全等三角形各种类型证明培优(经典)
全等三角形各种类型证明培优(经典)

全等三角形全等图形:能够完全重合的两个图形就是全等图形. 全等多边形: 能够完全重合的多边形就是全等多边形.相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角. 全等多边形的对应边、对应角分别相等.如下图,两个全等的五边形,记作:五边形ABCDE ≌五边形'''''A B C D E . 这里符号“≌”表示全等,读作“全等于”.A'B'C'D'E'EDCBA全等三角形:能够完全重合的三角形就是全等三角形.全等三角形的对应边相等,对应角分别相等;反之,如果两个三角形的边和角分别对应相等,那么这两个三角形全等. 全等三角形对应的中线、高线、角平分线及周长面积均相等.全等三角形的概念与表示:能够完全重合的两个三角形叫作全等三角形.能够相互重合的顶点、边、角分别叫作对应顶点、对应边、对应角.全等符号为“≌”.全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角. 全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等.判定三角形全等的基本思路:SAS HLSSS →⎧⎪→⎨⎪→⎩ 找夹角已知两边 找直角 找另一边ASA AAS SAS AAS ⎧⎪⎧⎪⎨⎪⎨⎪⎪⎪⎩⎩ 边为角的对边→找任意一角→ 找这条边上的另一角→已知一边一角 边就是角的一条边 找这条边上的对角→ 找该角的另一边→ ASAAAS →⎧⎨→⎩ 找两角的夹边已知两角 找任意一边全等三角形的图形归纳起来有以下几种典型形式:⑴ 平移全等型⑵ 对称全等型⑶ 旋转全等型由全等可得到的相关定理:⑴ 角的平分线上的点到这个角的两边的距离相等. ⑵ 到一个角的两边的距离相同的点,在这个角的平分线上.⑶ 等腰三角形的性质定理:等腰三角形的两个底角相等 (即等边对等角). ⑷ 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合.⑸ 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等⑹ 线段垂直平分线上的点和这条线段两个端点的距离相等.⑺ 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 三角形辅助线做法:图中有角平分线,可向两边作垂线。
全等三角形问题培优

全等三角形问题培优在初中数学学习中,全等三角形是一个很重要的概念。
全等三角形指的是具有相等边长和相等内角的两个三角形。
在解决问题时,我们常常要运用全等三角形的性质。
本文将从这一角度出发,介绍全等三角形问题的培优方法。
一、全等三角形的定义和性质全等三角形是指具有相等边长和相等内角的两个三角形。
在解决问题时,我们可以利用全等三角形的性质来简化计算过程和证明过程。
1. 边边边(SSS)全等条件:如果两个三角形的三边分别相等,则这两个三角形全等。
2. 边角边(SAS)全等条件:如果两个三角形的一个边和其夹角分别相等,并且另一边也相等,则这两个三角形全等。
3. 角边角(ASA)全等条件:如果两个三角形的两个角和夹在两个角之间的边分别相等,则这两个三角形全等。
利用这些全等条件,我们可以在解决问题过程中找到相应的全等三角形,从而得出答案。
二、全等三角形的应用1. 边长和角度比较在问题中,经常会出现两个或多个三角形的边长或内角需要进行比较的情况。
利用全等三角形的性质,我们不需要逐一计算每个边长或者每个内角的数值,只需要通过观察边长和角度的关系,找到全等三角形,就可以简化计算过程。
例如,已知三角形ABC和三角形DEF的三个内角分别相等,我们可以得出这两个三角形全等。
如果已知三角形ABC的一条边的长度为a,而三角形DEF的相应边的长度为b,那么我们就可以直接得出三角形DEF的边长与a的比较结果。
2. 证明问题在几何证明中,全等三角形是常常被用到的工具。
