仪表放大器电路分析

合集下载

仪表放大器电路分析

仪表放大器电路分析

仪表放大器电路分析
我们设计放大电路的初衷是放大前端微弱信号输出,抑制前端干扰信号输入;
关于普通运算放大器构成的差分放大固然可以抑制共模输入,放大差分输入,但是我们还有个器件能够更好的抑制共模信号,放大差模信号;
这个器件就是仪表放大器,我们可以从手册中看出,关于共模抑制比CMRR参数比较,CMRR就是差模增益/共模增益,所以差模增益越大,共模增益越小,CMRR 就越大;
这个是普通运放1M324的CMRR,最大80dB;
益越大,CMRR越高,抗干扰能力越强,这正是我们所需要的;
但是我们再看,价格极贵,这只是部分的;那么我们看下仪表放大器内部图:
故,我们是否可以用普通运放替代,因为普通运放就几毛钱;电路如下: 我们来分析下:
由虚短可得,V2=VA,V1=VB;
由虚断可得,(VA-VB)∕RO=(V02-V01)∕(R1+R2+R0);
则:(V2-V11∕RO=(Vo2-Vo1)∕(R1+R2+R0);
对于后级电路,我们知道是差分放大电路,我们令R3=R4,R5=R6;
则:Vo=R6∕R4*(Vo2-Vo1);
我们令RI=R2;
BPVo=(V2∙V1)(2R2+RO)R6/(ROR4);
当然用普通运放实现和用集成的仪表放大器各有优劣:
普通运放设计的话,要调试,容易受到外界干扰,但是成本低;外围电阻需要用到高精度电阻才能达到我们所需效果;
集成仪表放大器虽然价格贵,但是稳定性和可靠性高;
我们可以根据我们需要来考究;。

TI运算放大器仪表放大器电路设计说明书

TI运算放大器仪表放大器电路设计说明书

1ZHCA850–December 2018三级运算放大器仪表放大器电路Analog Engineer's Circuit:AmplifiersZHCA850–December 2018三级运算放大器仪表放大器电路设计目标输入V idiff (V i2-V i1)共模电压输出电源V i diff Min V i diff Max V cm V oMin V oMax V cc V ee V ref -0.5V+0.5V±7V–5V+5V+15V–15V0V设计说明此设计使用3个运算放大器构建分立式仪表放大器。

电路将差动信号转换为单端输出信号。

仪表放大器能否以线性模式运行取决于其构建块(即运算放大器)能否以线性模式运行。

当输入和输出信号分别处于器件的输入共模和输出摆幅范围内时,运算放大器以线性模式运行。

这些范围取决于用于为运算放大器供电的电源电压。

设计说明1.使用精密电阻器实现高直流CMRR 性能2.R 10设置电路的增益。

3.向输出级添加隔离电阻器以驱动大电容负载。

4.高电阻值电阻器可能会减小电路的相位裕度并在电路中产生额外的噪声。

5.能否以线性模式运行取决于所使用的分立式运算放大器的输入共模和输出摆幅范围。

线性输出摆幅范围在运算放大器数据表中A OL 测试条件下指定。

2ZHCA850–December 2018三级运算放大器仪表放大器电路设计步骤1.此电路的传递函数:2.选择反馈环路电阻器R 5和R 6:3.选择R 1、R 2、R 3和R 4。

要将Vref 增益设置为1V/V 并避免降低仪表放大器的CMRR ,R 4/R 3和R 2/R 1的比值必须相等。

4.计算R 10以实现所需的增益:(1)5.要检查共模电压范围,请从参考文献[5]中下载并安装程序。

通过为内部放大器具有所选放大器(在本例中为TLV172)所定义的共模范围、输出摆幅和电源电压范围的三级运算放大器INA 添加代码,对安装目录中的INA_Data.txt 文件进行编辑。

