第1讲四年级数学思维能力拓展专题突破系列(二十)数阵图讲义(含答案)

合集下载

小学四年级逻辑思维学习—数阵图与幻方

小学四年级逻辑思维学习—数阵图与幻方

⼩学四年级逻辑思维学习—数阵图与幻⽅⼩学四年级逻辑思维学习—数阵图与幻⽅”知识定位⼀、什么是数阵图?在神奇的数学王国中,有⼀类⾮常有趣的数学问题,它变化多端,引⼈⼊胜,奇妙⽆穷。

它就是数阵,⼀座真正的数字迷宫,它对喜欢探究数字规律的⼈有着极⼤的吸引⼒,以⾄有些⼈留连其中,⽤毕⽣的精⼒来研究它的变化,就连⼤数学家欧拉对它都有着浓厚的兴趣。

那么,到底什么是数阵呢?我们先观察上⾯两个图:右图(1)中有3个⼤圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。

右图(2)就更有意思了,1~9九个数字被排成三⾏三列,每⾏的三个数字之和与每列的三个数字之和,以及每条对⾓线上的三个数字之和都等于15,不信你就算算。

上⾯两个图就是数阵图。

准确地说,数阵图是将⼀些数按照⼀定要求排列⽽成的某种图形,有时简称数阵。

要排出这样巧妙的数阵图,可不是⼀件容易的事情。

我们还是先从如何来填好数阵图开始。

如何填好数阵图?数阵图问题千变万化,这⼀类问题要求数阵中填⼊了⼀些数以后,能保证数阵中特定关系线(或关系区域)上的数的和相等,解决这⼀类问题可以按以下步骤解决问题:第⼀步:区分数阵图中的普通点(或⽅格),和交叉点(⽅格)第⼆步:在数阵图的少数关键点(⼀般是交叉点)上设置未知数,计算各个点与该点被重复计算次数之积的和的代数式,即数阵图关系线(关系区域)上和的总和,这个和是关系线(关系区域)的个数的整数倍.第三步:判断少数关键点上可以填⼊的数的余数性质,并得出相应的数阵图关系线(关系区域)和.第四步:运⽤已经得到的信息进⾏尝试:数阵图还有⼀类题型⽐较少见,解决这⼀类问题需要理清数阵中数与数之间的相关关系,找出问题关键.【授课批注】数阵图问题千变万化,⼀般没有特定的解法,往往需要综合运⽤掌握的各种数学知识来解决问题. 本讲出了要讲授填数阵图的主要技巧,还有以下注意点:1.引导学⽣从整体到局部对问题进⾏观察和判断;2.教授巧妙利⽤容斥原理、余数的性质、整除性质的数学⽅法;3.锻炼学⽣利⽤已知信息枚举,尝试的能⼒;4.培养学⽣综合运⽤各种数学知识,分析问题,找问题关键,解决问题的能⼒.⼆、什么是幻⽅?同学们是否知道我国古代有关“洛书”的神话传说?传说在⼤禹治⽔的年代,陕西的洛⽔经常⼤肆泛滥,⽆论怎样祭祀河神都⽆济于事,每年⼈们摆好祭品之后,河中都会爬出⼀只⼤乌龟,乌龟壳有九⼤块,横着数是3⾏,竖着数是3列,每块乌龟壳上都有⼏个点点,正好凑成1⾄9的数字,可是谁也弄不清这些⼩点点是什么意思.⼀次,⼤乌龟⼜从河⾥爬上来,⼀个看热闹的⼩孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于⼗五!”于是⼈们赶紧把⼗五份祭品献给河神,说来也怪,河⽔果然从此不再泛滥了.这个神奇的图案叫做“幻⽅”,由于它有3⾏3列,所以叫做“三阶幻⽅”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻⽅.如下图:三、如何解决幻⽅问题?幻⽅是指横⾏、竖列、对⾓线上数的和都相等的数的⽅阵,具有这⼀性质的3×3的数阵称作三阶幻⽅,4×4的数阵称作四阶幻⽅,5×5的称作五阶幻⽅……如图为三阶幻⽅、四阶幻⽅的标准式样,三阶幻⽅的中⼼位置上的数等于所有所填数的平均数,也等于横⾏、竖列、对⾓线上数和的三分之⼀.解决数表类问题中,⾸先要找出数填写的规律,再从规律中找到数表的数量关系,从⽽找出解决问题的关键.