通过找到一个或多个全等三角形,我们可以得到所求证的结论。
例如,我们需要证明两条线段相等,可以通过构造两个全等三角形,使得所求线段等于全等三角形中的某条边。
然后,利用全等三角形的性质,我们可以得到所求线段等于另一条边,从而得到所需要证明的结论。
3. 问题求解在解决具体问题时,全等三角形也是一个很有用的工具。
通过观察问题中的几何关系,我们可以找到并利用全等三角形来简化问题的求解过程。
(word版)全等三角形精选证明及辅助线作法(培优)

(初中几何)全等三角形精选题目1.已知:如图,AE =AC , AD =AB ,∠EAC =∠DAB ,求证:△EAD ≌△CAB .2.如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A =∠D ,AB =DC .(1)求证:△ABE ≌DCE ;(2)当∠AEB =50°,求∠EBC 的度数?3.如图,已知BE 、CF 是的高,且BP =AC ,CQ =AB ,求证:AP ⊥AQ ,AP =AQ4.如图, 在等边△ABC 中, BD =CE , AD 与BE 相交于点P , 求∠APE 的度数.EDCBAE OP F QCBA DP ECBAACBE D5.如图, 已知等腰Rt △OAB 中,∠AOB =90°, 等腰Rt △EOF 中,∠EOF =90°,连结AE 、BF . 请猜想线段AE 和线段BF 的关系,并证明你给出的结论.6.如图所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .7.如图,四边形ABCD 是正方形,G 是BC 上任意一点(点G 与B 、C 不重合),AE ⊥DG 于E ,CF ∥AE 交DG 于F .求证:AE =DE +EF .OFEBAFD C BAGFE DCBA8. 正方形四条边都相等,四个角都是90°,如图,已知正方形ABCD 在直线MN 的正上方,BC 在直线MN 上,点E 是直线MN 上一点,以AE 为边在直线MN 的上方作正方形AEFG.(1)如图1,当点E 在线段BC 上(不与点B 、C 重合)时: ① 判断△ADG 和△ABE 是否全等,并说明理由:② 过点F 作FH ⊥MN ,垂足为点H ,观察并猜想线段BE 和线段CH 的数量关系,并说明理由:(2)如图2,当点E 在射线CN 上(不与点C 重合)时: ①判断△ADG 和△ABE 是否全等,并说明理由:②过点F 作FH ⊥MN ,垂足为点H ,已知GD =4,求△CFH 的面积.图1 图29.如图,在四边形ABCD 中,BC > BA ,AD=CD ,BD 平分∠ABC ,求证:∠A +∠C =180°.E H FGDCBAN MEN MHFGD CBA DCBA10.如图,已知AD ∥BC ,点E 是CD 上一点,连接AE 、BE ,且AE 、BE 恰好是∠DAB 和∠ABC 的角平分线.求证:AB =AD +BC .11.如图,在△ABC 中,D 是BC 边的中点,E 是AD 上一点,BE =AC ,BE 的延长线交AC 于点F ,求证:∠AEF =∠EAF .12.如图,在△ABC 中,D 是BC 的中点,过点D 作射线交AB 于点E ,交CA 的延长线与点F ,若∠AEF =∠F ,求证:BE=CF .EDCBAF ED CB A F E DCBA13.在四边形ABCD 中,AB ∥DC ,点E 为BC 边上的中点,∠BAE =∠EAF ,AF 与DC 的延长线相交于于点F ,试探究线段AB 与AF 、CF 之间的数量关系,并证明你的结论.14.如图,△ABC 中,BD =DC =AC ,E 是DC 的中点,求证,AD 平分∠BAE.15.如图:在四边形ABCD 中,AD ∥BC ,AB=AD+BC ,E 是CD 的中点,求证:AE ⊥BE .AFEDCBEDCB AEDCB A16.如图,在线段AE 同侧作两个等边三角形△ABC 和△CDE (∠ACE <120°),点P 与点M 分别是线段BE 和AD 的中点,请探索△CPM 是什么三角形,并进行证明.17.已知:如图,△ABC 中,∠ABC =45°,CD ⊥AB 于点D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,H 是BC 边的中点,连结DH 与BE 相交于点G .(1)求证:BF =AC ;(2)CE 和BF 有怎样的数量关系,写出判断并给出证明; (3)CE 与BG 的大小关系如何?试证明你的结论.MP DC BEACEFHGD BA。