仪表放大器故障检测电路及故

仪表放大器故障检测电路及故

仪表放大器故障检测电路及故
即使正常状态下,传感器和放大器间也可能出现故障,该故障可能是由错误应用、所处的使用环境、低品质的组件或其他原因引起的。

本文将介绍经常发生的故障类型,并举例说明这些故障是如何导致错误的测量结果。

分立式方案可以检测这些故障,但会影响系统的性能。

本文将给出仪表放大器的故障检测电路以及各故障的检测方法,另外还会提到一种检测故障的自我测试程序。

文中最后还将讨论采用分立式方案检测故障时对系统性能的影响。

使用仪表放大器的传感器可能在传感器与放大器之间发生一系列故障。

这些故障可能发生在4个点上,如图1所示的A、B、C、D。

A点可能发生的故障是电源和电桥之间开路或者连接状况恶化使电桥和电源之间产生电阻。

同样的故障也会发生在电桥和接地之间的B点上。

C点和D点则可能发生如下故障:即电桥和放大器之间开路,连接状况恶化使电桥和放大器之间产生电阻,对电源短路或对地短路,另外一种可能则是C点和D点之间短路。

双运放仪表放大器电路及分析

双运放仪表放大器电路及分析

双运放仪表放大器电路及分析煤炭科学研究总院太原分院 张小刚 李 明 韩 炬摘 要 介绍了由两个运放单元组成的仪表放大器电路,并对其进行了较为深入的分析,提出了应用该电路的注意事项。

关键词 仪表放大器 运算放大器 双运放结构仪表放大器在传感器、变换器及仪器仪表中被广泛使用,对于煤矿产品也不例外。

不过,最常见的是采用专用仪表放大器IC 或三运放结构的仪表放大器电路,而采用双运放结构仪表放大器电路的却很少,也许原因在于双运放结构仪表放大器电路很少为人所知,教科书上也很少介绍。

其实,双运放结构仪表放大器电路的使用效果也非常好,其结构、性能等都很优越,如果精度等要求不是非常高的话,使用LM324或LM358之类的通用运放就可以实现。

下面就介绍一种双运放结构仪表放大器电路,并对它进行一些必要的分析,供大家参考。

双运放仪表放大器电路如图1所示,)(+V 、)(-V 是放大器差动高阻输入,r V 是基准电压或偏置输入,o V 是放大器输出。

图1 双运放仪表放大器电路1 输入输出关系由 )(111)(11111111+-⋅+⋅+⋅=⋅⎪⎪⎭⎫ ⎝⎛++V R V r V R V R r R p r p )(122)(22111111-+⋅+⋅+⋅=⋅⎪⎪⎭⎫ ⎝⎛++V R V r V R V R r R p o p 可得r p p o V r r R R V R r r r R r r r R V R r r r R V ⋅⋅+⋅⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⋅+⋅-⋅⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⋅+=-+2112)(21222112)(2122111(1)()())()(1)(21)(1-+---⋅--⋅+=V V R r V V R r V V p r (2) 当1212r r R R = 时, ()r p o V V V R r r r R V +-⋅⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⋅+=-+)()(212211 (3) 当电阻不匹配时,会产生电阻不匹配误差。

仪表放大器电路原理

仪表放大器电路原理

仪表放大器是一种特殊的放大器电路,用于测量和放大微弱信号。

它的原理是通过放大输入信号并降低噪声,以便更准确地测量和显示信号。

仪表放大器电路通常由以下几个主要部分组成:
1. 输入级:输入级负责接收和放大输入信号。

它通常由一个差分放大器组成,可以抵消共模噪声并提高信号的共模抑制比。

2. 增益控制:增益控制电路用于调节放大器的增益。

它可以通过改变电阻或电容值来实现。

3. 输出级:输出级负责放大信号并驱动负载。

它通常由一个功率放大器组成,可以提供足够的功率以驱动外部设备。

4. 反馈回路:反馈回路用于控制放大器的增益和稳定性。

它通过将一部分输出信号反馈到输入级来实现。

仪表放大器电路的工作原理是将输入信号放大到适当的范围,并通过反馈回路来保持放大器的稳定性和线性度。

它还可以通过滤波和抑制噪声来提高信号质量。

仪表放大器通常
用于测量仪器、传感器和实验室设备中,以提供准确和可靠的信号放大功能。

AD620

AD620

AD620
在一般讯号放大的应用中通常只要透过差动放大电路即可满足需求,然而基本的差动放大电路精密度较差,且差动放大电路变更放大增益时,必须满足两个电阻,影响整个讯号放大精确度的变因就更加复杂。

