为“邻余线”.(1)如图1,格点四边形ABCD是“邻余四边形”,指出它的“邻余线”;(2)如图2,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD 上的点.求证:四边形ABEF是“邻余四边形”;(3)如图3,四边形ABCD是“邻余四边形”,AB为“邻余线”,E,F分别是AB,CD 的中点,连接EF,AD=4,BC=6.求EF的长.(1)解:由图形可知∠E=90°,∴∠A+∠B=90°,∴它的“邻余线”是AB;(2)证明:∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠FAB与∠EBA互余,∴四边形ABEF是邻余四边形;(3)解:如图,连接DE并延长到G,使EG=DE,连接BG,CG,在△AED和△BEG中,,∴△AED≌△BEG(SAS),∴∠A=∠ABG,BG=AD=4,∵四边形ABCD是“邻余四边形”,AB为“邻余线”,∴∠A+∠ABC=90°,∴∠ABG+∠ABC=∠GBC=90°,在Rt△GBC中,GC=,∵EG=DE,AE=BE,∴EF==.6.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.(1)如图1,△ABC的三个顶点均在正方形网格中的格点上,若四边形ABCD是以AC 为“相似对角线”的四边形,请只用无刻度的直尺,就可以在网格中画出点D,请你在图1中找出满足条件的点D,保留画图痕迹(找出2个即可)(2)①如图2,在四边形ABCD中,∠DAB=90°,∠DCB=135°,对角线AC平分∠DAB.请问AC是四边形ABCD的“相似对角线”吗?请说明理由;②若AC=,求AD•AB的值.(3)如图3,在(2)的条件下,若∠D=∠ACB=90°时,将△ADC以A为位似中心,位似比为:缩小得到△AEF,连接CE、BF,在△AEF绕点A旋转的过程中,当CE所在的直线垂直于AF时,请你直接写出BF的长.解:(1)如图1所示,AB=,BC=2,∠ABC=90°,AC=5,∵四边形ABCD是以AC为“相似对角线”的四边形,当∠ACD=90°时,△ACD∽△ABC或△ACD∽△CBA,∴或,∴或,∴CD=2.5或CD=10,同理:当∠CAD=90°时,AD=2.5或AD=10,如图中,D1,D2,D3,D4即为所求;(2)①是,理由:∵∠DAB=90°,AC平分∠DAB,∴∠DAC=∠CAB=45°,∴∠D+∠DCA=180°﹣∠DAC=135°,又∵∠DCB=135°=∠DCA+∠ACB,∴∠D=∠ACB,∴△DAC∽△CAB,∴AC是四边形ABCD的“相似对角线”;②∵△DAC∽△CAB,∴,∴AD•AB=AC2,∵AC=,∴AD•AB=10;(3)①由(2)可知△ADC为等腰直角三角形,AC=,∴AD=CD=,∵△AEF∽△ADC,且相似比为:,∴AE=EF=,AF=2,如图,延长CE交AF于点H,由题意可得:EH⊥AF于H,∴AH=AF=1,∴CH=,∴CE=CH﹣EH=3﹣1=2,∵∠CAD=∠EAF=45°,∴∠CAE=∠BAF,,∵,∴△EAC∽△FAB,∴即,∴FB=;②如图,设AF与EC交于点G,∵AF⊥CE,∴△AGE为等腰直角三角形,∵EA=,∴AG=EG=1,在Rt△AGC中,CG=,∴EC=4,同理可证△EAC∽△FAB,∴即,∴FB=4,综上,FB=2或FB=4.7.我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究:如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连接AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展:如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.解:(1)矩形或正方形;(2)AC=BD,理由为:连接PD,PC,如图1所示:∵PE是AD的垂直平分线,PF是BC的垂直平分线,∴PA=PD,PC=PB,∴∠PAD=∠PDA,∠PBC=∠PCB,∴∠DPB=2∠PAD,∠APC=∠PBC,即∠PAD=∠PBC,∴∠APC=∠DPB,∴△APC≌△DPB(SAS),∴AC=BD;(3)分两种情况考虑:(i)当∠AD′B=∠D′BC时,延长AD′,CB交于点E,如图3(i)所示,∴∠ED′B=∠EBD′,∴EB=ED′,设EB =ED ′=x ,由勾股定理得:42+(3+x )2=(4+x )2,解得:x =4.5,过点D ′作D ′F ⊥CE 于F ,∴D ′F ∥AC ,∴△ED ′F ∽△EAC ,∴=,即=,解得:D ′F =,∴S △ACE =AC ×EC =×4×(3+4.5)=15;S △BED ′=BE ×D ′F =×4.5×=,则S 四边形ACBD ′=S △ACE ﹣S △BED ′=15﹣=10;(ii )当∠D ′BC =∠ACB =90°时,过点D ′作D ′E ⊥AC 于点E ,如图3(ii )所示,∴四边形ECBD ′是矩形,∴ED ′=BC =3,在Rt △AED ′中,根据勾股定理得:AE ==,∴S △AED ′=AE ×ED ′=××3=,S 矩形ECBD ′=CE ×CB =(4﹣)×3=12﹣3,则S 四边形ACBD ′=S △AED ′+S 矩形ECBD ′=+12﹣3=12﹣.8.定义:长宽比为:1(n 为正整数)的矩形称为矩形.下面,我们通过折叠的方式折出一个矩形,如图①所示操作1:将正方形ABCD 沿过点B 的直线折叠,使折叠后的点C 落在对角线BD 上的点G 处,折痕为BH .操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF.可以证明四边形BCEF为矩形.(Ⅰ)在图①中,的值为;(Ⅱ)已知四边形BCEF为矩形,仿照上述操作,得到四边形BCMN,如图②,可以证明四边形BCMN为矩形,则n的值是3.(1)证明:设正方形ABCD的边长为1,则BD==,由折叠性质可知BG=BC=1,∠AFE=∠BFE=90°,则四边形BCEF为矩形,∴∠A=∠BFE,∴EF∥AD,∴=,即:=,∴BF=,∴BC:BF=1:=:1,∴四边形BCEF为矩形;(2)解:(Ⅰ)在Rt△BFG中,由勾股定理得:FG====,∴==;(Ⅱ)∵BC=1,EC=BF=,∴BE====,由折叠可得BP=BC=1,∠FNM=∠BNM=90°,∠EMN=∠CMN=90°.∵四边形BCEF是矩形,∴∠F=∠FEC=∠C=∠FBC=90°,∴四边形BCMN是矩形,∠BNM=∠F=90°,∴MN∥EF,∴=,即BP•BF=BE•BN,∴1×=BN,∴BN=,∴BC:BN=1:=:1,∴四边形BCMN是的矩形,∴n=3.故答案为:;3.9.我们定义:有一组邻角相等的凸四边形做“等邻角四边形”,例如:如图1,∠B=∠C,则四边形ABCD为等邻角四边形.(1)定义理解:已知四边形ABCD为等邻角四边形,且∠A=130°,∠B=120°,则∠D=55度.(2)变式应用:如图2,在五边形ABCDE中,ED∥BC,对角线BD平分∠ABC.①求证:四边形ABDE为等邻角四边形;②若∠A+∠C+∠E=300°,∠BDC=∠C,请判断△BCD的形状,并明理由.(3)深入探究:如图3,在等邻角四边形ABCD中,∠B=∠BCD,CE⊥AB,垂足为E,点P为边BC上的一动点,过点P作PM⊥AB,PN⊥CD,垂足分别为M,N.在点P的运动过程中,判断PM+PN与CE的数量关系?请说明理由.(4)迁移拓展:如图4,是一个航模的截面示意图.四边形ABCD是等邻角四边形,∠A=∠ABC,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,AB=2dm,AD=3dm,BD=dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.(1)解:∵四边形ABCD为等邻角四边形,∠A=130°,∠B=120°,∴∠C=∠D,∴∠D=55°,故答案为:55;(2)①证明:∵BD平分∠ABC,∴∠ABD=∠DBC,∵ED∥BC,∴∠EDB=∠DBC,∴∠EDB=∠ABD,∴四边形ABDE为等邻角四边形;②解:△BDC是等边三角形,理由如下:∵∠BDC=∠C,∴BD=BC,∠DBC=180°﹣2∠C,∵∠A+∠E+∠ABD+∠BDE=360°,∴∠A+∠E=360°﹣2∠ABD,∵∠A+∠C+∠E=300°,∴300°﹣∠C=360°﹣2(180°﹣2∠C),∴∠C=60°,又∵BD=BC,∴△BDC是等边三角形;(3)解:PM+PN=CE,理由如下:如图,延长BA,CD交于点H,连接HP,∵∠B=∠BCD,∴HB=HC,=S△BPH+S△CPH,∵S△BCH∴×BH×CE=×BH×PM+×CH×PN,∴CE=PM+PN;(4)解:如图,延长AD,BC交于点H,过点B作BG⊥AH于G,∵ED⊥AD,EC⊥CB,M、N分别为AE、BE的中点,∴AM=DM=ME,EN=NB=CN,∵AB2=BG2+AG2,BD2=BG2+DG2,∴52﹣(3+DG)2=37﹣DG2,∴DG=1,∴BG==6,由(3)可得DE+EC=BG=6,∴△DEM与△CEN的周长之和=ME+DM+DE+EC+EN+CN=AE+BE+BG=AB+BG=(6+2)dm.10.问题情景:如图1,我们把对角线互相垂直的四边形叫做“垂美四边形”,按照此定义,我们学过的平行四边形中的菱形、正方形等都是“垂美四边形”,“筝形”也是“垂美四边形”.