全等三角形证明经典30题

全等三角形证明经典30题1. 两角和相等定理证明:设△ABC 和△DEF 是两个三角形,如果∠A = ∠D 且∠B = ∠E,则可以通过以下步骤证明△ABC ≌△DEF:步骤一:通过顶角顶点 C 、 F、和共边 CF 作直线段 CF,延长直线段 CF 至点 X,使得 CX = CE。
步骤二:连接线段 AX。
步骤三:证明∠AXB = ∠EXF:由于∠A = ∠D,所以∠AXB = ∠DXE(共同的角度)。
又由于∠B = ∠E,所以∠DXE = ∠EXF。
因此,∠AXB = ∠EXF。
步骤四:证明∠ABX = ∠EFX:由于∠B = ∠E,所以∠ABX = ∠EXF(共同的角度)。
因此,∠ABX = ∠EFX。
步骤五:证明 AB = EF:由于 CX = CE,且∠ABX = ∠EFX,根据 SSS(边-边-边)全等三角形定理,则可得∆ABX ≌ ∆EFX。
因此,AB = EF。
综上所述,根据两角和相等定理,已经证明了△ABC ≌△DEF。
2. SAS全等三角形定理证明:设△ABC 和△DEF 是两个三角形,如果 AB = DE,∠A = ∠D,且 AC = DF,则可以通过以下步骤证明△ABC ≌△DEF:步骤一:连接线段 BC 和 EF。
步骤二:证明∠ABC = ∠DEF:由于 AB = DE,且∠A = ∠D,根据线段角度定理,可得∠ABC = ∠DEF。
步骤三:证明 BC = EF:由于 AC = DF,且∠ABC = ∠DEF,根据 SAS(边-角-边)全等三角形定理,可得△ABC ≌△DEF。
综上所述,根据SAS全等三角形定理,已经证明了△ABC ≌△DEF。
3. SSS全等三角形定理证明:设△ABC 和△DEF 是两个三角形,如果 AB = DE,BC = EF,且AC = DF,则可以通过以下步骤证明△ABC ≌△DEF:步骤一:连接线段 AC 和 DF。
步骤二:连接线段 BC 和 EF。
全等三角形经典证明方法归类

全等三角形经典证明方法归类1.SSS法则(边边边):给定两个三角形,如果它们的三条边分别相等,那么这两个三角形全等。
2.SAS法则(边角边):给定两个三角形,如果它们的两条边和夹角分别相等,那么这两个三角形全等。
3.ASA法则(角边角):给定两个三角形,如果它们的两条角和一边分别相等,那么这两个三角形全等。
4.AAS法则(角角边):给定两个三角形,如果它们的两条角和另一条边的对应角分别相等,那么这两个三角形全等。
5.RHS法则(直角边和斜边):给定两个三角形,如果它们的一个角是直角,而且两个直角的边分别相等,那么这两个三角形全等。
6.HL法则(斜边和斜边对应的直角):给定两个直角三角形,如果它们的斜边相等,而且其中一个直角边和另一个直角边分别相等,那么这两个三角形全等。
除了以上六种经典的证明方法外,还存在一些其他的证明方法,如:7.余弦定理:如果在两个三角形中,对应的两边和夹角的余弦值都相等,那么这两个三角形全等。
8.正弦定理:如果在两个三角形中,对应的两边和夹角的正弦值都相等,那么这两个三角形全等。
9.星形相等法则:如果两个三角形的对应边分别相等,而且两组对边之间的夹角相等,那么这两个三角形全等。
10.平移法:如果两个三角形中一对边平行且等长,并且另外两对边也分别平行,则这两个三角形全等。
11.旋转法:如果两个三角形中一对边对应相等,并且另外两个角分别相等,则这两个三角形全等。
12.镜像对称法:如果两个三角形对应边的长度相等,并且一个三角形的两个角和对应的另一个三角形的两个角之和都等于180度,则这两个三角形全等。