仪表放大电路则无上述的缺点。

AD620仪表放大器的简介:
图1仪表放大电路是由三个放大器所共同组成,其中电阻R 与R X 来调整放大的增益值,其关系式如(1)所示,唯须注意避免每个放大器的饱和现象(放大器最大输出为其工作电压±Vdc )。

V O = 1+2R X
V 1−V 2 (1)
一般而言,上述仪表放大器都有包装好的成品可以买到,我们只需外接一电阻(即式(1)中之R X ),
依照其特有的关系式调整至所需
的放大倍率即可。

以下介绍AD620仪表放大器的使用方法。

图2所示为AD620仪表放大器的外围引脚图。

其中1、8脚需跨接一电阻来调整放大倍率(作用同式(1)中之R X),4、7脚需提供正负相等的工作电压,由2、3脚接输入的放大的电压即可从6脚输出放大后的电压值。

5脚则是参考基准,如果接地则第6脚的输为输为与地之间的相对电压。

AD620的放大增益关系如式(2)、式(3)、所示,由此二式我们即可推算出各种增益所要使用的电阻值R G了。

引脚功能如下:
1、8:外接增益调节电阻;
2:反向输入端;
3:同向输入端;
4:负电源;
5:基准电压;
6:共地信号输出;
7:正电源;
G=49.4KΩ
R G
+1 (2)
R G=49.4KΩ
(3)。

三运放组成的仪表放大器原理分析

三运放组成的仪表放大器原理分析

三运放组成的仪表放大器原理分析仪表放大器与运算放大器的区别是什么?仪表放大器是一种具有差分输入和相对参考端单端输出的闭环增益单元。

大多数情况下,仪表放大器的两个输入端阻抗平衡并且阻值很高,典型值≥109 Ω。

其输入偏置电流也应很低,典型值为 1 nA至50 nA。

与运算放大器一样,其输出阻抗很低,在低频段通常仅有几毫欧(mΩ)。

运算放大器的闭环增益是由其反向输入端和输出端之间连接的外部电阻决定。

与放大器不同的是,仪表放大器使用一个内部反馈电阻网络,它与其信号输入端隔离。

对仪表放大器的两个差分输入端施加输入信号,其增益既可由内部预置,也可由用户通过引脚连接一个内部或者外部增益电阻器设置,该增益电阻器也与信号输入端隔离。

专用的仪表放大器价格通常比较贵,于是我们就想能否用普通的运放组成仪表放大器?答案是肯定的。

使用三个普通运放就可以组成一个仪用放大器。

电路如下图所示:输出电压表达式如图中所示。

看到这里大家可能会问上述表达式是如何导出的?为何上述电路可以实现仪表放大器?下面我们就将探讨这些问题。

在此之前,我们先来看如下我们很熟悉的差分电路:如果R1 =R3,R2 =R4,则VOUT = (VIN2—VIN1)(R2/R1)这一电路提供了仪表放大器功能,即放大差分信号的同时抑制共模信号,但它也有些缺陷。