知识梳理987653421987654321(⼀)封闭型数阵问题(⼆)辐射型数阵(三)其它类型的数阵图(四)幻⽅例题精讲【试题来源】【题⽬】将1~6填⼊左下图的六个○中,使三⾓形每条边上的三个数之和都等于k,请指出k的取值范围.k=9 k=10 k=11 k=12【题⽬】⼩猴聪聪有⼀天捡到像左下图的模具,它试着将1~10分别填⼊图中,使得每个⼩三⾓形3个顶点上的数字之和为图中所表⽰的数值,你能做到吗?【题⽬】图中的6条线分别连接着9个圆圈,其中⼀个圆圈⾥的数是6.请你选9个连续⾃然数(包括6在内)填⼈圆圈内,使每条线上各数的和都等于23.6543216543216543216543216【题⽬】⼩兔⼦在森林玩耍,遇到⼀个画着奇怪图形的树桩,上⾯写着:把10⾄20这11个数分别填⼊下图的各圆圈内,使每条线段上3个圆内所填数的和都相等.如果中⼼圆内填的数相等,那么就视为同⼀种填法,请写出所有可能的填法,⼩兔⼦发了愁,你能帮它吗?【题⽬】海豚是很聪明的动物,它能将1~9填⼊右下图的九个○内,并且使得每个圆周和每条直线上的三数之和都相等,并且7,8,9依次位于⼩、中、⼤圆周上,你能做到吗?【题⽬】在下图中的10个○内填⼊0~9这10个数字,使得循环式成⽴:【题⽬】请在图中的每个圆圈内填⼊不同的⾃然数,使得图中每个圆圈中所填的数都是上⼀⾏与它相邻的两个圆圈中所填数的和,最下⾯的数是20.+=====----20【题⽬】请你将2~10这九个⾃然数填⼊图中的空格内每⾏、每列、每条对⾓线上的三数之和相等.【题⽬】请你将1~25这⼆⼗五个⾃然数填⼊图中的空格内每⾏、每列、每条对⾓线上的五数之和相等.【题⽬】将九个数填⼊左下图的九个空格中,使得任⼀⾏、任⼀列以及两条对⾓线上的三个数之和都等于定数k,则中⼼⽅格中的数必为k÷3【题⽬】在下图的九个⽅格中填⼊不⼤于12且互不相同的九个⾃然数(其中已填好⼀个数),使得任⼀⾏、任⼀列及两条对⾓线上的三个数之和都等于21.【题⽬】将前9个⾃然数填⼊右图的9个⽅格中,使得任⼀⾏、任⼀列以及两条对⾓线上的三个数之和互不相同,并且相邻的两个⾃然数在图中的位置也相邻.【题⽬】将1、2、3、4、5、6、7、8、9这九个数字,分别填⼊3×3阵列中的九个⽅格,使第⼆⾏组成的三位数是第⼀⾏组成的三位数的2倍,第三⾏组成的三位数是第⼀⾏组成的三位数的3倍.【题⽬】在⼀个3×3的⽹格中填⼊9个数使得每⼀横⾏、竖⾏、对⾓线上三个数的乘积相等.习题演练【题⽬】将1~7这七个数分别填⼊图中的○⾥,使每条直线上的三个数之和都等于12。

小学四年级专项思维训练(幻方与数阵图)【附参考答案】

小学四年级专项思维训练(幻方与数阵图)【附参考答案】

幻方与数阵图1.在幻方中.每行、每列和每条对角线上的数的和都相同,那么在下图所示的未完成的幻方中该是____。

2.幻方是将n2个数(不重复)排列成纵、横各有n个数的方阵,使其每行、每列和两条对角线上n个数相加的和都相等.请问下图3×3的幻方中丁是多少?3.在下图所示的O内填入不同的数,使得三条边上的三个数的和都是12.若A、B、C的和为18,则三个顶点上的三个数的和是________。

4.下图3×3正方形的每个方格内的字母都代表一个数,已知其每行,每列以及两条对角线上三个数之和都相等,若“a=4,d=19,l=22,那么6=_______,h=______。

5.在图1、图2的空格中分别填人适当的数,使得横、竖及对角线上的三个数之和都相等,那么“?”处的数字分别为多少?.6.在下图中每个小方格中填人一个数,使每一行每一列都有1、2、3、4、5,那么,右上角小方格内填人的数字,应该是________。