这些全等三角形的证明方法在几何学中被广泛应用,并且有着重要的理论和实际意义。
通过这些证明方法,我们可以判断两个三角形是否全等,从而在解决几何问题时提供有效的理论依据。
全等三角形各种类型证明培优

全等三角形各种类型证明培优题目要求证明全等三角形培优,需要说明全等三角形的各种类型。
全等三角形是指所有对应的边和角都相等的两个三角形。
培优是指三角形的三条高线交于同一点,这个点称为高心(或垂心)。
为了证明全等三角形培优,我们需要先了解全等三角形的几种类型:1. SAS(Side-Angle-Side)三边对应分别相等。
如果两个三角形的两边和夹角分别对应相等,则这两个三角形全等。
2. ASA(Angle-Side-Angle)两角和夹边分别相等。
如果两个三角形的两角和夹边分别对应相等,则这两个三角形全等。
3. SSS(Side-Side-Side)三边分别相等。
如果两个三角形的三边分别对应相等,则这两个三角形全等。
4. RHS(Right Angle-Hypotenuse-Side)直角三角形的斜边和一条直角边的长度分别相等。
如果两个直角三角形的斜边和一条直角边的长度分别对应相等,则这两个三角形全等。
现在我们来证明全等三角形培优。
为了证明三角形培优,我们需要先证明三角形的三条高线交于同一点。
首先,我们假设有一个三角形ABC,其三边分别为AB、BC、CA。
三条高线分别为AD、BE、CF,交于点H(高心)。
我们需要证明D、E、F三点共线。
首先,我们可以得知三角形ABC的外接圆,其圆心为O,半径为R。
三角形ABC的外接圆上的任意一条弦,其两端点和圆心构成的向量和为零。
接下来,我们可以根据这个结论来证明点D、E、F三点共线。
我们可以分别考虑三角形的三边上的垂足与圆心的连线:1.连线AO,交垂线AD于点M;2.连线BO,交垂线BE于点N;3.连线CO,交垂线CF于点P。
由于三角形ABC的外接圆上的任意一条弦,其两端点和圆心构成的向量和为零,我们可以得知AM+AN+AP=0。
又因为垂线AD、BE、CF分别垂直于边BC、AC、AB,我们可以得到AM⊥BC,AN⊥AC,AP⊥AB。
由于AM+AN+AP=0,我们可以得知三点M、N、P在一条直线上。
全等三角形经典题型汇集(培优专练)
;
(2)如图 2,当点 E,F 分别在 CB,DC 的延长线上,CF=2 时,求△CEF 的周长;
拓展提升:
如图 3,在 Rt△ABC 中,∠ACB=90°,CA=CB,过点 B 作 BD⊥BC,连接 AD,在 BC 的延长线上取一 点 E,使∠EDA=30°,连接 AE,当 BD=2,∠EAD=45°时,请直接写出线段 CE 的长度.
7.阅读下面材料:
小炎遇到这样一个问题:如图 1,点 E、F 分别在正方形 ABCD 的边 BC,CD 上,∠EAF=45°,连结 EF,则 EF=BE+DF, 试说明理由.
小炎是这样思考的:要想解决这个问题,首先应想办法将 这些分散的线段相对集中.她先后尝试了翻折、旋转、平 移的方法,最后发现线段 AB,AD 是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE 绕着 点 A 逆时针旋转 90°得到△ADG,再利用全等的知识解决了这个问题(如图 2).
2.阅读下面材料:
数学课上,老师给出了如下问题:如图,AD 为△ABC 中线,点 E 在 AC 上,BE 交 AD 于点 F,AE=EF.求 证:AC=BF. 经过讨论,同学们得到以下两种思路:
思路一如图①,添加辅助线后依据 SAS 可证得△ADC≌△GDB,再利用 AE =EF 可以进一步证得∠G=∠FAE=∠AFE=∠BFG,从而证明结论.
3.如图,分别以 ABC 的边向外作正方形 ABFG 和 ACDE,连接 EG,若 O 为 EG 的中点,
求证:(1) AO 1 BC ;(2) AO BC . 2
4.如图所示,已知 ⶠࢼ 中, 平分 ⶠ ࢼ, 、 分别在 ⶠ 、 上.
ࢼ,
ࢼ.求证: ∥ ⶠ.
