收卷转矩张力闭环

合集下载

收卷变频器恒张力控制调试方法

收卷变频器恒张力控制调试方法

收卷变频器恒张力控制调试方法收卷变频器恒张力控制调试方法根据上述方法完成变频器闭环矢量的调试工作后,再进行张力调试,张力控制参数设置如表4所示。

表4张力控制参数设置序号参数类型数值说明1FH-001开环转矩控制模式2FH-010收卷控制3FH-03计算值机械传动比4FH-042AI2为张力给定电位器信号5FH-06计算值最大张力6FH-0710%零速张力提升,根据实际情况设置。

7FH-0920%张力锥度FH-100通过线速度计算卷径8FH-11实际值最大卷径9FH-12实际值卷轴直径10FH-130初始卷径源由FH-12~FH-15设定11FH-271线速度输入信号选择AI1,由前一级变频器的AO输出;12FH-28计算值最大线速度13FH-331000机械惯量补偿系数14FH-347800材料密度15FH-351000材料宽度16FH-368%机械摩擦系数补偿6调试说明(1)转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随牵引电动机的速度而自动变化。

(2)根据公式F=T/R(其中F为材料张力,T为收卷轴的扭矩,R为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的依据。

(3)MD系列变频器在闭环矢量控制(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG卡)。

(4)在实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。

张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。

(5)电机的输出转矩在加减速时,有一部分要用来克服收卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。

摩擦补偿可以克服系统阻力对张力产生的影响。

(6)牵引1电机和牵引3电机长期工作在发电状态,牵引1变频器和牵引3变频器必须加装制动单元和制动电阻来消耗由电机回馈回来的能量,否则变频器直流母线上的电压会超过变频器限定的电压范围而报警停机。

张力控制原理介绍

张力控制原理介绍

第二章 张力控制原理介绍 2.1 典型收卷张力控制示意图22.2 张力控制方案介绍对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330设计了两种张力控制模式。

1、开环转矩控制模式开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。

转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。

根据公式F=T/R(其中F为材料张力,T为收卷轴的扭矩,R为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。

MD系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG卡)。

2、与开环转矩模式有关的功能模块:1)张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。

张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。

2)卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。

3)转矩补偿部分:电机的输出转矩在加减速时有一部分要用来克服收(放)卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。

摩3擦补偿可以克服系统阻力对张力产生的影响。

3、闭环速度控制模式闭环是指需要张力(位置)检测反馈信号构成闭环调节,速度控制模式是指变频器根据反馈信号调节输出频率,而达到控制目的,速度模式变频器可工作在无速度传感器矢量控制、有速度传感器矢量控制和V/F控制三种方式中的任何一种。

MD收放卷张力控制

MD收放卷张力控制
1、通过控制电机转速实现。 2、通过控制电机输出转矩实现。
张力控制基础--什么是张力控制系统?
什么是张力控制系统?
张力控制系统就是为实现张力控制而 必须的系统构成。 典型的张力控制系统包括: 1、张力控制器(含专用变频器) 2、张力检测器 3、磁粉制动器或离合器。 功能: 能够持久地控制料带输送时的张力。 这种控制对机器的任何运行速度都必 须保持有效,包括机器的加速、减速 和匀速。即使在紧急停车情况下,它 也有能力保证料带不产生丝毫破损。
传动比
机械传动比=电机转速/卷轴转速 在张力控制时必须正确设定机械传动比。
皮带、齿轮(多极相乘)
最大线速度
牵引棍变频器最大频率时所能达到的线速度
来源 1、线速度和频率正比(模拟输出或脉冲输出) 2、检测时脉冲频率与线速度成正比(编码器或接
近开关) 直接影响卷径条件(线速度与传动比); 要正确设置最大线速度(FH-28,FH-29); 观察FH-30---线速度实际值;
线速度检测+变频器
线速度反馈 线速度输入 一般用于收卷,但必须方便安装速度反馈装置
磁粉制动/离合器+张力传感器+张力控制器
目前使用较为普遍,但仅限于开卷收卷场合
变频器 +张力传感器(调节辊)
线速度输入 张力输入
张力反馈
使用范围不受限,但必须方便安装传感器(调节辊)
变频器开环张力控制 速度反馈
式选择; Ø 可灵活改变收/放卷模式; Ø 丰富的卷径计算功能模块; Ø 灵活的转矩补偿、惯量补偿、张力锥度输出等功能模块