7.下图是一个3×3幻方,满足每行、每列及两条对角线上三数之和都相等,那么其中“★代表的数是__________。

8.下边的一排方格中,除9、8外,每个方格中的汉字都表示一个数(不同的汉字可表示相同的数),已知其中任意3个连续方格巾的数加起来都为22,则“走”+“进”+“数”+“学”+“花”+“园”=__________。

9.所谓“三阶乘法幻方”是指在3×3的方格中填入9个不等于0的整数,使得每行、每列及每条对角线上的三个数之积都相等,请将下图的“乘法幻方”补充完整,则其中的“”所代表的数是___________。

10.将1至8这八个自然数分别填入下图中的正方体的八个顶点处的o内,并使每个面上的四个O内的数字之和都相等,求与填人数字1的O有线段相连的三个O内的数的和的最大值.11.将从8开始的11个连续自然数填入下图中的圆圈内,要使每边上的三个数之和都相等,中间数共有__________种填法.12.将1--12这十二个自然数分别填人下图的12个圆圈内,使得每条直线上的四个数之和都相等,这个相等的和为___________。

小学四年级逻辑思维学习—数阵图与幻方

小学四年级逻辑思维学习—数阵图与幻方

小学四年级逻辑思维学习—数阵图与幻方”知识定位一、什么是数阵图?在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。

它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。

那么,到底什么是数阵呢?我们先观察上面两个图:右图(1)中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。

右图(2)就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。

上面两个图就是数阵图。

准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。

要排出这样巧妙的数阵图,可不是一件容易的事情。

我们还是先从如何来填好数阵图开始。

如何填好数阵图?数阵图问题千变万化,这一类问题要求数阵中填入了一些数以后,能保证数阵中特定关系线(或关系区域)上的数的和相等,解决这一类问题可以按以下步骤解决问题:第一步:区分数阵图中的普通点(或方格),和交叉点(方格)第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算各个点与该点被重复计算次数之积的和的代数式,即数阵图关系线(关系区域)上和的总和,这个和是关系线(关系区域)的个数的整数倍.第三步:判断少数关键点上可以填入的数的余数性质,并得出相应的数阵图关系线(关系区域)和.第四步:运用已经得到的信息进行尝试:数阵图还有一类题型比较少见,解决这一类问题需要理清数阵中数与数之间的相关关系,找出问题关键.【授课批注】数阵图问题千变万化,一般没有特定的解法,往往需要综合运用掌握的各种数学知识来解决问题. 本讲出了要讲授填数阵图的主要技巧,还有以下注意点:1.引导学生从整体到局部对问题进行观察和判断;2.教授巧妙利用容斥原理、余数的性质、整除性质的数学方法;3.锻炼学生利用已知信息枚举,尝试的能力;4.培养学生综合运用各种数学知识,分析问题,找问题关键,解决问题的能力.二、什么是幻方?同学们是否知道我国古代有关“洛书”的神话传说?传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:三、如何解决幻方问题?幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的3×3的数阵称作三阶幻方,4×4的数阵称作四阶幻方,5×5的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,三阶幻方的中心位置上的数等于所有所填数的平均数,也等于横行、竖列、对角线上数和的三分之一.解决数表类问题中,首先要找出数填写的规律,再从规律中找到数表的数量关系,从而找出解决问题的关键.知识梳理987653421987654321(一)封闭型数阵问题(二)辐射型数阵(三)其它类型的数阵图(四)幻方例题精讲【试题来源】【题目】将1~6填入左下图的六个○中,使三角形每条边上的三个数之和都等于k,请指出k的取值范围.k=9 k=10 k=11 k=12【题目】小猴聪聪有一天捡到像左下图的模具,它试着将1~10分别填入图中,使得每个小三角形3个顶点上的数字之和为图中所表示的数值,你能做到吗?【题目】图中的6条线分别连接着9个圆圈,其中一个圆圈里的数是6.请你选9个连续自然数(包括6在内)填人圆圈内,使每条线上各数的和都等于23.6543216543216543216543216【题目】小兔子在森林玩耍,遇到一个画着奇怪图形的树桩,上面写着:把10至20这11个数分别填入下图的各圆圈内,使每条线段上3个圆内所填数的和都相等.如果中心圆内填的数相等,那么就视为同一种填法,请写出所有可能的填法,小兔子发了愁,你能帮它吗?【题目】海豚是很聪明的动物,它能将1~9填入右下图的九个○内,并且使得每个圆周和每条直线上的三数之和都相等,并且7,8,9依次位于小、中、大圆周上,你能做到吗?【题目】在下图中的10个○内填入0~9这10个数字,使得循环式成立:【题目】请在图中的每个圆圈内填入不同的自然数,使得图中每个圆圈中所填的数都是上一行与它相邻的两个圆圈中所填数的和,最下面的数是20.+=====----20【题目】请你将2~10这九个自然数填入图中的空格内每行、每列、每条对角线上的三数之和相等.【题目】请你将1~25这二十五个自然数填入图中的空格内每行、每列、每条对角线上的五数之和相等.【题目】将九个数填入左下图的九个空格中,使得任一行、任一列以及两条对角线上的三个数之和都等于定数k,则中心方格中的数必为k÷3【题目】在下图的九个方格中填入不大于12且互不相同的九个自然数(其中已填好一个数),使得任一行、任一列及两条对角线上的三个数之和都等于21.【题目】将前9个自然数填入右图的9个方格中,使得任一行、任一列以及两条对角线上的三个数之和互不相同,并且相邻的两个自然数在图中的位置也相邻.【题目】将1、2、3、4、5、6、7、8、9这九个数字,分别填入3×3阵列中的九个方格,使第二行组成的三位数是第一行组成的三位数的2倍,第三行组成的三位数是第一行组成的三位数的3倍.【题目】在一个3×3的网格中填入9个数使得每一横行、竖行、对角线上三个数的乘积相等.习题演练【题目】将1~7这七个数分别填入图中的○里,使每条直线上的三个数之和都等于12。