5.如图所示, ⶠ ࢼ
全等三角形判定的方法(培优)
全等三角形判定(考试重点)姓名: 班级: 分数: 1.已知AC =BD ,AE =CF ,BE =DF ,证明:AE ∥CF 。
2、已知在四边形ABCD 中,AB =CD ,AD =CB ,证明:AB ∥CD 。
3、已知CD ∥AB ,DF ∥EB ,DF =EB ,证明:AF =CE 。
4、已知ED ⊥AB ,EF ⊥BC ,BD =EF ,证明:BM =ME 。
ACBDEFBADC EF BAC M EFBD5、点C 是AB 的中点,CD ∥BE ,且CD =BE ,证明:∠D =∠E 。
6、在⊿ABC 中,高AD 与BE 相交于点H ,且AD =BD ,证明:⊿BHD ≌⊿ACD 。
7已知AD =AE ,∠B =∠C ,证明:AC =AB 。
8、已知CE ⊥AB ,DF ⊥AB ,CE =DF ,AE =BF ,证明:⊿CEB ≌⊿DF A 。
ABCE HD ADEBCBACDEFD A ECB 129、如图:在△ABC 中,∠C=90°,AC=BC ,过点C 在△ABC 外作直线MN ,AM ⊥MN 于M ,BN ⊥MN 于N 。
求证:MN=AM+BN 。
10、已知,AC ⊥CE ,AC =CE , ∠ABC =∠DEC =900,求证:BD =AB +ED 。
11、已知AD 是⊿ABC 的中线,BE ⊥AD ,CF ⊥AD ,求证:BE =CF 。
12、已知∠BAC =∠DAE ,∠1=∠2,BD =CE ,求证:ABD ≌⊿ACE 。
NMCBAABCDEABCD FEADEBC12【知识点梳理】知识点一:全等三角形的概念——能够完全重合的两个三角形叫全等三角形.知识点二:全等三角形的性质.(1)全等三角形的对应边相等. (2)全等三角形的对应角相等.知识点三:判定两个三角形全等的方法.(1)SSS (2)SAS (3)ASA (4)AAS (5)HL(只对直角三形来说)知识点四:寻找全等三形对应边、对应角的规律.①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.②全等三角形对应边所对的角是对应角,两个对应边所夹的角是对应角.③有公共边的,公共边一定是对应边. ④有公共角的,公共角一定是对应角.⑤有对顶角的,对顶角是对应角.⑥全等三角形中的最大边(角)是对应边(角),最小边(角)是对应边(角).知识点五:找全等三角形的方法.(1)一般来说,要证明相等的两条线段(或两个角),可以从结论出发,看它们分别落在哪两具可能的全等三角形中.(常用的办法)(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等.(3)可以从已知条件和结论综合考虑,看它们能否一同确定哪两个三角形全等.(4)如无法证证明全等时,可考虑作辅助线的方法,构造成全等三角形.知识点六:角平分线的性质及判定.(1)角平分线的性质:角平分线上的点到角两边的距离相等.(2)角平分线的判定:在角的内部到角的两边距离相等的点在角平分线上.(3)三角形三个内角平分线性质:三角形三条角平分线交于一点,且到三角形三边距离相等.知识点七:证明线段相等的方法.(重点)(1)中点性质(中位线、中线、垂直平分线)(2)证明两个三角形全等,则对应边相等(3)借助中间线段相等.知识点八:证明角相等的方法.(重点)(1)对顶角相等;(2)同角或等角的余角(或补角)相等;(3)两直线平行,内错角相等、同位角相等;(4)角平分线的定义;(5)垂直的定义;(6)全等三角形的对应角相等;(7)三角形的外角等于与它不相邻的两内角和.。
全等三角形证明题培优(38题)(方法)
全等三角形证明题(经典38题)(方法)1.(方法:巧做辅助线)如图,在△ABC中,∠B=2∠C,AD⊥BC于D,求证:CD=BD+AB.2.(方法:巧做辅助线)如图所示,在△ABC中,AB=AC,在AB上取一点E,在AC延长线上取一点F,使BE=CF,EF交BC于G.求证:EG=FG。
3.(方法:巧做辅助线)如图,已知AC=BD,AD⊥AC,BC⊥BD,求证:AD=BC.4.图,∠B=∠E,∠C=∠D,BC=DE,M为CD中点,求证:AM⊥CD.5.(方法:巧做辅助线)如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连结AE、BF。
求证:(1)AE=BF;(2)AE⊥BF。
6.(方法:巧做辅助线)如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连D E交BC于F,过点E作EG⊥BC于G.(1)若∠A=50°,∠D=30°,求∠GEF的度数;(2)若BD=CE,求证:FG=BF+CG.7.(方法:火眼金睛找条件)如图所示,∠BAC=∠DAE=90°,M是BE的中点,AB=AC,AD=AE,求证:(1)CD=2AM,(2)AM⊥CD.8.(方法:火眼金睛找条件)已知:如图,点C为线段AB上一点,△ACM, △CBN都是等边三角形,AN交MC于点E,BM交CN于点F.(1)求证:AN=BM;(2)求证:△CEF为等边三角形9.(方法:火眼金睛找条件)如图,在△ABC中,AD平分∠BAC,E为BC的中点,过点E 作EF∥AD交AB于点G,交CA的延长线于点F.求证:BG=CF.FDE CBA(2)10.(方法:巧做辅助线)如图,AB=AE,∠ABC=∠AED,BC=ED,点F 是CD 的中点, 求证:AF ⊥CD.11.(方法:巧做辅助线)如图,在正方形ABCD 中,M 、N 分别是BC 、CD 上的点,∠MAN=45°. 求证:MB+ND=MN .12.(方法:巧做辅助线)已知:如图,ABCD 是正方形,∠FAD=∠FAE .求证:BE+DF=AE .13.(方法:火眼金睛找条件)如图E 为正方形ABCD 边BC 的中点,F 为DC 的中点,BF 与AE 有何关系?请解释你的结论。