首先,同相输入端和反相输入端阻抗相当低而且不相等。

在这一例子中VIN1反相输入阻抗等于100 kΩ,而VIN2同相输入阻抗等于反相输入阻抗的两倍,即200 kΩ。

因此,当电压施加到一个输入端而另一端接地时,差分电流将会根据输入端接收的施加电压而流入。

(这种源阻抗的不平衡会降低电路的CMRR。

)另外,这一电路要求电阻对R1 /R2和R3 /R4的比值匹配得非常精密,否则,每个输入端的增益会有差异,直接影响共模抑制。

例如,当增益等于1 时,所有电阻值必须相等,在这些电阻器中只要有一只电阻值有0.1% 失配,其CMR便下降到66 dB(2000:1)。

简单分立式单端转差分精密仪表放大器电路介绍

简单分立式单端转差分精密仪表放大器电路介绍

简单分立式单端转差分精密仪表放大器电路介绍
 简介
 在许多应用中,ADC需要在存在大共模信号的情况下处理一个很小的差分输入信号。

传统的仪表放大器(In-Amp)只具有单端输出和有限的共模范围,因此在这些应用中并不常用。

为了充分利用这些器件的高性能和低成本,可以设计一个简单的电路,将其单端输出转换为差分输出,并且改善其输入共模范围,使之更适合这些应用。

许多低成本仪表放大器所具备的带宽、直流精度和低功耗可以满足所有的系统要求。

使用仪表放大器的另一好处是,用户无需构建自己的差分放大器,因此省去了很多高成本的分立器件。

本文将提出一种简单的方法来构建一个低成本仪表放大器并优化其性能。

此外,该解决方案的成本和性能与单芯片仪表放大器不相上下。

 图1详细介绍了所提出的精密系统设计,该设计允许用户在存在高共模电压的情况下测量差分信号。

该电路包括一个输入缓冲器、一个ADC驱动器
和一个基准电压源。

缓冲器驱动仪表放大器的参考引脚,并将单端输出转换为差分输出。

该电路具有非常高的输入共模电压范围。

它可以处理高达±270 V的共模电压(采用±15 V电源供电),在正负方向几乎达到电源电压的20倍,这是电机控制应用的关键。

此外,还对输入提供高达±500 V的共模或差模瞬变保护。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

仪表放大器电路设计与比较
智能仪表仪器通过传感器输入的信号,一般都具有“小”信号的特征:信号幅度很小(毫伏甚至微伏量级),且常常伴随有较大的噪声。

对于这样的信号,电路处理的第一步通常是采用仪表放大器先将小信号放大。

放大的最主要目的不是增益,而是提高电路的信噪比;同时仪表放大器电路能够分辨的输入信号越小越好,动态范围越宽越好。

仪表放大器电路性能的优劣直接影响到智能仪表仪器能够检测的输入信号范围。

下面从仪表放大器电路的结构、原理出发,设计出四种仪表放大器电路实现方案,通过分析、比较,给出每一种电路方案的特点,为学生进行电子电路实验提供一定的参考。

1.仪表放大器电路的构成及原理
仪表放大器电路的典型结构如图1所示。

它主要由两级差分放大器电路构成。

其中,运放A1,A2为同相差分输入方式,同相输入可以大幅度提高电路的输入阻抗,减小电路对微弱输入信号的衰减;差分输入可以使电路只对差模信号放大,而对共模输入信号只起跟随作用,使得送到后级的差模信号与共模信号的幅值之比(即共模抑制比CMRR)得到提高。

这样在以运放A3为核心部件组成的差分放大电路中,在CMRR要求不变情况下,可明显降低对电阻R3和R4,RF和R5的精度匹配要求,从而使仪表放大器电路比简单的差分放大电路具有更好的共模抑制能力。

在R1=R2,R3=R4,Rf=R5的条件下,图1电路的增益为:G=(1+2R1/Rg)(Rf/R3)。

由公式可见,电路增益的调节可以通过改变Rg阻值实现。

2.仪表放大器电路设计
1)仪表放大器电路实现方案
目前,仪表放大器电路的实现方法主要分为两大类:第一类由分立元件组合而成;另一类由单片集成芯片直接实现。

根据现有元器件,文中分别以单运放LM741和OP07,集成四运放LM324和单片集成芯片AD620为核心,设计出四种仪表放大器电路方案。

方案1:由3个通用型运放LM741组成三运放仪表放大器电路形式,辅以相关的电阻外围电路,加上A1,A2同相输入端的桥式信号输入电路,如图2所示。

图2中的A1~A3分别用LM741替换即可。

电路的工作原理与典型仪表放大器电路完全相同。

方案2:由3个精密运放OP07组成,电路结构与原理和图2相同(用3个OP07分别代替图2中的A1~A3)。

方案3:以一个四运放集成电路LM324为核心实现,如图3所示。

它的特点是将4个功能独立的运放集成在同一个集成芯片里,这样可以大大减少各运放由于制造工艺不同带来的器件性能差异;采用统一的电源,有利于电源噪声的降低和电路性能指标的提高,且电路的基本工作原理不变。