四年级奥数:数阵图

四年级奥数:数阵图

四年级奥数:数阵图(一)我们在三年级已经学习过辐射型和封闭型数阵,其解题的关键在于“重叠数”。

本讲和下一讲,我们学习三阶方阵,就是将九个数按照某种要求排列成三行三列的数阵图,解题的关键仍然是“重叠数”。

我们先从一道典型的例题开始。

例1把1~9这九个数字填写在右图正方形的九个方格中,使得每一横行、每一竖列和每条对角线上的三个数之和都相等。

分析与解:我们首先要弄清每行、每列以及每条对角线上三个数字之和是几。

我们可以这样去想:因为1~9这九个数字之和是45,正好是三个横行数字之和,所以每一横行的数字之和等于45÷3=15。

也就是说,每一横行、每一竖列以及每条对角线上三个数字之和都等于15。

在1~9这九个数字中,三个不同的数相加等于15的有:9+5+1,9+4+2,8+6+1,8+5+2,8+4+3,7+6+2,7+5+3,6+5+4。

因此每行、每列以及每条对角线上的三个数字可以是其中任一个算式中的三个数字。

因为中心方格中的数既在一个横行中,又在一个竖列中,还在两对角线上,所以它应同时出现在上述的四个算式中,只有5符合条件,因此应将5填在中心方格中。

同理,四个角上的数既在一个横行中,又在一个竖列中,还在一条对角线上,所以它应同时出现在上述的三个算式中,符合条件的有2,4,6,8,因此应将2,4,6,8填在四个角的方格中,同时应保证对角线两数的和相等。

经试验,有下面八种不同填法:上面的八个图,都可以通过一个图的旋转和翻转得到。

例如,第一行的后三个图,依次由第一个图顺时针旋转90°,180°,270°得到。

又如,第二行的各图,都是由它上面的图沿竖轴翻转得到。

所以,这八个图本质上是相同的,可以看作是一种填法。

例1中的数阵图,我国古代称为“纵横图”、“九宫算”。

一般地,将九个不同的数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列和每条对角线上的三个数之和都相等,那么这样的图称为三阶幻方。

小学思维数学讲义:数阵图(一)-含答案解析

小学思维数学讲义:数阵图(一)-含答案解析

数阵图(一)1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.模块一、封闭型数阵图【例 1】 把1~8的数填到下图中,使每个四边形中顶点的数字和相等。