什么是张力控制?
在金属加工、纺织、造纸、橡胶、化工及电线电缆等工业中,当处理一些如纸张、薄片 、丝、布等长尺寸材料或产品时,都会用上卷壳及滚筒组成的加工生产线,这有一个 需要解决的问题:如何在卷筒直径从开始阶段至最后阶段逐渐变化的整个过程中,张 力和线速度的变化保持在所允许的范围内。以塑料薄膜为例,在放卷、收卷以及供料 过程中,薄膜上要保持一定的张力(或者称之为拉伸力),过大的张力会导致料膜变 形甚至断裂,而过小的张力又会使薄膜松弛,导致褶皱,这就要求在薄膜的处理过程 中要保持恒定的张力。 张力控制的作用就是:保持恒定的张力,抑制外来干扰引起的张力抖动。 有两种途径可解决此问题:

MD330收放卷张力控制

MD330收放卷张力控制

Never Stop Improving
变频器开环张力控制
速度反馈
线速度输入
仅限于开卷/收卷
Never Stop Improving
汇报大纲
一 MD330产品概况和张力控制基础

MD330开环转矩模式应用

MD330闭环速度模式应用
四 五
Innovation+ Advance
预驱动和张力锥度应用
Innovation+ Advance
卷径比
=最大卷径/最小卷径
小于10容易控制,极限不得大于15; 力矩时影响最大力矩和最小力矩的比; 过大降低小张力控制精度; 速度控制增加PID控制难度;
Innovation+ Advance
最小/最大输出力矩
调整最小张力与卷轴材料直径最小时出现;
折算到电机力矩不小于10%*TN
Innovation+ Advance
MD330使用中总结
• 选择、确定好哪种张力控制方案:同时选择电 机控制模式;
• 选择线速度输入模式:变频器输出频率是否与 线速度成正比,如不能需要选择使用脉冲测试 法计算作为线速度输入源信号; • 选择卷径计算方法:线速度计算、厚度累积计 算、模拟信号等传感器实际测量值;
变频器直接速度控制
1、收卷用靠背轮,卷曲部 分没有动力,依靠一个过渡 辊传送动力,带状物体从过 渡辊上通过,在卷曲辊上缠 绕,采用气压或者液压方式 补偿卷径的变化。依靠机械 来完成恒速卷绕. 2、线速度同步 如低速纸机各工艺段, 依靠各级速度的微小速差保 持张力在一定范围内,否则 断纸。
Never Stop Improving
皮带、齿轮(多极相乘) Innovation+ Advance

第二章张力控制原理介绍

第二章张力控制原理介绍

第二章 张力控制原理介绍 2.1 典型收卷张力控制示意图22.2 张力控制方案介绍对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330设计了两种张力控制模式。

1、开环转矩控制模式开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。

转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。

根据公式F=T/R(其中F为材料张力,T为收卷轴的扭矩,R为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。

MD系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG卡)。

2、与开环转矩模式有关的功能模块:1)张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。

张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。

2)卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。

3)转矩补偿部分:电机的输出转矩在加减速时有一部分要用来克服收(放)卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。

摩3擦补偿可以克服系统阻力对张力产生的影响。

3、闭环速度控制模式闭环是指需要张力(位置)检测反馈信号构成闭环调节,速度控制模式是指变频器根据反馈信号调节输出频率,而达到控制目的,速度模式变频器可工作在无速度传感器矢量控制、有速度传感器矢量控制和V/F控制三种方式中的任何一种。

速度模式下的张力闭环控制

速度模式下的张力闭环控制

速度模式下的张力闭环控制是通过调节电机转速达到张力恒定的。

首先由带(线)的线速度和卷筒的卷径实时计算出同步匹配频率指令,然后通过张力检测装置反馈的张力信号与张力设定值构成PID闭环,调整变频器的频率指令。

同步匹配频率指令的公式如下:F=(V×p×i)/(π×D)其中:F 变频器同步匹配频率指令V 材料线速度p 电机极对数(变频器根据电机参数自动获得)i 机械传动比 D 卷筒的卷径变频器的品牌不同、设计者的用法不同,获得以上各变量的途径也不同,特别是材料的线速度(V)和卷筒的卷径(D),计算方法多种多样,在此不一一列举。

这种控制模式下要求变频器的PID调节性能要好,同步匹配频率指令要准确,这样系统更容易稳定,否则系统就会震荡、不稳定。

这种模式多用在拉丝机的连拉和轧机的连轧传动控制中。

若采用转矩控制模式,当材料的机械性能出现波动,就会出现拉丝困难,轧机轧不动等不正常情况。

转矩模式下的张力控制一、转矩模式下的张力开环控制在这种模式下,无需张力检测反馈装置,就可以获得更为稳定的张力控制效果,结构简洁,效果较好。

但变频器需工作在闭环矢量控制方式,必须安装测速电机或编码器,以便对电机的转速做精确测量反馈。

转矩的计算公式如下:T=(F×D)/(2×i)其中:T 变频器输出转矩指令 F 张力设定指令i 机械传动比 D 卷筒的卷径电机的转矩被计算出来后,用来控制变频器的电流环,这样就可以控制电机的输出转矩。