概念理解:(1)如图2,已知等腰梯形ABCD是“垂美四边形”,AB=6,CD=8,求AD的长.性质探究:(2)如图3,已知四边形ABCD是“垂美四边形”,试探究其两组对边AB,CD与BC,AD之间的数量关系,并写出证明过程.问题解决:(3)如图4,分别以Rt△ABC的直角边AC和斜边AB为边向外作正方形ACFG与正方形ABDE,连接CE,BG,GE,CE与BG交于点O,已知AC=3,AB=5,求△OGE的中线OH的长.解:(1)∵等腰梯形ABCD是“垂美四边形”,∴AD=BC,AC⊥BD,∴AB2=OB2+OA2,CD2=OC2+OD2,∴AB2+CD2=OA2+OB2+OC2+OD2,AD2=OA2+OD2,BC2=OB2+OC2,∴AD2+BC2=OA2+OB2+OC2+OD2,∴垂美四边形两组对边AB,CD与BC,AD之间的数量关系是AB2+CD2=BC2+AD2;∵AB=6,CD=8,∴2AD2=62+82,∴AD=5;(2)由(1)证明可得:垂美四边形两组对边AB,CD与BC,AD之间的数量关系是AB2+CD2=BC2+AD2;(3)连接BE,CG,CE,∵∠CAE=∠CAB+∠BAE,∠BAC+∠CAG=∠GAB,∴∠CAE=∠GAB,∵AC=AG,AB=AE,∴△ABG≌△AEC(SAS),∴△ABG可视为△AEC绕点A逆时针旋转90°后得到的,由旋转的性质知:BG⊥CE,∴四边形BCGE为垂美四边形,∴由(2)知:CG2+BE2=BC2+EG2,又∵AC=3,AB=5,∴BC=4,CG=3,BE=5,∴(3)2+(5)2=42+GE2,∴GE=2,又∵△OGE为直角三角形,OH为其斜边上的中线,∴OH=,11.定义:我们把两条对角线互相垂直的四边形称为“垂美四边形”.特例感知:(1)如图1,四边形ABCD是“垂美四边形,如果,OB=2,∠OBC=60°,则AD2+BC2=,AB2+CD2=.猜想论证(2)如图1,如果四边形ABCD是“垂美四边形”,猜想它的两组对边AB,CD与BC,AD之间的数量关系并给予证明.拓展应用:(3)如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,∠BAC=60°,求GE长.(4)如图3,∠AOB=∠COD=90°,∠ABO=∠CDO=30°,∠BOC=120°,OA=OD,,连接AC,BC,BD,请直接写出BC的长.解:(1)∵OA=OD=OB,OB=2,∴OA=OD=,∵四边形ABCD是“垂美四边形”,∴∠AOD=∠BOC=90°,∵∠OBC=60°,∴∠BCO=30°,∴BC=4,OC=2,∴AD2+BC2=OA2+OD2+BC2=()2×2+42=,AB2+CD2=OA2+OB2+OD2+OC2=AD2+BC2=,故答案为:,;(2)AB2+CD2=AD2+BC2,理由如下:∵四边形ABCD是“垂美四边形”,∴∠AOD=∠BOC=90°,∴AB2+CD2=OA2+OB2+OD2+OC2=AD2+BC2;(3)连接CG,BE,设BG与AC的交点为O,∵正方形ACFG和正方形ABDE,∴AG=AC,AE=AB,∠GAC=∠EAB,∴∠GAB=∠CAE,∴△GAB≌△CAE(SAS),∴∠GAB=∠ACE,∵∠AOG=∠BOC,∴BG⊥CE,∴四边形BCGE是“垂美四边形”,由(2)知,BC2+GE2=CG2+BE2,∵∠ACB=90°,∠BAC=60°,∴∠CBA=30°,∴AB=2AC=8,BC=4,∴CG=4,BE=8,∴(4)2+GE2=(4)2+(8)2,解得EG=4;(4)如图,连接AD,设AC与BD的交点为H,∵∠AOB=∠COD=90°,∠ABO=∠CDO=30°,OC=,∴∠BOD=∠AOC,BO=OA,DO=OC=3,AB=2AO,CD=2CO=2,∵OA=OD=3,∴AB=6,∵∠BOC=120°,∠AOB=∠COD=90°,∴∠AOD=60°,∴△AOD是等边三角形,∴AD=DO=3,∵=,∠BOD=∠AOC,∴△BOD∽△AOC,∴∠DBO=∠CAO,∵∠ABD+∠DBO+∠BAO=90°,∴∠ABD+∠BAO+∠CAO=90°,∴∠AHB=90°,∴AC⊥BD,∴四边形ABCD是“垂美四边形”,由(2)可知:AB2+CD2=AD2+BC2,∴36+12=9+BC2,∴BC=.12.点P(x1,y1),Q(x2,y2)是平面直角坐标系中不同的两个点,且x1≠x2,若存在一个正数k,使点P,Q的坐标满足|y1﹣y2|=k|x1﹣x2|,则称P,Q为一对“限斜点”,k叫做点P,Q的“限斜系数”,记作k(P,Q).由定义可知,k(P,Q)=k(Q,P).例:若P(1,0),Q(3,),有|0﹣|=|1﹣3|,所以点P,Q为一对“限斜点”,且“限斜系数”为.已知点A(1,0),B(2,0),C(2,﹣2),D(2,).(1)在点A,B,C,D中,找出一对“限斜点”:点A与点D或点A与点C,它们的“限斜系数”为2或;(2)若存在点E,使得点E,A是一对“限斜点”,点E,B也是一对“限斜点”,且它们的“限斜系数”均为1.求点E的坐标;(3)正方形对角线的交点叫做中心,已知正方形EFGH的各边与坐标轴平行,边长为2,中心为点M(0,m).点T为正方形上任意一点,若所有点T都与点C是一对“限斜点”,且都满足k(T,C)≥1,直接写出点M的纵坐标m的取值范围.解:(1)由定义可知x1≠x2,y1≠y2,∴B、C、D三点不能是“限斜点”,A、B不能是“限斜点”,对于点A(1,0)和点C(2,﹣2),|﹣2﹣0|=2|2﹣1|,∴A与C是“限斜点”,“限斜系数”为2;对于点A(1,0)和点D(2,),|﹣0|=|2﹣1|,∴A与D是“限斜点”,“限斜系数”为;故答案为:点A与点D或点A与点C;2或;(2)设E(x,y),∵点E,A是一对“限斜点”,“限斜系数”为1,∴|y|=|x﹣1|,∵点E,B一对“限斜点”,“限斜系数”为1,∴|y|=|x﹣2|,∴|x﹣1|=|x﹣2|,解得x=,∴y=±,∴E(,)或(,﹣);(3)∵C(2,﹣2),∴点C在直线y=﹣x上,当T点在直线y=﹣x上时,k(T,C)=1,∵所有点T都满足k(T,C)≥1,∴T点在直线y=﹣x的上方,∵M(0,m),FG=2,∴F(﹣1,m﹣1),当F点在直线y=﹣x上时,m﹣1=1,解得m=2,∴m≥2时,对任意的T都有k(T,C)≥1;过点C作直线y=﹣x的垂线,则垂线解析式为y=x﹣4,当T点在直线y=x﹣4上时,k(T,C)=1,∵所有点T都满足k(T,C)≥1,∴T点在直线y=x﹣4的下方,∵M(0,m),FG=2,∴E(﹣1,m+1),当E点在直线y=x﹣4上时,﹣1﹣4=m+1,解得m=﹣6,∴m≤﹣6时,对任意的T都有k(T,C)≥1;综上所述:m≥2或m≤﹣6时,对任意的T都有k(T,C)≥1.13.定义:对于一个四边形,我们把依次连结它的各边中点得到的新四边形叫做原四边形的“中点四边形”.如果原四边形的中点四边形是个正方形,我们把这个原四边形叫做“中方四边形”.概念理解:下列四边形中一定是“中方四边形”的是D.A.平行四边形B.矩形C.菱形D.正方形性质探究:如图1,四边形ABCD是“中方四边形”,观察图形,写出关于四边形ABCD 的两条结论:①AC=BD;②AC⊥BD.问题解决:如图2,以锐角△ABC的两边AB,AC为边长,分别向外侧作正方形ABDE 和正方形ACFG,连结BE,EG,GC.求证:四边形BCGE是“中方四边形”;拓展应用:如图3,已知四边形ABCD是“中方四边形”,M,N分别是AB,CD的中点,(1)试探索AC与MN的数量关系,并说明理由.(2)若AC=2,求AB+CD的最小值.解:概念理解:在平行四边形、矩形、菱形、正方形中只有正方形是“中方四边形”,理由如下:因为正方形的对角线相等且互相垂直,故选:D;性质探究:①AC=BD,②AC⊥BD;理由如下:如图1,∵四边形ABCD是“中方四边形”,∴EFGH是正方形且E、F、G、H分别是AB、BC、CD、AD的中点,∴∠FEH=90°,EF=EH,EH∥BD,EH=BD,EF∥AC,EF=AC,∴AC⊥BD,AC=BD,故答案为:AC⊥BD,AC=BD;问题解决:如图2,取四边形BCGE各边中点分别为P、Q、R、L并顺次连接成四边形MNRL,连接CE交AB于P,连接BG交CE于K,∵四边形BCGE各边中点分别为M、N、R、L,∴MN、NR、RL、LM分别是△BCG、△CEG、△BGE、△CEB的中位线,∴MN∥BG,MN=BG,RL∥BG,RL=BG,RN∥CE,RN=CE,ML∥CE,ML =CE,∴MN∥RL,MN=RL,RN∥ML∥CE,RN=ML,∴四边形MNRL是平行四边形,∵四边形ABDE和四边形ACFG都是正方形,∴AE=AB,AG=AC,∠EAB=∠GAC=90°,又∵∠BAC=∠BAC,∴∠EAB+∠BAC=∠GAC+∠BAC,即∠EAC=∠BAG,在△EAC和△BAG中,,∴△EAC≌△BAG(SAS),∴CE=BG,∠AEC=∠ABG,又∵RL=BG,RN=CE,∴RL=RN,∴▱MNRL是菱形,∵∠EAB=90°,∴∠AEP+∠APE=90°.