【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】学而思杯,3年级,第6题 【解析】87654321【答案】例题精讲知识点拨教学目标87654321【例 2】 将1~8这八个自然数分别填入下图中的八个○内,使四边形每条边上的三个数之和都等于14,且数字1出现在四边形的一个顶点上.应如何填?(1)【考点】封闭型数阵图 【难度】2星 【题型】填空 【解析】 为了叙述方便,先在各圆圈内填上字母,如下图(2).由条件得出以下四个算式:(2)h gf ed c baa+b+c=14(1)c+d+e=14 (2) e+f+g=14 (3)a+h+g=14 (4)由(1)+(3),得:a+b+c+e+f+g=28,(a+b+c+d+e+f+g+h )-(d+h )=28,d+h=(1+2+3+4+5+6+7+8)-28=8,由(2)+(4),同样可得b+f=8, 又1,2,3,4,5,6,7,8中有1+7=2+6=3+5=8.又1要出现在顶点上,d+h 与b+f 只能有2+6和3+5两种填法. 又由对称性,不妨设b=2,f=6,d=3,h=5. a ,c ,e ,g 可取到1,4,7,8若a=1,则c=14-(1+2)=11,不在1,4,7,8中,不行.若c=1,则a=14-(1+2)=11,不行. 若e=1,则c=14-(1+3)=10,不行. 若g=1,则a=8,c=4,e=7.说明:例题为封闭型数阵,由它的分析思考过程可以看出,确定各边顶点所应填的数为封闭型数阵的解题突破口.【答案】【例 3】 在如图6所示的○内填入不同的数,使得三条边上的三个数的和都是12,若A 、B 、C 的和为18,则三个顶点上的三个数的和是 。

四年级奥数讲义:有趣的数阵图(一)

四年级奥数讲义:有趣的数阵图(一)