全等三角形经典培优题型(含标准答案)
三角形培优练习题1已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC4已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C5已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE6如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
求证:BC=AB+DC 。
已知:AB=CD ,∠A=∠D ,求证:∠B=∠C78.P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-ABCDBA BC DEF 2 1ADBCA B CD ABACDF2 1 E9已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC10.如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .11如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B12如图:AE 、BC 交于点M ,F点在AM 上,BE∥CF ,BE=CF 。
求证:AM 是△ABC 的中线。
13已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F 。
求证:BE =CD .14在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证: ①ADC ∆≌CEB ∆;②BE AD DE +=;(2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.15如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形全等图形:能够完全重合的两个图形就是全等图形. 全等多边形: 能够完全重合的多边形就是全等多边形.相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角. 全等多边形的对应边、对应角分别相等.如下图,两个全等的五边形,记作:五边形ABCDE ≌五边形'''''A B C D E . 这里符号“≌”表示全等,读作“全等于”.A'B'C'D'E'EDCBA全等三角形:能够完全重合的三角形就是全等三角形.全等三角形的对应边相等,对应角分别相等;反之,如果两个三角形的边和角分别对应相等,那么这两个三角形全等. 全等三角形对应的中线、高线、角平分线及周长面积均相等.全等三角形的概念与表示:能够完全重合的两个三角形叫作全等三角形.能够相互重合的顶点、边、角分别叫作对应顶点、对应边、对应角.全等符号为“≌”.全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角. 全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等.判定三角形全等的基本思路:SAS HLSSS →⎧⎪→⎨⎪→⎩ 找夹角已知两边 找直角 找另一边ASA AAS SAS AAS ⎧⎪⎧⎪⎨⎪⎨⎪⎪⎪⎩⎩ 边为角的对边→找任意一角→ 找这条边上的另一角→已知一边一角 边就是角的一条边 找这条边上的对角→ 找该角的另一边→ ASAAAS →⎧⎨→⎩ 找两角的夹边已知两角 找任意一边全等三角形的图形归纳起来有以下几种典型形式:⑴ 平移全等型⑵ 对称全等型⑶ 旋转全等型由全等可得到的相关定理:⑴ 角的平分线上的点到这个角的两边的距离相等. ⑵ 到一个角的两边的距离相同的点,在这个角的平分线上.⑶ 等腰三角形的性质定理:等腰三角形的两个底角相等 (即等边对等角). ⑷ 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合.⑸ 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等⑹ 线段垂直平分线上的点和这条线段两个端点的距离相等.⑺ 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 三角形辅助线做法:图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
常见辅助线的作法有以下几种:1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。
2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。
3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。
4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。
5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明。