又∵∠AEC=∠ABG,∠APE=∠BPK,∴∠ABG+∠BPK=90°,∴∠BKP=90°,又∵MN∥BG,ML∥CE,∴∠LMN=90°,∴菱形MNRL是正方形,即原四边形BCGE是“中方四边形”;拓展应用:(1)MN=AC,理由如下:如图3,分别作AD、BC的中点E、F并顺次连接EN、NF、FM、ME,∵四边形ABCD是“中方四边形”,M,N分别是AB,CD的中点,∴四边形ENFM是正方形,∴FM=FN,∠MFN=90°,∴MN===FM,∵M,F分别是AB,BC的中点,∴FM=AC,∴MN=AC;(2)如图4,分别作AD、BC的中点E、F并顺次连接EN、NF、FM、ME,连接BD交AC于O,连接OM、ON,当点O在MN上(即M、O、N共线)时,OM+ON最小,最小值为MN的长,=2MN,∴2(OM+ON)最小由性质探究②知:AC⊥BD,又∵M,N分别是AB,CD的中点,∴AB=2OM,CD=2ON,∴2(OM+ON)=AB+CD,=2MN,∴(AB+CD)最小由拓展应用(1)知:MN=AC;又∵AC=2,∴MN=,=2.∴(AB+CD)最小14.对于平面直角坐标系xOy中的图形W1和图形W2.给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N(点M、N可以重合)使得AM=2BN,则称图形W1和图形W2满足限距关系.(1)如图1,点C(1,0),D(﹣1,0),E(0,),点F在CE上运动(点F可以与C,E重合),连接OF,DF.①线段OF的最小值为,最大值为;线段DF的取值范围是DF≤2.②在点O,D中,点O与线段CE满足限距关系.(2)如图2,正方形ABMN的边长为2,直线PQ分别与x轴,y轴交于点Q,P,且与x轴正方向的夹角始终是30°,若线段PQ与正方形ABMN满足限距关系,求点P的纵坐标a(a>0)的取值范围;(3)如图3,正方形ABMN的顶点均在坐标轴上,A(0,b)(b>0),G,H是正方形边上两点,分别以G,H为中心作边长为1的正方形,与正方形ABMN的四边分别平行.若对于任意的点G,H,以G,H为中心的正方形都满足限距关系,直接写出b的取值范围.解:(1)①如图1,点C(1,0),D(﹣1,0),E(0,),∴OC=1,OD=1,OE=,∴CE=2,当OF⊥CE时,OC•OE=EC•OF,∴OF=,此时OF的值最小;当F点与E点重合时,OF的值最大,最大值为,当DF⊥CE时,DF的值最小,∴DC•OE=EC•DF,∴DF=,当点F与点C或点E重合时,DF有最大值,∴DE=CD=2,∴FD的最大值为2,∴≤DF≤2,故答案为:,,≤DF≤2;②线段CE上存在点M、N,满足OM最小值为,ON最大值为,则OM=2ON,∴点O与线段CE满足限距关系;∵≤DF≤2,∴线段CE上不存在两点与点满足限距关系;故答案为:O;(2)∵P(0,a),∠PQO=30°,∴OP=a,PQ=2a,∴OQ=a,∵正方形的边长为2,∴OA=OB=2,当a=2时,a=,此时点Q与点B重合,①如图2,当0<a<时,线段PQ在正方形内部,此时PQ与正方形无公共点,过点Q作QE⊥AB交于E,过点Q作QF⊥QE交AN于点F,∴QE=,∴QE=1﹣a,∴正方形上到线段PQ的最短距离为1﹣a,∵NF=,∴NF=1+a,∴正方形上到线段PQ的最大距离为1+a,∵线段PQ与正方形满足限距关系,∴1+a≥2(1﹣a),解得a≥,∴≤a<;②如图3,当≤a≤时,线段PQ与正方形有公共点,线段PQ与正方形满足限距关系;③如图4,当a>时,线段PQ在正方形的外部,与正方形无公共点,过点A作AC⊥PQ交于C,过点M作MD⊥PQ交于D,∵∠OPQ=60°,∴∠PAC=30°,∠PMD=30°,∴CP=AP,PD=PM,∴正方形到线段PQ的最小距离为AC==(a﹣),正方形到线段PQ的最大距离为MP=a+,∵线段PQ与正方形满足限距关系,∴a+≥2×(a﹣),解得a≤2+,∴<a≤2+;综上所述:≤a≤2+;(3)如图5,当中心H、G分别与B、N重合时,∵A(0,b),∴OA=OB=ON=b,∵小正方形的边长为1,∴CD=PQ=,∴两个正方形的距离的最小值为BN﹣BD﹣PN=2b﹣,最大距离为BN+BC+NQ=2b+,∵两个正方形满足限距关系,∴2b+≥2(2b﹣),解得b≤,∴0<b≤.15.定义:长宽比为:1(n为正整数)的矩形称为矩形.下面,我们通过折叠的方式折出一个矩形,如图①所示.操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH.操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF.则四边形BCEF为矩形.证明:设正方形ABCD的边长为1,则BD==.由折叠性质可知BG=BC=1,∠AFE=∠BFE=90°,则四边形BCEF为矩形.∴∠A=∠BFE.∴EF∥AD.∴=,即=.∴BF=.∴BC:BF=1:=:1.∴四边形BCEF为矩形.阅读以上内容,回答下列问题:(1)在图①中,所有与CH相等的线段是GH、DG,tan∠HBC的值是﹣1;(2)已知四边形BCEF为矩形,模仿上述操作,得到四边形BCMN,如图②,求证:四边形BCMN是矩形;(3)将图②中的矩形BCMN沿用(2)中的方式操作3次后,得到一个“矩形”,则n的值是6.解:(1)由折叠可得:DG=HG,GH=CH,∴DG=GH=CH.设HC=x,则DG=GH=x.∵∠DGH=90°,∴DH=x,∴DC=DH+CH=x+x=1,解得x=.∴tan∠HBC===.故答案为:GH、DG,;(2)∵BC=1,EC=BF=,∴BE==.由折叠可得BP=BC=1,∠FNM=∠BNM=90°,∠EMN=∠CMN=90°.∵四边形BCEF是矩形,∴∠F=∠FEC=∠C=∠FBC=90°,∴四边形BCMN是矩形,∠BNM=∠F=90°,∴MN∥EF,∴=,即BP•BF=BE•BN,∴1×=BN,∴BN=,∴BC:BN=1:=:1,∴四边形BCMN是的矩形;(3)同理可得:将矩形沿用(21次后,得到一个“矩形”,将矩形沿用(2)中的方式操作1次后,得到一个“矩形”,将矩形沿用(2)中的方式操作1次后,得到一个“矩形”,所以将图②中的矩形BCMN沿用(2)中的方式操作3次后,得到一个“矩形”,故答案为6.16.定义:长宽比为:1(n为正整数)的矩形称为矩形.下面,我们通过折叠的方式折出一个矩形,如图a所示.操作1:将正方形ABEF沿过点A的直线折叠,使折叠后的点B落在对角线AE上的点G 处,折痕为AH.操作2:将FE沿过点G的直线折叠,使点F、点E分别落在边AF,BE上,折痕为CD.则四边形ABCD为矩形.(1)证明:四边形ABCD为矩形;(2)点M是边AB上一动点.①如图b,O是对角线AC的中点,若点N在边BC上,OM⊥ON,连接MN.求tan∠OMN的值;②若AM=AD,点N在边BC上,当△DMN的周长最小时,求的值;③连接CM,作BR⊥CM,垂足为R.若AB=2,则DR的最小值=2.证明:(1)设正方形ABEF的边长为a,∵AE是正方形ABEF的对角线,∴∠DAG=45°,由折叠性质可知AG=AB=a,∠FDC=∠ADC=90°,则四边形ABCD为矩形,∴△ADG是等腰直角三角形.∴AD=DG=,∴AB:AD=a:=:1.∴四边形ABCD为矩形;(2)①解:如图b,作OP⊥AB,OQ⊥BC,垂足分别为P,Q.∵四边形ABCD是矩形,∠B=90°,∴四边形BQOP是矩形.∴∠POQ=90°,OP∥BC,OQ∥AB.∴,.∵O为AC中点,∴OP=BC,OQ=AB.∵∠MON=90°,∴∠QON=∠POM.∴Rt△QON∽Rt△POM.∴=.∴tan∠OMN=.②解:如图c,作M关于直线BC对称的点P,连接DP交BC于点N,连接MN.则△DMN的周长最小,∵DC∥AP,∴,设AM=AD=a,则AB=CD=a.∴BP=BM=AB﹣AM=(﹣1)a.∴==2+,③如备用图,∵四边形ABCD为矩形,AB=2,∴BC=AD=2,∵BR⊥CM,∴点R在以BC为直径的圆上,记BC的中点为I,∴CI=BC=1,∴DR最小=﹣1=2故答案为:217.定义:有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD中,∠B=∠D,∠C=∠A,则∠B+∠C=120°;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO,在OA上取点E,使得DE=OE,连接DE并延长交AC于点F,∠AED=3∠EAF.求证:四边形BCFD是半对角四边形;(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G,OH=2,DH=6.①连接OC,若将扇形OBC围成一个圆锥的侧面,则该圆锥的底面半径为;②求△ABC的面积.(1)解:∵四边形ABCD是半对角四边形,∴∠B=∠D,∠C=∠A.∴∠D=2∠B,∠A=2∠C.∵∠A+∠B+∠C+∠D=360°,∴3∠B+3∠C=360°,∴∠B+∠C=120°,故答案为:120;(2)证明:连接OC,如图,在△BDE和△BOE中,,∴△BDE≌△BOE(SSS).∴∠BDF=∠BOE.∵∠ACB=∠BOE,∴∠ACB=∠BDF.设∠EAF=α,则∠AED=3α.∵∠AED=∠EAF+∠AFE,∴∠AFE=∠AED﹣∠EAF=2α,∴∠DFC=180°﹣∠AFD=180°﹣2α.∵OA=OC,∴∠OCA=∠EAF=α,∴∠AOC=180°﹣∠EAF﹣∠OCA=180°﹣2α,∴∠AOC=∠DFC.∵∠ABC=∠AOC,∴∠ABC=∠DFC,∴四边形BCFD是半对角四边形;(3)解:①连接OC,如图,四边形BCFD是半对角四边形,且∠ABC=∠DFC,∠ACB=∠BDF,由(1)的方法可求得:∠ABC+∠ACB=120°,∴∠BAC=180°﹣∠ABC﹣∠ACB=60°,∴∠BOC=2∠BAC=120°.设⊙O的半径为r,则BD=BO=r,BH=r﹣2,在Rt△BDH中,∵BD2=BH2+DH2,。