方案4:由一个单片集成芯片A13620实现,如图4所示。

它的特点是电路结构简单:一个AD620,一个增益设置电阻Rg,外加工作电源就可以使电路工作,因此设计效率最高。

图4中电路增益计算公式为:G=49.4K/Rg+1。

2)性能测试与分析
实现仪表放大器电路的四种方案中,都采用4个电阻组成电桥电路的形式,将双端差分输入变为单端的信号源输入。

性能测试主要是从信号源Vs的最大输入和Vs最小输入、电路的最大增益及共模抑制比几方面进行仿真和实际电路性能测试。

测试数据分别见表1和表2。

其中,Vs最大(小)输入是指在给定测试条件下,使电路输出不失真时的信号源最大(小)输入;最大增益是指在给定测试条件下,使输出不失真时可以实现的电路最大增益值。

共模抑制比由公式KCMRR=20|g | AVd/AVC|(dB)计算得出。

说明:
(1)f为Vs输入信号的频率;
(2)表格中的电压测量数据全部以峰峰值表示;
(3)由于仿真器件原因,实验中用Multisim对方案3的仿真失效,表1中用“-”表示失效数据;
(4)表格中的方案1~4依次分别表示以LM741,OP07,LM324和AD620为核心组成的仪表放大器电路。

由表1和表2可见,仿真性能明显优于实际测试性能。

这是因为仿真电路的性能基本上是由仿真器件的性能和电路的结构形式确定的,没有外界干扰因素,为理想条件下的测试;而实际测试电路由于受环境干扰因素(如环境温度、空间电磁干扰等)、人为操作因素、实际测试仪器精确度、准确度和量程范围等的限制,使测试条件不够理想,测量结果具有一定的误差。

在实际电路设计过程中,仿真与实际测试各有所长。

一般先通过仿真测试,初步确定电路的结构及器件参数,再通过实际电路测试,改进其具体性能指标及参数设置。

这样,在保证电路功能、性能的前提下,大大提高电路设计的效率。

由表2的实测数据可以看出:方案2在信号输入范围(即Vs的最大、最小输入)、电路增益、共模抑制比等方面的性能表现为最优。

在价格方面,它比方案1和方案3的成本高一点,但比方案4便宜很多。

因此,在四种方案中,方案2的性价比最高。

方案4除最大增益相对小点,其他性能仅次于方案2,具有电路简单,性能优越,节省设计空间等优点。

成本高是方案4的最大缺点。

方案1和方案3在性能上的差异不大,方案3略优于方案1,且它们同时具有绝对的价格优势,但性能上不如方案2和方案4好。

综合以上分析,方案2和方案4适用于对仪表放大器电路有较高性能要求的场合,方案2性价比最高,方案4简单、高效,但成本高。

方案1和方案3适用于性能要求不高且需要节约成本的场合。

针对具体的电路设计要求,选取不同的方案,以达到最优的资源利用。

电路的设计方案确定以后,在具体的电路设计过程中,要注意以下几个方面:
(1)注意关键元器件的选取,比如对图2所示电路,要注意使运放A1,A2的特性尽可能一致;选用电阻时,应该使用低温度系数的电阻,以获得尽可能低的漂移;对R3,R4,R5和R6的选择应尽可能匹配。

(2)要注意在电路中增加各种抗干扰措施,比如在电源的引入端增加电源退耦电容,在信号输入端增加RC低通滤波或在运放A1,A2的反馈回路增加高频消噪电容,在PCB设计中精心布局合理布线,正确处理地线等,以提高电路的抗干扰能力,最大限度地发挥电路的性能。

相关文档
最新文档