这种作法,适合于证明线段的和、差、倍、分等类的题目。
已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。
7、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。
一、全等三角形的认识与性质1、在AB 、AC 上各取一点E 、D ,使AE AD =,连接BD 、CE 相交于O 再连结AO 、BC ,若12∠=∠,则图中全等三角形共有哪几对?并简单说明理由.21E ODCBA2、如图所示,AB AD =,BC DC =,E F 、在AC 上,AC 与BD 相交于P .图中有几对全等三角形?请一一找出来,并简述全等的理由.FAE P DCB二、三角形全等的判定与应用1、如图,AC DE ∥,BC EF ∥,AC DE =.求证:AF BD =.FEDCBA2、已知:如图,AD BC =,AC BD =,求证:C D ∠=∠.ODCBA3、如图,AC 、BD 相交于O 点,且AC BD =,AB CD =,求证:OA OD =.ABCDO4、已知:如图,B 、E 、F 、C 四点在同一条直线上,AB DC =,BE CF =,B C ∠=∠.求证:OA OD =.F E ODCB A5、已知,如图,AB AC =,CE AB ⊥,BF AC ⊥,求证:BF CE =.F E CBA6、E 、F 分别是正方形ABCD 的BC 、CD 边上的点,且BE CF =.求证:AE BF ⊥.PFEDCBA7、E 、F 、G 分别是正方形ABCD 的BC 、CD 、AB 边上的点,GE EF ⊥,GE EF =.求证:BG CF BC +=.GA BCDEF8、在凸五边形中,B E ∠=∠,C D ∠=∠,BC DE =,M 为CD 中点.求证:AM CD ⊥.M EDC B A三、截长补短类1、如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?NEB M A D2、如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC ∠外角的平分线交于点N ,MD 与MN 有怎样的数量关系?NCDEB M A3、如图,AD ⊥AB ,CB ⊥AB ,DM =CM =a ,AD =h ,CB =k ,∠AMD =75°,∠BMC =45°,则AB 的长为 ( )A . aB . kC .2k h+ D . h MDCBA4、已知:如图,ABCD 是正方形,∠F AD =∠F AE . 求证:BE +DF =AE .FEDCBA5、如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120的等腰三角形,以D 为顶点作一个60的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.NM DCBA6、五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°,求证:AD 平分∠CDECEDB A四、与角平分线有关的全等问题1、如图,已知ABC ∆的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于D ,且3OD =,求ABC ∆的面积.2、在ABC ∆中,D 为BC 边上的点,已知BAD CAD ∠=∠,BD CD =,求证:AB AC =.ADOC B3、已知ABC ∆中,AB AC =,BE 、CD 分别是ABC ∠及ACB ∠平分线.求证:CD BE =.ED CB A4、已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.OED CBAD C BA5、如图,已知E 是AC 上的一点,又12∠=∠,34∠=∠.求证:ED EB =.E DC B A43216、长方形ABCD 中,AB =4,BC =7,∠BAD 的角平分线交BC 于点E ,EF ⊥ED 交AB 于F ,则EF =__________.FEDCBA7、如图所示,已知ABC ∆中,AD 平分BAC ∠,E 、F 分别在BD 、AD 上.DE CD =,EF AC =.求证:EF ∥ABFACD E B8、如图,在ABC ∆中,AD 交BC 于点D ,点E 是BC 中点,EF AD ∥交CA 的延长线于点F ,交AB 于点G ,若BG CF =,求证:AD 为BAC ∠的角平分线.F GE DCBA9、在ABC ∆中,AB AC >,AD 是BAC ∠的平分线.P 是AD 上任意一点.求证:AB AC PB PC ->-.CD B PA10、如图,在ABC ∆中,2B C ∠=∠,BAC ∠的平分线AD 交BC 与D .求证:AB BD AC +=.DC B A11、如图所示,在ABC ∆中,AC AB >,M 为BC 的中点,AD 是BAC ∠的平分线,若CF AD ⊥且交AD 的延长线于F ,求证()12MF AC AB =-. MFD CB A12、如图所示,AD 是ABC ∆中BAC ∠的外角平分线,CD AD ⊥于D ,E 是BC 的中点,求证DE AB ∥ 且1()2DE AB AC =+.E DCB A13、如图所示,在ABC ∆中,AD 平分BAC ∠,AD AB =,CM AD ⊥于M ,求证2AB AC AM +=.MD CBA14、如图,ABC ∆中,AB AC =,BD 、CE 分别为两底角的外角平分线,AD BD ⊥于D ,AE CE ⊥于E .