中考数学总复习-四边形专题模块-矩形的性质及判定讲义教师版

中考数学总复习-四边形专题模块-矩形的性质及判定讲义教师版

知识点 A 要求 B 要求C要求矩形 会识别矩形掌握矩形的概念、判定和性质,会用矩形的性质和判定解决简单问题 会运用矩形的知识解决有关问题1.矩形的定义:有一个角是直角的平行四边形叫做矩形. 2.矩形的性质矩形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质: ① 边的性质:对边平行且相等. ② 角的性质:四个角都是直角.③ 对角线性质:对角线互相平分且相等.④ 对称性:矩形是中心对称图形,也是轴对称图形.直角三角形斜边上的中线等于斜边的一半.直角三角形中,30︒角所对的边等于斜边的一半.点评:这两条直角三角形的性质在教材上是应用矩形的对角线推得,用三角形知识也可推得. 3.矩形的判定判定①:有一个角是直角的平行四边形是矩形. 判定②:对角线相等的平行四边形是矩形. 判定③:有三个角是直角的四边形是矩形.重点:掌握矩形的性质,并学会应用. 难点:理解矩形的特殊性.关键:把握平行四边形的演变过程,迁移到矩形概念与性质上来,明确矩形是特殊的平行四边形.一、矩形的判定【例1】 在矩形ABCD 中,点H 为AD 的中点,P 为BC 上任意一点,PE HC ⊥交HC 于点E ,PF BH⊥交BH 于点F ,当AB BC ,满足条件 时,四边形PEHF 是矩形【考点】矩形的性质和判定 【题型】填空 【难度】2星 【关键词】 【解析】省略【答案】2BC AB =例题精讲重、难点中考要求中考要求矩形的性质 及判定【例2】 如图,在四边形ABCD 中,90ABC BCD ∠=∠=︒,AC BD =,求证:四边形ABCD 是矩形.CDB A【考点】矩形的性质和判定 【题型】解答 【难度】2星 【关键词】 【解析】省略【答案】∵90ABC BCD ∠=∠=︒,∴AB ∥CD在Rt ABC ∆和Rt DCB ∆中BC CBAC BD =⎧⎨=⎩∴Rt ABC ∆≌Rt DCB ∆ (HL )∵AB CD =,∴四边形ABCD 是平行四边形 ∵AC BD =,∴四边形ABCD 是矩形【巩固】 矩形具有而平行四边形不具有的性质为( )A .对角线相等B .对角相等C .对角线互相平分D .对边相等【考点】矩形的性质和判定 【题型】选择 【难度】1星 【关键词】 【解析】省略 【答案】A【例3】 如图,已知在四边形ABCD 中,AC DB ⊥交于O ,E 、F 、G 、H 分别是四边的中点,求证四边形EFGH 是矩形.HG OFEDCB A【考点】矩形的性质和判定 【题型】解答 【难度】2星 【关键词】 【解析】省略【答案】∵E 、F 、G 、H 分别是四边的中点∴EF 、GH 为中位线∴EF GH BD ∥∥且12EF GH BD ==∴四边形EFGH 为平行四边形∴四边形EFGH 是矩形.【巩固】 如图,在平行四边形ABCD 中,M 是AD 的中点,且MB MC =,求证:四边形ABCD 是矩形.MCDB A【考点】矩形的性质和判定 【题型】解答 【难度】2星 【关键词】 【解析】省略【答案】∵四边形ABCD 是平行四边形,∴AB CD =, 180A D ∠+∠=︒∵M 是AD 的中点,∴AM MD =在ABM ∆和CDM ∆中AM DM MB MC AB CD =⎧⎪=⎨⎪=⎩∴ABM ∆≌CDM ∆ (SSS ),∴A D ∠=∠ ∴90A ∠=︒,∴四边形ABCD 是矩形【例4】 如图,平行四边形ABCD 中,AQ 、BN 、CN 、DQ 分别是DAB ∠、ABC ∠、BCD ∠、CDA ∠的平分线,AQ 与BN 交于P ,CN 与DQ 交于M ,证明:四边形PQMN 是矩形.NMQPDCBA【考点】矩形的性质和判定 【题型】解答 【难度】4星 【关键词】 【解析】省略【答案】∵四边形ABCD 为平行四边形∴AB CD ∥,AD BC ∥∵AQ 、BN 分别是DAB ∠、ABC ∠的平分线 ∴180BAD ABC ∠+∠=︒ ∴90QPN ∠=︒同理90PQM QMN MNP ∠=∠=∠=︒ ∴四边形PQMN 是矩形.【例5】 如图,在ABC ∆中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF BD =,连结BF . ⑴ 求证:BD CD =.⑵ 如果AB AC =,试判断四边形AFBD 的形状,并证明你的结论.FED CB A【考点】矩形的性质和判定 【题型】解答 【难度】3星【关键词】2009年,安顺市中考 【解析】省略【答案】⑴ ∵AF BC ∥,AFE DCE ∠=∠E 是AD 的中点,∴AE DE = ∵AFE DCE AE DE AEF DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AEF DEC ∆∆≌ ∴AF DC =,∵AF BD = ∴BD CD =(2)四边形AFBD 是矩形∵AB AC =,D 是BC 的中点(利用全等) ∴AD BC ⊥ ∴90ADB ∠=︒∵AF BD =,AF BC ∥∴四边形AFBD 是平行四边形 又90ADB ∠=︒∴四边形AFBD 是矩形.【巩固】 如图,在ABC ∆中,点D 是AC 边上的一个动点,过点D 作直线MN BC ∥,若MN 交BCA ∠的平分线于点E ,交BCA ∠的外角平分线于点F (1)求证:DE DF =(2)当点D 运动到何处时,四边形AECF 为矩形?请说明理由!NMFEDCBA【考点】矩形的性质和判定 【题型】解答 【难度】3星 【关键词】 【解析】省略【答案】⑴证明:ED DC DF DC ==,⑵当D 为AC 的中点时,四边形AECF 为矩形【例6】 如图所示,在Rt ABC ∆中,90ABC ∠=︒,将Rt ABC ∆绕点C 顺时针方向旋转60︒得到DEC ∆点E在AC 上,再将Rt ABC ∆沿着AB 所在直线翻转180︒得到ABF ∆连接AD .⑵ 连接BE 并延长交AD 于G 连接CG ,请问:四边形ABCG 是什么特殊平行四边形?为什么?AB CDGEF【考点】矩形的性质和判定,菱形的性质和判定 【题型】解答 【难度】3星【关键词】2009年,襄樊市中考 【解析】省略【答案】⑴ Rt DEC ∆是由Rt ABC ∆绕C 点旋转60︒得到∴AC DC =,60ACB ACD ∠=∠=︒ ∴ACD ∆是等边三角形 ∴AD DC AC ==又∵Rt ABF ∆是由Rt ABC ∆沿AB 所在 直线翻转180︒得到∴AC AF =,90ABF ABC ∠=∠=︒ ∴180FBC ∠=︒∴点F 、B 、C 三点共线 ∴AFC ∆是等边三角形 ∴AF FC AC ==∴AD DC FC AF === ∴四边形AFCD 是菱形. ⑵ 四边形ABCG 是矩形.由⑴可知:ACD ∆是等边三角形,DE AC ⊥于E ∴AE EC =,又∵AG BC ∥∴EAG ECB ∠=∠,AGE EBC ∠=∠ ∴AEG CEB ∆∆≌,∴AG BC =∴四边形ABCG 是平行四边形,而90ABC ∠=︒ ∴四边形ABCG 是矩形.【巩固】 如图,在ABCD 中,AE BC ⊥于E ,AF CD ⊥于F ,AEF ∆的两条高相交于M ,20AC =,16EF =,求AM 的长.MF E DC BAGMF E DC BA【考点】平行四边形的性质和判定,矩形的性质和判定,三角形的三线五心 【题型】解答 【难度】6星 【关键词】【解析】过C 作CG AD ⊥于G ,连接EG 、FG .∵AE BC ⊥,FM AE ⊥,∴FM ∥EC∴四边形EMFC 为平行四边形,∴MF EC = 又∵AE BC ⊥,CG AD ⊥且BC ∥AD ∴90EAG AGC GCE AEC ∠=∠=∠=∠=︒ ∴四边形AGCE 为矩形∴EC AG =,EG AC =,∴MF AG = 又∵MF ∥AG∴四边形AGFM 为平行四边形,∴GF AM = ∵AM EF ⊥,∴GF EF ⊥,即90GFE ∠=︒∴GF =∴12AM =【答案】12【例7】 已知,如图矩形ABCD 中,延长CB 到E ,使CE AC =,F 是AE 中点.求证:BF DF ⊥.ABCE FDBCM【考点】矩形的性质和判定,等腰三角形的性质和判定 【题型】解答 【难度】4星 【关键词】【解析】延长BF 交AD 于M ,连结DB .∵四边形ABCD 是矩形,∴AD BC AD BC AC BD ==∥,, ∴M EBF ∠=∠,∵F 是AE 中点,∴AF EF =,在AFM △和EFB △中, ∵M EBF MFA BFE AF EF ∠=∠∠=∠=,,∴AFM EFG ∆∆≌.∴AM BE =,MF BF =,∴AD AM BC BE CE DM +=+== ∵CE AC AC BD ==,,∴DM DB = ∵MF BF =,∴BF DF ⊥【答案】见解析板块二、矩形的性质及应用【例8】 如图,在矩形ABCD 中,点E 是BC 上一点,AE AD =,DF AE ⊥,垂足为F .线段DF 与图中的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明。