所以转矩计算非常重要。

这种控制多用在对张力精度要求不高的场合。

二、转矩模式下的张力闭环控制张力闭环控制是在张力开环控制的基础上增加了张力反馈闭环调节。

通过张力检测装置反馈张力信号与张力设定值构成PID闭环调节,调整变频器输出转矩指令,这样可以获得更高的张力控制精度。

其张力计算与开环控制相同。

不论采用张力开环模式还是闭环模式,在系统加、减速的过程中,需要提供额外的转矩用于克服整个系统的转动惯量。

伺服电机放卷张力

伺服电机放卷张力

服电机放卷张力
服电机放卷张力控制是通过控制电机的转速和扭矩,调节卷材的张力。

通常情况下,放卷系统由伺服电机、张力传感器、张力控制器和卷材传动系统组成。

对于伺服电机的放卷张力控制,主要采用两种控制策略:开环控制和闭环控制。

开环控制主要通过设置参数来完成电机的加速、减速、定速和停止等过程,操作简单,但对于张力的控制精度和稳定性较差,适用于对张力控制要求不高的场合。

而闭环控制则通过采集张力传感器的反馈信号,利用控制器对伺服电机进行精确的控制,对张力的控制精度和稳定性要求较高,适用于对张力控制要求高的场合。

此外,在技术方面,一般采用以下技术方案进行伺服电机收放卷张力控制:使用张力传感器和pid控制器。

张力传感器是测量卷材张力的重要装置,通过传感器对张力进行实时监测,并将信号反馈给控制器,实现对伺服电机的精确控制。

pid控制器是一种常见的控制算法,被广泛应用于各种工业控制系统中。

毕业设计(论文)收卷机中张力控制系统的设计

毕业设计(论文)收卷机中张力控制系统的设计

摘要张力控制是生产过程中极其重要的一环,良好的张力控制能够确保产品质量,提高生产效率。

本文主要介绍了张力控制变频收卷的控制原理。

此技术能够保证收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时张力过小的现象。

收卷中张力的控制就现在来说还是个难题,文章中基于建立的数学模型,介绍了变频收卷的原理,按照一定的控制策略进行数据处理,实时调整控制信号。

通过PLC进行卷径的计算,改变变频器的输出频率,对电机进行控制。

对收卷而言,随着卷径的逐渐增大,转矩的值也随之增大,变频器输出的速度将随之减少,符合收卷的基本原理,同时张力也在控制之中。

系统实现了收卷张力的工艺定量化,完成了转矩和速度的自动跟踪转变。

为了改进系统的控制性能,我们必须改进控制的策略。

在收卷系统中,传统的PI控制不能够很好地满足张力控制的精度,稳定程度。

所以文章在最后提出了模糊自适应PID控制方法,应该是以后张力控制算法的主流研究方向。

关键词:变频器,收卷,张力控制ABSTRACTGood tension control improves product quality and productivity。

The article introduces the control principle of tension controlled variable frequency。

This technology makes the whole winding process stable and avoids the over tension of small winding and keep tension not getting too small in big rolling。

The control of tension upon rolling-up is the conundrum at present。

This article not only based the math model,but also introduced the project of invariable tension control according PLC which calculated the rolling diameter and adjusted the output frequency of transducer。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

收卷转矩张力闭环
收卷转矩张力闭环控制是一种用于控制卷材或薄膜在收卷或放卷过程中张力的控制方法。

该方法通过检测卷材或薄膜的张力变化,并与设定值进行比较,然后调整收卷或放卷速度和张力,以保持张力稳定在设定值附近。

具体来说,该控制方法包括以下几个步骤:
1. 检测卷材或薄膜的张力变化。

可以使用传感器或其他检测装置来实时测量卷材或薄膜的张力值,并将其反馈给控制器。

2. 与设定值进行比较。

将实时测量的张力值与设定值进行比较,如果张力偏差较大,则需要调整收卷或放卷速度和张力。

3. 调整收卷或放卷速度和张力。

根据比较结果,控制器可以调整收卷或放卷速度和张力,以使张力稳定在设定值附近。

4. 反馈控制。

将实际张力值反馈给控制器,以便进行下一次比较和调整,从而实现闭环控制。

通过使用收卷转矩张力闭环控制方法,可以实现对卷材或薄膜张力的精确控制,从而提高生产效率、保证产品质量,并降低生产成本。

相关文档
最新文档