求证:AD AE =.HG D AB C E15、已知:AD 和BE 分别是ABC △的CAB ∠和CBA ∠的外角平分线,CD AD ⊥,CE BE ⊥,求证:⑴ DE AB ∥;⑵ ()12DE AB BC CA =++.EBA D C16、在ABC ∆中,MB 、NC 分别是三角形的外角ABE ∠、ACF ∠的角平分线,AM BM ⊥,AN CN ⊥垂足分别是M 、N .求证:MN BC ∥,()12MN AB AC BC =++FEN M CBA17、在ABC ∆中,MB 、NC 分别是三角形的内角ABC ∠、ACB ∠的角平分线,AM BM ⊥,AN CN ⊥垂足分别是M 、N .求证:MN BC ∥,()12MN AB AC BC =+-N MCBA18、如图,在四边形ABCD 中,AC 平分BAD ∠,过C 作E AB CE 于⊥,并且)(21AD AB AE +=,则ADC ABC ∠+∠等于多少?EDCBA19、如图,180A D ∠+∠=︒,BE 平分ABC ∠,CE 平分BCD ∠,点E 在AD 上.① 探讨线段AB 、CD 和BC 之间的等量关系. ② 探讨线段BE 与CE 之间的位置关系.EDCB A四、倍长中线1、已知:ABC ∆中,AM 是中线.求证:1()2AM AB AC <+.MCB A2、在ABC ∆中,5,9AB AC ==,则BC 边上的中线AD 的长的取值范围是什么?3、如图,ABC ∆中,<AB AC ,AD 是中线.求证:<DAC DAB ∠∠.DCBA4、如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,AF EF =,求证:AC BE =.FEDC BA5、已知△ABC ,∠B =∠C ,D ,E 分别是AB 及AC 延长线上的一点,且BD =CE ,连接DE 交底BC 于G ,求证GD =GE .GEDCBA6、已知AM 为ABC ∆的中线,AMB ∠,AMC ∠的平分线分别交AB 于E 、交AC 于F .求证:BE CF EF +>.MFECBA7、在Rt ABC ∆中,90A ∠=︒,点D 为BC 的中点,点E 、F 分别为AB 、AC 上的点,且ED FD ⊥.以线段BE 、EF 、FC 为边能否构成一个三角形?若能,该三角形是锐角三角形、直角三角形或钝角三角形?F EDCBA8、如图所示,在ABC ∆中,D 是BC 的中点,DM 垂直于DN ,如果2222BM CN DM DN +=+,求证()22214AD AB AC =+.NMDCBA9、在Rt ABC ∆中,F 是斜边AB 的中点,D 、E 分别在边CA 、CB 上,满足90DFE ∠=︒.若3AD =,4BE =,则线段DE 的长度为_________.FEDCBA五、中位线的应用1、AD 是ABC ∆的中线,F 是AD 的中点,BF 的延长线交AC 于E .求证:13AE AC =. FA DECB2、如图所示,在ABC ∆中,AB AC =,延长AB 到D ,使BD AB =,E 为AB 的中点,连接CE 、CD ,求证2CD EC =.EDCB A3、已知△ABC 中,AB =AC ,BD 为AB 的延长线,且BD =AB ,CE 为△ABC 的AB 边上的中线.求证CD =2CEE DB CA4、已知:ABCD 是凸四边形,且AC <BD . E 、F 分别是AD 、BC 的中点,EF 交AC 于M ;EF 交BD 于N ,AC 和BD 交于G 点. 求证:∠GMN >∠GNM .NM GFEDCBA5、在ABC ∆中,90ACB ∠=︒,12AC BC =,以BC 为底作等腰直角BCD ∆,E 是CD 的中点,求证:AE EB ⊥且AE BE =.EDCBA6、如图,在五边形ABCDE 中,90ABC AED ∠=∠=︒,BAC EAD ∠=∠,F 为CD 的中点.求证:BF EF =.EDFCBA7、如图所示,P 是ABC ∆内的一点,PAC PBC ∠=∠,过P 作PM AC ⊥于M ,PL BC ⊥于L ,D 为AB 的中点,求证DM DL =.LPMD CBA8、如图所示,在ABC ∆中,D 为AB 的中点,分别延长CA 、CB 到点E 、F ,使DE DF =.过E 、F 分别作直线CA 、CB 的垂线,相交于点P ,设线段PA 、PB 的中点分别为M 、N .求证:(1) DEM FDN ∆∆≌; (2) PAE PBF ∠=∠.NMABCDEPFE9、如图,已知AC BD =,AD AC ⊥,BC BD ⊥,求证:AD BC =.DC BA10、点M ,N 在等边三角形ABC 的AB 边上运动,BD =DC ,∠BDC =120°,∠MDN =60°,求证MN =MB +NC .NM DCBA11、在ABC △中,3AB AC =,BAC ∠的平分线交BC 于D ,过B 作BE AD ⊥,E 为垂足,求证:AD DE =.C EDB A12、如图,在ABC ∆中,AB BD AC +=,BAC ∠的平分线AD 交BC 与D .求证:2B C ∠=∠.DC B A13、如图,在等腰ABC ∆中,AB AC =,D 是BC 的中点,过A 作AE DE ⊥,AF DF ⊥,且AE AF =.求证:EDB FDC ∠=∠.DFECBA14、如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE交AC 于F ,AF 与EF 相等吗?为什么?FED CBA15、如右下图,在ABC ∆中,若2B C ∠=∠,AD BC ⊥,E 为BC 边的中点.求证:2AB DE =.。