2020-2021【名校提分专用】中考数学系统复习 第三单元 函数 第10讲 第1课时 一次函数的图象与性质(8年真题

第10讲 一次函数第1课时 一次函数的图象与性质命题点1 一次函数的图象与性质1.(2011·河北T5·2分)一次函数y =6x +1的图象不经过(D)A .第一象限B .第二象限C .第三象限D .第四象限2.(2014·河北T6·2分)如图,直线l 经过第二、三、四象限,l 的解析式是y =(m -2)x +n ,则m 的取值范围在数轴上表示为(C)A BC D3.(2015·河北T14·2分)如图,直线l: y =-23x -3与直线y =a(a 为常数)的交点在第四象限,则a 可能在(D)A .1<a <2B .-2<a <0C .-3≤a ≤-2D .-10<a <-44.(2016·河北T5·3分)若k ≠0,b <0,则y =kx +b 的图象可能是(B)A B C D命题点2 确定一次函数的解析式5.(2017·河北T24·10分)如图,直角坐标系xOy 中,A(0,5),直线x =-5与x 轴交于点D ,直线y =-38x -398与x 轴及直线x =-5分别交于点C ,E.点B ,E 关于x 轴对称,连接AB.(1)求点C ,E 的坐标及直线AB 的解析式;(2)设面积的和S =S △CDE +S 四边形ABDO ,求S 的值; (3)在求(2)中S 时,嘉琪有个想法:“将△CDE 沿x 轴翻折到△CDB 的位置,而△CDB 与四边形ABDO 拼接后可看成△AOC ,这样求S 便转化为直接求△AOC 的面积不更快捷吗?”但大家经反复验算,发现S △AOC ≠S ,请通过计算解释他的想法错在哪里.解:(1)把y =0代入y =-38x -398,得x =-13.∴C(-13,0).1分把x =-5代入y =-38x -398,得y =-3.∴E(-5,-3).2分∵点B ,E 关于x 轴对称,∴B(-5,3). 设直线AB 的解析式为y =kx +b ,则⎩⎪⎨⎪⎧b =5,-5k +b =3.解得⎩⎪⎨⎪⎧k =25,b =5.∴直线AB 的解析式为y =25x +5.5分(2)∵CD =8,DE =DB =3,OA =OD =5. ∴S △CDE =12×8×3=12,S 四边形ABDO =12×(3+5)×5=20.∴S =32.8分(3)当x =-13时,y =25x +5=-15≠0,∴点C 不在直线AB 上,即A ,B ,C 三点不共线.∴他的想法错在将△CDB 与四边形ABDO 拼接后看成了△AOC.10分6.(2018·河北T24·10分)如图,直角坐标系xOy 中,一次函数y =-12x +5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C(m ,4). (1)求m 的值及l 2的解析式; (2)求S △AOC -S △BOC 的值;(3)一次函数y =kx +1的图象为l 3,且l 1,l 2,l 3不能围成三角形,直接写出k 的值.解:(1)把C(m ,4)代入一次函数y =-12x +5,可得4=-12m +5,解得m =2,∴C(2,4).设l 2的解析式为y =ax ,则4=2a ,解得a =2. ∴l 2的解析式为y =2x.(2)过点C 作CD ⊥AO 于点D ,CE ⊥BO 于点E ,则CD =4,CE =2,∵y =-12x +5的图象与x 轴、y 轴交于A ,B 两点,令x =0,则y =5,令y =0,则x =10,∴A(10,0),B(0,5). ∴AO =10,BO =5.∴S △AOC -S △BOC =12×10×4-12×5×2=15.(3)k 的值为32或2或-12.命题点3 一次函数的平移7.(2013·河北T23·10分)见本书P46变式训练3重难点1 一次函数的图象与性质已知,函数y =(1-2m)x +2m +1,试解决下列问题:图1 图2(1)当m ≠12时,该函数是一次函数,当m =-12时,该函数是正比例函数;(2)当m =2时,直线所在的象限是第一、二、四象限; (3)函数的图象如图1所示,则m 的取值范围是-12<m<12;(4)当m<12时,y 随x 的增大而增大;(5)当函数y =(1-2m)x +2m +1向上平移3个单位长度时得到y =(1-2m)x +2,则m 的值为-1; (6)若函数图象与x 轴的交点坐标为A ,与y 轴的交点为B(0,3),则△ABO 的面积为92;(7)函数图象必过点(1,2);(8)若函数图象与直线y =x -1交于点(2,1),则关于x 的不等式x -1>(1-2m)x +2m +1的解集是x>2; (9)当m =0时,y =x +1,将正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2按如图2所示方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,则点B 10的坐标是(210-1,29). 【变式训练1】 (2018·湘潭)若b >0,则一次函数y =-x +b 的图象大致是(C)【变式训练2】 (2018·石家庄裕华区一模)一次函数y =(m -1)x +(m -2)的图象上有点M(x 1,y 1)和点N(x 2,y 2),且x 1>x 2,下列叙述正确的是(B)A .若该函数图象交y 轴于正半轴,则y 1<y 2B .该函数图象必过点(-1,-1)C.无论m为何值,该函数图象一定过第四象限D.该函数图象向上平移一个单位长度后,会与x轴正半轴有交点方法指导根据图象经过的象限可确定k,b的符号:易错提示养成画图的习惯,注意数形结合的方法.重难点2 确定一次函数的解析式(2018·唐山乐亭县一模)如图,在平面直角坐标系xOy中,过点A(-6,0)的直线l1与直线l2:y=2x相交于点B(m,4).(1)求直线l1的解析式;(2)直线l1与y轴交于点M,求△AOM的面积;(3)过动点P(n,0)且垂直于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D上方时,直接写出n的取值范围.【变式】(4)将(3)中条件“过动点P(n,0)且垂直于x轴的直线l1,l2的交点分别为C,D”保持不变,“当点C 位于点D上方时”改为“且CD=2”,求点C的坐标.【思路点拨】(1)点B在直线y=2x上,所以m=2,即点B(2,4),利用待定系数法可得直线l1的解析式;(2)直线l1与y轴的交点坐标,利用三角形的面积公式求出三角形的面积;(3)点C位于点D的上方,l1>l2,即当n<2时.(4)当CD=2时,需分点C在点D上方和下方进行讨论.【自主解答】解:(1)∵直线y=2x经过点B,∴4=2m,∴m=2,即B(2,4).设直线l1的解析式为y=kx+b,∵直线l1的经过点A,B,∴⎩⎪⎨⎪⎧0=-6k +b ,4=2k +b ,解得⎩⎪⎨⎪⎧k =12,b =3.∴直线l 1的解析式为y =12x +3.(2)∵当x =0时,y =3,∴M(0,3). ∴S △AOM =12×6×3=9.(3)n<2.(4)①当点C 在点D 上方时,有12x +3-2x =2,解得x =23.此时点C 的坐标为(23,103);②当点C 在点D 下方时,有2x -(12x +3)=2,解得x =103.此时点C 的坐标为(103,143).【变式训练3】 (2018·郴州)如图,在平面直角坐标系中,菱形OABC 的一个顶点在原点O 处,且∠AOC =60°,A 点的坐标是(0,4),则直线AC 的解析式是y =-33x +4. 【变式训练4】 (2013·河北T23·10分)如图,A(0,1),M(3,2),N(4,4).动点P 从点A 出发,沿y 轴以每秒1个单位长度的速度向上移动,且过点P 的直线l :y =-x +b 也随之移动,设移动时间为t 秒. (1)当t =3时,求l 的解析式;(2)若点M ,N 位于l 的异侧,确定t 的取值范围;(3)直接写出t 为何值时,点M 关于l 的对称点落在坐标轴上. 解:(1)∵直线y =-x +b 交y 轴于点P(0,b), ∴由题意,得b >0,t ≥0,b =1+t. 当t =3时,b =4, ∴y =-x +4.(2)当直线y =-x +b 过点M(3,2)时,2=-3+b , 解得b =5.∵5=1+t ,∴t =4.当直线y =-x +b 过点N(4,4)时,4=-4+b , 解得b =8.∵8=1+t ,∴t =7.∴4<t <7.(3)当t =1时,该对称点落在y 轴上; 当t =2时,该对称点落在x 轴上.方法指导用待定系数法求函数解析式是必须掌握的一种方法.要熟练掌握解二元一次方程组的方法.一次函数的图象与坐标轴的交点坐标是直线上的特殊点,常常与其他点构成三角形等图形,也是常见的一种命题形式.易错提示注意“分类讨论”思想的应用. 重难点3 一次函数与方程、不等式的关系(2017·台州改编)如图,直线l 1:y =2x +1与直线l 2:y =mx +4相交于点P(1,b).(1)求b ,m 的值;(2)直接写出关于x 的不等式2x +1<mx +4的解集;(3)垂直于x 轴的直线x =a 与直线l 1,l 2分别交于点C ,D.若线段CD 长为2,求a 的值.【思路点拨】 (1)把点P 的坐标代入l 1求出b ,再将(1,b)代入l 2求出m ;(2)观察图象,由两直线的交点P 的横坐标可得;(3)C ,D 两点横坐标相同时,线段CD 的长等于其纵坐标的差,但要注意有两种情况.【自主解答】解:(1)∵点P(1,b)在直线l 1:y =2x +1上,∴b =2×1+1=3.∵点P(1,3)在直线l 2:y =mx +4上, ∴3=m +4.∴m =-1. (2)x<1.(3)当x =a 时,y C =2a +1,y D =4-a.∵CD =2,∴|2a +1-(4-a)|=2,解得a =13或a =53.∴a 的值为13或53.【变式训练5】(2018·河北模拟)观察函数y 1和y 2的图象,当x =0,两个函数值的大小关系为(A)A .y 1>y 2B .y 1<y 2C .y 1=y 2D .y 1≥y 2 【变式训练6】(2018·呼和浩特)若以二元一次方程x +2y -b =0的解为坐标的点(x ,y)都在直线y =-12x +b -1上,则常数b =(B)A.12B .2C .-1D .1【变式训练7】 (2018·资阳)已知直线y 1=kx +1(k <0)与直线y 2=mx(m >0)的交点坐标为(12,12m),则不等式组mx -2<kx +1<mx 的解集为(B)A .x >12B.12<x <32C .x <32D .0<x <32方法指导1.解决此类题一般是先找出两函数值相等时x 的值,然后过这点作x 轴的垂线,在这个点的左侧和右侧,必然存在不等关系,最后观察图象,上方的函数值大于下方的函数值.2.在坐标系内的线段长,若线段平行于x(y)轴,则线段长等于其横(纵)坐标的差.,易错提示)线段CD 长为2时,有两种情况,在交点P 的左右都有可能.1.(2018·玉林)等腰三角形底角与顶角之间的函数关系是(B)A .正比例函数B .一次函数C .反比例函数D .二次函数2.(2018·沈阳)在平面直角坐标系中,一次函数y =kx +b 的图象如图所示,则k 和b 的取值范围是(C)A .k>0,b>0B .k>0,b<0C .k<0,b>0D .k<0,b<03.(2017·呼和浩特)一次函数y =kx +b 满足kb >0,且y 随x 的增大而减小,则此函数的图象不经过(A)A .第一象限B .第二象限C .第三象限D .第四象限4.(2017·怀化)一次函数y =-2x +m 的图象经过点P(-2,3),且与x 轴,y 轴分别交于点A ,B ,则△AOB 的面积是(B)A.12B.14C .4D .85.(2018·唐山乐亭县一模)如图的坐标平面上有四直线l 1,l 2,l 3,l 4,其中方程3x -5y +15=0对应的直线为(A)A .l 1B .l 2C .l 3D .l 46.(2018·济宁)在平面直角坐标系中,已知一次函数y =-2x +1的图象经过P 1(x 1,y 1),P 2(x 2,y 2)两点.若x 1<x 2,则y 1>y 2.(填“>”“<”或“=”)7.(2017·荆州)将直线y =x +b 沿y 轴向下平移3个单位长度,点A(-1,2)关于y 轴的对称点落在平移后的直线上,则b 的值为4.8.【分类讨论思想】(2018·昆明)如图,点A 的坐标为(4,2),将点A 绕坐标原点O 旋转90°后,再向左平移1个单位长度得到点A ′,则过点A ′的正比例函数的解析式为y =-43x 或y =-4x .9.(2018·淮安)如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A(-2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图象相交于点C ,点C 的横坐标为1.(1)求k ,b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.解:(1)当x =1时,y =3x =3, ∴点C 的坐标为(1,3).将A(-2,6),C(1,3)代入y =kx +b ,得⎩⎪⎨⎪⎧-2k +b =6,k +b =3.解得⎩⎪⎨⎪⎧k =-1,b =4.(2)当y =0时,-x +4=0. 解得x =4.∴点B 的坐标为(4,0).设点D 的坐标为(0,m)(m <0), ∵S △COD =13S △BOC ,即-12m =13×12×4×3.解得m =-4.∴点D 的坐标为(0,-4). 10.【数形结合思想】(2018·廊坊模拟)如图,正方形ABCD 的边长为2,BC 边在x 轴上,BC 的中点与原点O 重合,过定点M(-2,0)与动点P(0,t)的直线MP 记作l.(1)若l 的解析式为y =2x +4,判断此时点A 是否在直线l 上,并说明理由; (2)当直线l 与AD 边有公共点时,求t 的取值范围.解:(1)此时点A 在直线l 上. ∵BC =AB =2,点O 为BC 中点,∴点B(-1,0),A(-1,2).把点A 的横坐标x =-1代入解析式y =2x +4,得 y =2,等于点A 的纵坐标2, ∴此时点A 在直线l 上.(2)由题意可得,点D(1,2),及点M(-2,0),当直线l 经过点D 时,设l 的解析式为y =kx +t(k ≠0),∴⎩⎪⎨⎪⎧-2k +t =0,k +t =2,解得⎩⎪⎨⎪⎧k =23,t =43. 由(1)知,当直线l 经过点A 时,t =4.∴当直线l 与AD 边有公共点时,t 的取值范围是43≤t ≤4.11.(2018·保定竞秀区模拟)如图,已知直线l 1:y =-2x +4与直线l 2:y =kx +b(k ≠0)在第一象限交于点M.若直线l 2与x 轴的交点为A(-2,0),则k 的取值范围是(D)A .-2<k<2B .-2<k<0C .0<k<4D .0<k<2 12.【数形结合思想】(2018·宿迁)在平面直角坐标系中,过点(1,2)作直线l ,若直线l 与两坐标轴围成的三角形面积为4,则满足条件的直线l 的条数是(C)A .5B .4C .3D .2 13.(2018·河北模拟)若P(m +1,m -1)在直线y =-x +3的下方,则m 的取值范围是m <32.14.(2018·保定竞秀区二模)在平面直角坐标系xOy 中,已知直线l 的解析式为:y =kx +x -k +1.若将直线l 绕A 点旋转,如图所示,当直线l 旋转到l 1位置时,k =2且l 1与y 轴交于点B ,与x 轴交于点C ;当直线l 旋转到l 2位置时,k =-25且l 2与y 轴交于点D.(1)求点A 的坐标;(2)直接写出B ,C ,D 三点的坐标,连接CD ,求△ADC 的面积;(3)已知坐标平面内一点E ,其坐标满足条件E(a ,a),当点E 与点A 距离最小时,直接写出a 的值.解:(1)当k =2时,y =3x -1, 当k =-25时,y =35x +75.解方程组⎩⎪⎨⎪⎧y =3x -1,y =35x +75,得⎩⎪⎨⎪⎧x =1,y =2. ∴点A 的坐标为(1,2).(2)B(0,-1),C(13,0),D(0,75).∴BD =125,OC =13.∴S △ADC =S △ADB -S △BDC =12×125×1-12×125×13 =45. (3)a =32.。

2013年中考数学专题复习第10讲:一元一次不等式(组)(含答案)

2013年中考数学专题复习第十讲:一元一次不等式(组)【基础知识回顾】一、不等式的基本概念:1、不等式:用连接起来的式子叫做不等式2、不等式的解:使不等式成立的值,叫做不等式的解3、不等式的解集:一个含有未知数的不等的解的叫做不等式的解集【名师提醒:1、常用的不等号有等2、不等式的解与解集是不同的两个概念,不等式的解事单独的未知数的值,而解集是一个包围的未知数的值组成的机合,一般由无数个解组成3、不等式的解集一般可以在数轴上表示出来。

注意“>”“<”在数轴上表示为,而“≥”“≤”在数轴上表示为】二、不等式的基本性质:基本性质1、不等式两边都加上(或减去)同一个或同一个不等号的方向,即:若a<b,则a+c b+c(或a-c b-c)基本性质2:不等式两边都乘以(或除以)同一个不等号的方向,即:若a<b,c>0则a c b c(或ac—bc)基本性质3、不等式两边都乘以(或除以)同一个不等号的方向,即:若a<b,c <0则a c b c(或ac—bc)【名师提醒:运用不等式的基本性质解题时要主要与等式基本性质的区别与联系,特别强调:在不等式两边都乘以或除以一个负数时,不等号的方向要】三、一元一次不等式及其解法:1、定义:只含有一个未知数,并且未知数的次数是且系数的不等式叫一元一次不等式,其一般形式为或2、一元一次不等式的解法步骤和一元一次方程的解法相同,即包含等五个步骤【名师提醒:在最后一步系数化为1时,切记不等号的方向是否要改变】一、 一元一次不等式组及其解法:1、定义:把几个含有相同未知数的 合起来,就组成了一个一元一次不等式组2、解集:几个不等式解集的 叫做由它们所组成的不等式组的解集3、解法步骤:先求出不等式组中多个不等式的 再求出他们的 部分,就得到不等式组的解集4、一元一次不等式组解集的四种情况(a <b ) 1【名师提醒:1、求不等式的解集,一般要体现在数轴上,这样不2、一元一次不等式组求解过程中往常出现求特殊解的问题,比如:整数解、非负数解等,这时要注意不要漏了解,特别当出现“≥”或“≤”时要注意两头的数值是否在取值的范围内】五、一元一次不等式(组)的应用: 基本步骤同一元一次方程的应用可分为: 、 、 、 、 、 、 等七个步骤 【名师提醒:列不等式(组)解应用题,涉及的题型常与方案设计型问题相联系如:最大利润,最优方案等】【重点考点例析】 考点一:不等式的基本性质x >b x >a解集 口诀:大大取小X <a X <b 解集 口诀:X >bX >a解集 口诀:X <a X >b解集 口诀:例1 (2012•绵阳)已知a>b,c≠0,则下列关系一定成立的是()A.ac>bc B.C.c﹣a>c﹣b D.c+a>c+b考点:不等式的性质。

人教版九年级数学下册中考知识点梳理:第10讲一次函数

第10讲一次函数一、知识清单梳理知识点一:一次函数的概念及其图象、性质关键点拨与对应举例1.一次函数的相关概念(1)概念:一般来说,形如y=kx+b(k≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.(2)图象形状:一次函数y=kx+b是一条经过点(0,b)和(-b/k,0)的直线.特别地,正比例函数y=kx的图象是一条恒经过点(0,0)的直线.例:当k=1时,函数y=kx+k-1是正比例函数,2.一次函数的性质k,b符号K>0,b>0K>0,b<0K>0,b=0k<0,b>0k<0,b<0k<0,b=0(1)一次函数y=kx+b中,k确定了倾斜方向和倾斜程度,b确定了与y轴交点的位置.(2)比较两个一次函数函数值的大小:性质法,借助函数的图象,也可以运用数值代入法.例:已知函数y=-2x+b,函数值y随x的增大而减小(填“增大”或“减小”).大致图象经过象限一、二、三一、三、四一、三一、二、四二、三、四二、四图象性质y随x的增大而增大y随x的增大而减小3.一次函数与坐标轴交点坐标(1)交点坐标:求一次函数与x轴的交点,只需令y=0,解出x即可;求与y轴的交点,只需令x=0,求出y即可.故一次函数y=kx+b(k≠0)的图象与x轴的交点是⎝⎛⎭⎪⎫-bk,0,与y轴的交点是(0,b);(2)正比例函数y=kx(k≠0)的图象恒过点(0,0).例:一次函数y=x+2与x轴交点的坐标是(-2,0),与y轴交点的坐标是(0,2).知识点二:确定一次函数的表达式4.确定一次函数表达式的条件(1)常用方法:待定系数法,其一般步骤为:①设:设函数表达式为y=kx+b(k≠0);②代:将已知点的坐标代入函数表达式,解方程或方程组;③解:求出k与b的值,得到函数表达式.(2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式;③平移转化型:如已知函数是由y=2x平移所得到的,且经过点(0,1),则可设要求函数的解析式为y=2x+b,再把点(0,1)的坐标代入即可.(1)确定一次函数的表达式需要两组条件,而确定正比例函数的表达式,只需一组条件即可.(2)只要给出一次函数与y轴交点坐标即可得出b的值,b值为其纵坐标,可快速解题. 如:已知一次函数经过点(0,2),则可知b=2.5.一次函数图象的平移规律:①一次函数图象平移前后k不变,或两条直线可以通过平移得到,则可知它们的k值相同.②若向上平移h单位,则b值增大h;若向下平移h单位,则b值减小h.例:将一次函数y=-2x+4的图象向下平移2个单位长度,所得图象的函数关系式为y=-2x+2.知识点三:一次函数与方程(组)、不等式的关系6.一次函数与方程一元一次方程kx+b=0的根就是一次函数y=kx+b(k、b是常数,k≠0)的图象与x轴交点的横坐标.例:(1)已知关于x的方程中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( ) A .方差 B .中位数C .众数D .平均数【答案】A【解析】试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可. 故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差2.如图,C ,B 是线段AD 上的两点,若AB CD =,2BC AC =,则AC 与CD 的关系为( )A .2CD AC =B .3CD AC =C .4CD AC =D .不能确定【答案】B【解析】由AB=CD ,可得AC=BD ,又BC=2AC ,所以BC=2BD ,所以CD=3AC. 【详解】∵AB=CD , ∴AC+BC=BC+BD , 即AC=BD , 又∵BC=2AC , ∴BC=2BD , ∴CD=3BD=3AC. 故选B . 【点睛】本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点. 3.关于二次函数2241y x x =+-,下列说法正确的是( ) A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-3 【答案】D【解析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.详解:∵y=2x2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A错误,该函数的对称轴是直线x=-1,故选项B错误,当x<-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D.点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.4.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是()A.56 B.58 C.63 D.72【答案】B【解析】试题分析:第一个图形的小圆数量=1×2+2=4;第二个图形的小圆数量=2×3+2=8;第三个图形的小圆数量=3×4+2=14;则第n个图形的小圆数量=n(n+1)+2个,则第七个图形的小圆数量=7×8+2=58个. 考点:规律题5.如图,∠AOB=45°,OC是∠AOB的角平分线,PM⊥OB,垂足为点M,PN∥OB,PN与OA相交于点N,那么PMPN的值等于()A.12B.22C3D3【答案】B【解析】过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得∠POM=∠OPN,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PNE=∠AOB,再根据直角三角形解答.【详解】如图,过点P作PE⊥OA于点E,∵OP是∠AOB的平分线,∴PE=PM,∵PN∥OB,∴∠POM=∠OPN,∴∠PNE=∠PON+∠OPN=∠PON+∠POM=∠AOB=45°,∴PMPN=22.故选:B.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键.6.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间,线段最短D.经过两点,有且仅有一条直线【答案】C【解析】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选C.【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.7.如图,在△ABC 中,∠ABC=90°,AB=8,BC=1.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为( )A .7B .8C .9D .10【答案】B【解析】根据三角形中位线定理求出DE ,得到DF ∥BM ,再证明EC=EF=12AC ,由此即可解决问题. 【详解】在RT △ABC 中,∵∠ABC=90°,AB=2,BC=1, ∴AC=22AB BC +=2286+=10,∵DE 是△ABC 的中位线, ∴DF ∥BM ,DE=12BC=3, ∴∠EFC=∠FCM , ∵∠FCE=∠FCM , ∴∠EFC=∠ECF , ∴EC=EF=12AC=5, ∴DF=DE+EF=3+5=2. 故选B .8.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件数的中位数和众数为( )A.6,5 B.6,6 C.5,5 D.5,6 【答案】A【解析】根据众数、中位数的定义分别进行解答即可.【详解】由表知数据5出现了6次,次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为662=6,故选A.【点睛】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:则下列叙述正确的是()A.这些运动员成绩的众数是5B.这些运动员成绩的中位数是2.30C.这些运动员的平均成绩是2.25D.这些运动员成绩的方差是0.0725【答案】B【解析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B.【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.10.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB 的长等于()A.2cm B.3cm C.6cm D.7cm【答案】D【解析】先求AC,再根据点D是线段AC的中点,求出CD,再求BD.【详解】因为,AB=10cm,BC=4cm,所以,AC=AB-BC=10-4=6(cm)因为,点D是线段AC的中点,所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm)故选D【点睛】本题考核知识点:线段的中点,和差.解题关键点:利用线段的中点求出线段长度.二、填空题(本题包括8个小题)11.化简:a ba b b a+--22=__________.【答案】a+b【解析】将原式通分相减,然后用平方差公式分解因式,再约分化简即可。

2024年中考数学二次函数压轴题专题10平行四边形的存在性问题(学生版)

专题10平行四边形的存在性问题_、知识导航考虑到求证平行四边形存在,必先了解平行四边形性质:(1) 对应边平行且相等;(2) 对角线互相平分.这是图形的性质,我们现在需要的是将其性质运用在在坐标系中:(1)对边平行且相等可转化为:x A -x B =x D - x cy A -y B = yD-y c可以理解为点B 移动到点A,点。

移动到点O,移动路径完全相同.(2)对角线互相平分转化为:\ z 乙,、2 一 2可以理解为AC 的中点也是BQ 的中点.D【小结】虽然由两个性质推得的式子并不一样,但其实可以化为统一:X A~X B =X D~ X C -y B = yD-y c + x c = + X by A + % = % + 为x A +x c ^x B +x D2 _ 2 \X A +X C=X B +X D总 + % 二 % + 北 U a + %=% + %、2 — 2当AC 和BQ 为对角线时,结果可简记为:A+C = B + D (各个点对应的横纵坐标相加)以上是对于平行四边形性质的分析,而我们要求证的是平行四边形存在性问题,此处当有一问:若坐标系 中的4个点A 、B 、。

、D 满足"A+O8+ZT,则四边形ABCQ 是否一定为平行四边形?反例如下:之所以存在反例是因为“四边形ABCQ 是平行四边形”与“AC 、BD 中点是同一个点”并不是完全等价的转化, 故存在反例.虽有反例,但并不影响运用此结论解题,另外,还需注意对对角线的讨论:(1) 四边形A8CQ 是平行四边形:AC. BQ 一定是对角线.(2) 以A 、B 、。

、。

四个点为顶点是四边形是平行四边形:对角线不确定需要分类讨论.平行四边形存在性问题通常可分为“三定一动”和“两定两动”两大类问题.1.三定一动已知A (1, 2) B (5, 3) C (3, 5),在坐标系内确定点。

使得以A 、B 、。

、。

四个点为顶点的四边形是 平行四边形.思路1:利用对角线互相平分,分类讨论:设。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十讲四边形10.1 多边形基础盘点多边形的内(外)角和:n边形的内角和为(n-2)×180°,外角和为360°;正n边形的每个内角为n︒⨯-180)2(n,每个外角为n︒360.多边形的外角和是固定不变的.考点呈现考点1 已知边数求角度例1 (2015•无锡)八边形的内角和为()A.180° B.360° C.1080° D.1440°分析:根据多边形的内角和公式直接进行计算.解:当n=8时,(n-2)•180=(8﹣2)•180°=6×180°=1080°,选C.点评:求n边形的内角和,只需将n的值代入公式180(n-2)°即可.考点2 已知角度求边数例2 (2015·南宁)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于().A.60° B.72° C.90° D.108°分析:先由多边形的内角和求出边数,再由正多边形的每个外角都相等求外角度数.解:设此多边形为n边形,根据题意,得180°(n﹣2)=540°,即可求得n=5.而多边形的外角和等于360°,可知这个正多边形的每一个外角等于360°÷5=72°,故选B.点评:已知多边形的内角和求多边形的边数,常应用方程来解决问题.考点3 多边形对角线例3 若凸多边形的内角和为12600,则从一个顶点出发引的对角线条数是___.解析:由内角和得(n-2)×1800=12600,解得n=9.由从多边形一个顶点出发引的对角线条数是n-3,即可知结论为6.点评:多边形每一个顶点引的对角线条数都是(n-3)条, n边形的对角线条数为2)3(-nn.误区点拨例一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5B.6C.7D.5或6或7错解:设这个多边形截去一个角后的边数为n,则180°(n-2)=720°,解得n=6.因为截去一个角后这个多边形的边数增加1,所以原多边形的边数5,选A.剖析:由于不知道这个多边形截去一个角后的情况,因此要先判断截去一个角后多边形的边数,再分类讨论原多边形的边数.一个多边形截去一个角后,边数可能加1,可能不变,也可能减1.错解误认为只有第一种情况,思考不周造成错误.正解:设这个多边形截去一个角后边数不变,设其边数为n,则180°(n-2)=720°,解得n=6,所以原多边形的边数可能是5或6或7,故选D.跟踪训练1.(2015•丽水)一个多边形的每个内角均为120°,则这个多边形是()A. 四边形B. 五边形C. 六边形D. 七边形2.(2015•资阳)一个多边形的内角和是外角和的3倍,则这个多边形的边数是_______.3. (2014•毕节)如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )A .13B .14C .15D .1610.2平行四边形基础盘点平行四边形性质:(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分;(4)平行四边形是中心对称图形,对称中心是对角线的交点.平行四边形判定:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)对角线互相平分的四边形是平行四边形.考点呈现考点1 平行四边形的性质例1 (1)(2015•梅州)如图1,在□ABCD 中,BE 平分∠ABC ,BC =6,DE =2,则□ABCD的周长等于 .(2)(2015•大连)如图2,在□ABCD 中,点O 是对角线AC 、BD 的交点,AC 垂直于BC ,且AB =10cm ,AD =8cm ,则OB = cm .图1 图2分析:(1)根据□ABCD 可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE ,然后根据已知可求得结果;(2)根据□ABCD 可得BC =AD ,AO=OC ,BO=DO ,则可在Rt△ABC 中求出AC ,进而得到OC ,再在Rt△BOC 中求OB .解:(1)因为四边形ABCD 为平行四边形,所以AE ∥BC ,AD =BC ,所以∠AEB =∠EBC .又BE 平分∠ABC ,所以∠ABE =∠EBC ,所以∠ABE =∠AEB ,所以AB =AE .所以AE +DE =AD =BC =6,所以AE +2=6,所以AE =4,所以AB =CD =4,所以□ABCD 的周长为4+4+6+6=20.(2)因为AC 垂直于BC ,AB =10cm ,BC =AD =8cm ,所以AC =68102222=-=-BC AB ,所以OC =21AC =3cm ,OB =222283+=+BC OC =73(cm ). 点评:解决第(1)题的关键是根据平行线的性质和角平分线的性质得出∠ABE =∠AE B ,解决第(2)题的关键是运用平行四边形的对角线互相平分和勾股定理.考点2 平行四边形的判定例2 (1)(2015•广州)下列命题中:①对角线互相平分的四边形是平行四边形;②两组对角分别相等的四边形是平行四边形;③一组对边平行,另一组对边相等的四边形是平行四边形.真命题的个数有( )A .3B .2C .1D .0(2)(2015•绵阳)如图3,在四边形ABCD 中,对角线AC 、BD 相交于点E ,∠CBD =90°,BC =4,BE =ED =3,AC =10,则四边形ABCD 的面积为( )A.6 B.12 C.20 D.24图3分析:(1)利用平行四边形的判定方法进行判断即可;(2)先在Rt△BEC中求出CE,得到E为AC的中点,进而四边形ABCD是平行四边形,即可利用S四边形ABCD=BC·BD求解.解:(1)对角线互相平分的四边形是平行四边形,①正确,是真命题;两组对角分别相等的四边形是平行四边形,②正确,是真命题;一组对边平行,另一组对边相等的四边形是平行四边形,③错误,例如等腰梯形,也符合一组对边平行,另一组对边相等.故选B;(2)因为∠CBD=90°,所以△BEC是直角三角形.又BC=4,BE=3,所以5CE.因为AC=10,所以E为AC的中点.又BE=ED=3,所以四边形ABCD是平行四边形.而且△DBC是直角三角形,所以S□四边形ABCD=BC·BD=4×6=24.故选D.点评:在平行四边形的判定方法中,只要稍微改动一下说法,就可能成为假命题,若不注意,就会出现似是而非的错误.务必准确掌握判定定理.考点3 平行四边形性质与判定的综合应用例3 (2015•遂宁)如图4,在□ABCD中,点E,F在对角线BD上.且BE=DF.求证:四边形AECF是平行四边形.图4分析:根据平行四边形的性质,可得对角线互相平分,再根据对角线互相平分的四边形是平行四边形,可证明结论.证明:如图4,连接AC,并交对角线BD于点O.因为四边形ABCD是平行四边形,所以OA=OC,OB=OD.因为BE=DF,所以OE=OF.所以四边形AECF是平行四边形.点评:本题证明四边形BEDF是平行四边形的方法很多,这里用“对角线互相平分的四边形是平行四边形”来判定最简捷,你不妨写出其他证明方法,做一个对比.判定四边形是平行四边形常可边、角、对角线三个方面入手,但有简繁之分,在解题时注意比较选择.误区点拨例1在□ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为_________.图5 图6错解:如图5,因为∠EBD=20°,所以∠EDB=70°.又AD=BD,所以∠A=18070552︒︒︒-=.剖析:有些考生由于思维定式,考虑问题不全面,缺少分类,误以为高BE一定在△A BD 的内部,其实高BE也可能在△ABD的外部,如图6所示,因此应分类求解.正解:(1)当高BE 在△ABD 的内部时,同错解可得∠A=55°;(2)当高BE 在△ABD 的外部时,因为∠EBD=20°,所以∠EDB=70°,所以∠ADB=110°.又AD=BD ,所以∠A=180110352︒︒︒-=.综合(1)(2)可知∠A 的度数为55°或35°. 例2 (2015•广州)已知在四边形ABCD 中,∠A=∠C,∠B=∠D.求证:四边形ABCD 是平行四边形.错解:如图7,连接BD ,则∠1+∠3=180°-∠A,∠2+∠4=180°-∠C.因为∠A=∠C,所以∠1+∠3=∠2+∠4,所以∠1=∠4,∠2=∠3,所以AB∥CD,BC∥AD,所以四边形ABCD 是平行四边形.图7剖析:上述错解中,由∠1+∠3=∠2+∠4并不能得到∠1=∠4,∠2=∠3,这种推理其实是不自觉地默认了四边形ABCD 是平行四边形,犯了“循环论证”的错误.正解:因为∠A=∠C,∠B=∠D,∠A+∠B+∠C+∠D=360°,所以∠A+∠B=180°,所以AD∥BC.同理,AB∥CD,所以四边形ABCD 是平行四边形.跟踪训练1.(2015•宁波)如图,□ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件,使△ABE ≌△CDF ,则添加的条件不能为( )A . BE=DFB . BF=DEC . AE=CFD . ∠1=∠2第1题图 第2题图 第3题图2.(2015•牡丹江)如图,四边形ABCD 的对角线相交于点O ,AO=CO ,请添加一个条件_______________(只添一个即可),使四边形ABCD 是平行四边形.3.(2015•哈尔滨)如图①,在口ABCD 中,点0是对角线AC 的中点,EF 过点0,与AD 、BC 分别相交于点E 、F ,GH 过点0,与AB 、CD 分别相交于点G 、H ,连接EG 、FG 、FH 、EH.(1)求证:四边形EGFH 是平行四边形(2)如图②,若EF//AB ,GH//BC ,在不添加任何辅助线的情况下,请直接写出图②中与四边形AGHD 面积相等的所有平行四边形(四边形AGHD 除外).10.3 特殊的平行四边形基础盘点1.矩形性质:(1)矩形的四个角都是直角;(2)矩形的对角线相等;(3)矩形是轴对称图形,有两条对称轴.判定:(1)定义:有一个角是直角的平行四边形是矩形;(2)三个角都是直角的四边形是矩形;(3)对角线相等的平行四边形是矩形.2.菱形性质:(1)菱形的四条边都相等;(2)菱形的对角线互相垂直;(3)菱形是轴对称图形,有两条对称轴;(4)菱形的面积等于两条对角线乘积的一半.判定:(1)定义:有一组邻边相等的平行四边形是菱形;(2)四条边都相等的四边形是菱形;(3)对角线互相垂直的平行四边形是菱形.3.正方形性质:(1)正方形的四条边都相等;(2)正方形的四个角都是直角;(3)正方形的对角线互相垂直平分且相等;(4)正方形是轴对称图形,有四条对称轴.判定:(1)有一个角是直角的菱形是正方形;(2)有一组邻边相等的矩形是正方形.考点呈现考点1 矩形的性质例1 (2015•无锡)如图1,已知矩形ABCD的对角线长为8cm,E,F,G,H分别是AB,BC,CD,DA的中点,则四边形EFGH的周长等于__________cm.图1分析:连接AC,BD,根据三角形的中位线求出HG、GF、EF、EH的长即可.解析:连接AC,BD,因为四边形ABCD是矩形,所以AC=BD=8cm.因为E,F,G,H分别是AB,BC,CD、DA的中点,所以HG=EF=AC=4cm,EH=FG=BD=4cm,所以四边形EFGH的周长位4cm+4cm+4cm+4cm=16cm.点评:解题的关键是能求出四边形各边的长,注意:矩形的对角线相等,三角形的中位线平行于第三边,并且等于第三边的一半.考点2矩形的判定例2(2015•临沂)如图2,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能..使四边形DBCE成为矩形的是()A.AB=BEB.BE⊥DCC.∠ADB=90°D. CE⊥DE图2分析:根据矩形的判定方法来分析判断.解:因为四边形ABCD为平行四边形,所以AD//=BC.因为DE=AD,所以DE//BC,=所以四边形EDBC为平行四边形.①假若AB=BE,因为AB=BE,AD=DE,BD=BD,所以△ADB≌△EDB,所以∠BDE=90°,所以四边形EDBC为矩形;②假若BE⊥DC,则只能得到四边形EDBC 为菱形;③假若∠ADB=90°,则∠EDB=90°,所以四边形EDBC为矩形;④假若CE⊥DE,则∠DEC=90,四边形EDBC为矩形.故选B.点评:本题中要谨防将矩形的判定方法与菱形的判定方法相混淆而产生错误.考点3 菱形的性质例3 (2015•漳州)如图3,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FG∥CD,交AE于点G,连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求CEDE的值.图3分析:(1)由翻折得到ED=EF,GD=GF,再证明FE=FG,即可运用菱形的不同判定方法得到多种证法;(2)设DE=x,则EC=8-x,在Rt△EFC中利用勾股定理求出x,即可求出CEDE的值.解:(1)如图3,由轴对称性质,得∠1=∠2,ED=EF,GD=GF.因为FG∥CD,所以∠1=∠3,则∠2=∠3,所以FE=FG,所以ED=EF=GD=GF,所以四边形DEFG为菱形.(2)设DE=x,由轴对称,得FE=DE=x,EC=8-x.在Rt△EFC中,FC2+EC2=EF2,即42+(8-x)2=x2,解得x=5,CE=8-x=3,所以35 CEDE.点评:菱形的判定方法较多,在解题中要根据具体情况来选择.重视对题目进行一题多解的研究,从多中取好,好中取优,进而提高我们分析问题和解决问题的能力.考点4 正方形的性质例4 (2015•凉山州)如图4,在正方形ABCD中,G是BC上任意一点,连接AG,DE⊥AG于E,BF∥DE交AG于F,探究线段AF,BF,EF三者之间的数量关系,并说明理由.图4分析:根据正方形的性质,可得AB=AD,∠DAB=∠ABC=90°,根据余角的性质,可得∠ADE=∠BAF,根据全等三角形的判定与性质,可得BF与AE的关系,再根据等量代换,可得答案.解:线段AF,BF,EF三者之间的数量关系AF=BF+EF.理由如下:因为四边形ABCD是正方形,所以AB=AD,∠DAB=∠ABC=90°.因为DE⊥AG于E,BF∥DE交AG于F,所以∠AED=∠DEF=∠AFB=90°,所以∠ADE+∠DAE=90°,∠DAE+∠BAF=90°,所以∠ADE=∠BAF.在△ABF和△DAE中,所以△ABF≌△DAE,所以BF=AE.所以AF=BF+EF.点评:正方形是特殊的矩形,又是特殊的菱形,因此在解决正方形的有关问题时,要充分利用解决矩形和菱形问题时的方法与技巧.在探索线段AF、BF、EF三者之间的数量关系时,可通过观察猜想出结论.考点5 正方形的判定例5(2015•日照)小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使平行四边形ABCD成为正方形(如图5)现有下列四种选法,你认为其中错误的是()A.①② B.②③ C.①③ D.②④图5分析:利用矩形、菱形、正方形之间的关系与区别,结合正方形的判定方法分别判断得出结论.解:因为四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故选项A不符合要求;因为四边形ABCD是平行四边形,所以当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故选项B符合要求;因为四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故选项C不符合要求;因为四边形ABCD是平行四边形,所以当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故选项D不符合要求.故选B.点评:正确掌握正方形的判定方法是解题关键.在ABCD的基础上,需要再同时具备矩形和菱形的特征,平行四边形ABCD即可成为正方形.考点6 四边形综合题例6 (2015•泰州)如图6,正方形ABCD的边长为8cm,E、F、G、H分别是AB、BC、CD、DA上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形;(2)判断直线EG是否经过某一定点,说明理由;(3)四边形EFGH的面积是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由.图6分析:(1)由正方形的性质得出∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,证出AH=BE=CF=DG,由SAS证明△AEH≌△BFE≌△CGF≌△DHG,得出EH=FE=GF=GH(也可以由勾股定理得到),∠AEH=∠BFE,证出四边形EFGH是菱形,再证明∠HEF=90°,即可得出结论;(2)连接AC、EG,交点为O;先证明△AOE≌△COG,得出OA=OC,证明点O为对角线AC、BD的交点,即O为正方形的中心;(3)设四边形EFGH面积为S,BE=xcm,则BF=(8﹣x)cm,由勾股定理得出S=x2+(8﹣x)2=2(x﹣4)2+32,S是x的二次函数,容易得出四边形EFGH面积的最小值.解:(1)因为四边形ABCD是正方形,所以∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA.因为AE=BF=CG=DH,所以AH=BE=CF=DG.在△AEH、△BFE、△CGF和△DHG中,所以△AEH≌△BFE≌△CGF≌△DHG,所以EH=FE=GF=GH,∠AEH=∠BFE,所以四边形EFGH是菱形.所以∠BEF+∠BFE=90°,所以∠BEF+∠AEH=90°,所以∠HEF=90°,所以四边形EFGH 是正方形.(2)直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点).理由如下:连接AC、EG,交点为O,如图6所示,因为四边形ABCD是正方形,所以AB∥CD,所以∠OAE=∠OCG.在△AOE和△COG中,所以△AOE≌△COG,所以OA=OC,即O为AC的中点.因为正方形的对角线互相平分,所以O为对角线AC、BD的交点,即O为正方形的中心;(3)设四边形EF GH面积为S,设BE=xcm,则BF=(8﹣x)cm.根据勾股定理,得EF2=BE2+BF2=x2+(8﹣x)2,所以S=x2+(8﹣x)2=2(x﹣4)2+32.因为2>0,所以S有最小值,当x=4时,S最小值=32,所以四边形EFGH的面积存在最小值,最小值为32cm2.点评:本题的解法很多,第(1)题系统复习了全等三角形、勾股定理、平行四边形、菱形、矩形及正方形等知识;第(2)题是第(1)题的延伸,要判定直线EG是否经过一个定点,由合情推理容易猜想到直线EG一定经过正方形ABCD对角线的交点,再运用演绎推理来进行说理,同时综合复习了全等三角形、平行四边形、正方形、一次函数等知识;第(3)题是第(1)题的拓展,要求正方形EFGH面积的最小值,方法多元,从几何角度思考,可运用菱形的面积公式与垂线段最短的性质;从代数角度思考,可运用乘法公式与函数的有关知识.请你按照上述提示来对本题进行一题多解的研究,并与同伴交流.误区点拨例1(2015•哈尔滨)在矩形ABCD中,AD=5,AB=4,点E,F在直线AD上,且四边形BCFE 为菱形,若线段EF的中点为点M,则线段AM的长为__________.错解:如图,在Rt△AEB中,由勾股定理得AE=3,因为EF=5,M是EF的中点,所以EM=2.5,所以AM=3+2.5=5.5.剖析:由于四边形BCFE 为菱形,因此BE=BC=5,而AD=4,因此以点B 为圆心,5为半径画弧与直线AD 应该有两个交点,进而线段AM 的长应该有两个,错解只考虑了其中的一种情况,犯了以偏概全的错误.正解:因为矩形ABCD 中,AD=5,AB=4,所以BC=AD=5,∠BAD=90°;因为四边形BCFE是菱形,所以BE=BC=5,以点B 为圆心,5为半径画弧交直线AD 于点E :(1)当点E 在线段AD 上时,同错解有AM=5.5;(2)当点E 在射线DA 上时,如图22,在Rt△AEB 中,由勾股定理,得AE=3.因为EF=5,M 是EF 的中点,所以EM=2.5,所以AM=3-2.5=0.5.因此线段AM 的长为5.5或0.5.跟踪训练1.(2015•泸州)矩形具有而平行四边形不具有的性质是( )A.两组对边分别平行B.两组对角分别相等C.对角线互相平分D. 对角线相等2.(2015•青岛)如图,菱形ABCD 的对角线AC 、BD 相交于O 点,E 、F 分别是AB 、BC 边上的中点,连接EF .若BD=4,则菱形ABCD 的周长为( )A.4B.第2题图 第3题图3.(2015•长春)如图,点E 在正方形ABCD 的边CD 上,若△ABE 的面积为8,CE =3,则线段BE 的长为__________.4.(2015•内江)如图,将□ABCD 的边AB 延长至E ,使AB =BE ,连接DE ,EC ,DE 交BC 于点O .(1)求证:△ABD ≌△BEC ;(2)连接BD ,若∠BOD =2∠A ,求证:四边形BECD 是矩形.第4题图5.(2015•长春)如图,CE 是△ABC 外角∠ACD 的平分线,AF //CD 交CE 于点F ,FG //AC 交CD 于点G .求证:四边形ACGF 是菱形.BA B第5题图6.(2015•安顺)如图,在△ABC中,AB=AC,A D⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.第6题图参考答案10.1 多边形1.C2.8 3.B10.2 平行四边形1.C2.答案不唯一,从①AB∥CD,②A C∥BD,③∠BAO=∠DCO,④∠ABO=∠CDO,⑤∠DAO=∠BCO,⑥∠ADO=∠CBO,等中任取一个即可3.(1)证明:因为四边形ABCD为平行四边形,所以AD//BC,所以∠EAO=∠FCO.因为OA=OC,∠AOE=∠C OF,所以△OAE≌△OCF,所以OE=OF;同理OG=OH,所以四边形EGFH是平行四边形.(2)口GBCH,口ABFE,口EFCD,口EGFH.10.3 特殊平行四边形1.D2.C3.54.证明:(1)因为四边形ABCD是平行四边形,所以AD=BC,AD∥CB,所以∠BAD=∠EBC.又AB=BE,所以△ABD≌△BEC.(2)因为BE=CD,BE∥CD,所以四边形BECD是平行四边形,因为∠BOD=2∠A,所以∠BOD=2∠OCD,所以OD=OC,所以BC=ED,所以四边形BECD是矩形;5.证明:因为AF//CD,FG//AC,所以四边形ACGF为平行四边形,因为CE是△ABC外角∠ACD的平分线,所以∠ACF=∠FCG,因为AF//CG,所以∠AFC=∠FCG,所以∠ACF=∠AFC,所以AF=AC,所以□ACGF为菱形.6.证明:(1)在△ABC中,AB=AC,AD⊥BC,所以∠BAD=∠DAC.因为AN是△ABC外角∠CAM 的平分线,所以∠MAE=∠CAE,所以∠DAE=∠DAC+∠CAE=180°=90°.又AD⊥BC,CE⊥AN,所以∠ADC=∠CEA=90°,所以四边形ADCE为矩形.(2)当△ABC满足∠BAC=90°时,四边形ADCE是正方形.理由:因为AB=AC,所以∠ACB=∠B=45°,因为AD⊥BC所以∠CAD=∠ACD=45°,所以DC=AD.因为四边形ADCE为矩形,所以矩形ADCE是正方形.11。

相关文档
最新文档