四年级奥数讲义:有趣的数阵图(一)大家都知道了历史悠久的三阶幻方.再推广一些,结合某些几何图形,把一些数字填入图形的某种位置上,并使数字满足一定的约束条件,这类问题,习惯上称为“数阵图”.幻方是特殊的数阵图,幻方发展较快,因为它后来与试验方案设计及一些高深数学分支有关,成为数阵图中最重要课题.本讲主要介绍一般数阵图及解此类题的推理思考方法,由于它既有数字之间运算,又要结合图形,对开发学生综合思考和形象思维很有益.先看例题.例 1 下面图形包括六个加法算式,要在圆圈里填上不同的自然数,使六个算式都成立,那么最右边圆圈中的数最少是几?分析为便于说理,各圆圈内欲填的数依次用字母A、B、C、D、E、F、G、H、I代替(上右图).经观察,I=A+B+C+D.题目要I尽可能小,最极端的想法,希望A、B、C、D只占用1、2、3、4.但这会产生矛盾.因为1总要和2、3、4中的某两个实施加法,但1+2给予G、H、E、F中某值为3与A、B、C、D中已有的3冲突;同样1+3给于G、H、E、F中某值为4又与A、B、C、D中已有的4冲突;所以A、B、C、D不能是1、2、3、4.那么退而求之,不妨先设A=1.如先考虑B,B尽可能小,最好,B=2,从而决定了E=3,C≠3,D≠3.这样一来,C,D只能取4和5.但如C=4导致G=5和D=5冲突,而C=5,D=4,又导致G=A+C=6和H=B+D=2+4=6冲突.在碰了钉子后,回看在A=1设定后,不应随随便便先填B的值.从结构上看,因为B,C地位对称,不妨先考虑D.D尽可能小,最好设D=2,B、C至少取3、5,若如此,由B+D或C+D产生的5会与B、C中已有的5矛盾.所以,B、C可能取3、6.从而形成了:A=1、D=2、B、C取3、6(B,C地位对称).这样一来其他字母所代表的值就立即推出,不妨设B=3,C=6,A+B=E=4,C+D=6+2=8=F;A+C=1+6=7=G,B+D=3+2=5=H,恰好满足E+F=4+8=12=I;G+H=7+5=12=I;综上所述:A=1,D=2,B=3,C=6决定了其他值,且决定了I=12.是一个较小的I的值,自然要问I 值还可能比12小吗?分析I的值有三种不同的获得方式:I=A+B+C+D=E+F=G+H.3I=A+B+C+D+E+F+G+H,而8个字母最少是代表1、2、…、7、8的情况.3I≥(1+2+…+7+8)=36,I≥12.现已推出了使I=12的一种填法,所以是最佳方案了.例2 如右图,五圆相连,每个位置的数字都是按一定规律填写的,请找出规律,并求出x所代表的数.分析经观察,图中所填数的规律为两个圆相交部分的数等于与它相邻两部分里的数的和的一半.比如:(26+18)÷2=22.(30+26)÷2=28.(24+30)÷2=27.解: x+18=17×2x=16.经检验,16和24相加除以2,也恰好等于20.例3 在下图中的各题中,将从1开始的连续自然数填入各题的圆圈中,要使每边上的数字之和都相等,中心处各有几种填法?(每小题请给出一个解)分析1 图(A)中的中心圆填入的数设为x,x参与3条线的连加,设每条线数字和都为S.由题意:1+2+3+…+7+2x=3S即28+2x=3S或28+2x≡0(mod 3)借用同余工具,是在两个未知数的不定方程中先缩小x应该取值的范围.在mod3情况下,只要试探x≡0,1,2三个值,很轻松地解出:x≡1(mod3),回复到x取值范围为1,2,…,7.有x1=1,x2=4,x3=7,得到:x1=1,S1=10;x2=4,S2=12;x3=7,S3=14;由此看出关键在求S(公共和)及x(参与相加次数最多的圆中值).此方法对下面解(B)、(C)、(D).都适用.注意:每条线上的数字之和随着中心数的变化而变化.分析2 我们分析图(B),首先应该考虑中心数,(B)题共10个数,由于中心数比其他数多使用了二次(总共使用三次).如果中心数用x表示,三条边的数码总和应为:1+2+3+4+5+6+7+8+9+10+2x=55+2x同理,因为是3条边,所以55+2x应是3的倍数55+2x≡0(mod 3),把x≡0、1、2代入试验,得x≡1(mod 3),即x=1、4、7、10.四种解.①当x=1时,55+2x=57,57÷3=19②当x=4时,55+2x=63,63÷3=21③当x=7时,55+2x=69,69÷3=23④当x=10时,55+2x=75,75÷3=25读者可按照上面相似的规律自己去分析一下图中(C)、(D)两题.解:(A)图:中心数可以为1、4、7,有三种填法,请读者补充其他两种解法.(B)图:中心数可以为1、4、7、10.有四种填法,请你补充其他三种填法.(C)图:中心数可以为1、5、9.有三种填法,请你补充其他两种填法.(D)图:中心数可以为1、6、11.有3种填法,请你补充其他两种填法.例 4 在下左图的七个圆圈内各填上一个数,要求每条线上的三个数中,当中的数是两边两个数的平均数,现在已填好两个数,求x是多少?分析为了便于说明问题,我们用字母表示各个圆圈内所表示的数,如上右图所示:根据题意,我们观察:因为每一条直线上的三个数中,当中的数是两边的两个数的平均数.所以可以得出:D=(13+17)÷2=15.还可以得出以下三式:C=(B+15)÷2 (1)A=(13+B)÷2 (2)C=(A+17)÷2 (3)将上述三个算式进行变形,成下面三个算式:2C=B+15 (4)2A=13+B (5)2C=A+17 (6)用(4)式减去(5)式得出:2C-2A=2C-A=1C=A+1将C=A+1代入(6)式得到:2(A+1)=A+17,A=15.x=19.即:解:(略)例5 如下左图有5个圆,它们相交后相互分成几个区域,现在两个区域里已分别填上数字10、6,请在另外七个区域里分别填进2、3、4、5、6、7、9七个数字,使每个圈内的数的和都是15.分析为了便于说明,我们用字母表示其他的7个区域.如上右图.根据题意可以得出:A=5、G=9,九个区域中数的总和为:(2+3+4+5+6+7+9)+10+6=52,而每个圆圈内数的和是15,五个圆圈内数的总和为:15×5=75,又75-52=23,由此得出重叠的部分的四个数A、C、E、G的和是23.由于A=5和G=9已经填好,因此,余下的两个部分C+E的和是:23-5-9=9,此时9只有两种分解的可能:2+7=9、3+6=9.在E、F、G这个圆圈内,∵G=9,∴E不能填6、7.也不能填3(否则F也等于3),只能填2,这样,E=2,C=7.解:例6 如下左图所示4个小三角形的顶点处共有6个圆圈.如果在这些圆圈中分别填上6个质数,它们的和是20,而且每个小三角形三顶点上的数之和相等,问这6个质数的积是多少?分析为了叙述方便,我们用字母表示图中圆圈里的数.如上右图所示.通过观察,我们不难发现,小三角形A1B2C2和小三角形A2B2C2有两个共同的顶点B2,C2,而这两个小三角形顶点上数字的和相等.因此A1=A2.同理有B1=B2,C1=C2,所以,此图只能填A、B、C三个质数(两个A、两个B、两个C.以下:A1=A2记为A,B1=B2记为B,C1=C2记为C)∵6个圆圈中的6个质数之和为20,即:2×(A+B+C)=20A+B+C=10.∴10分成三个质数之和只能是10=2+3+5.这样,A、B、C分别是2、3、5.这时所填6个数的积是:2×2×3×3×5×5=900.解:例7 能否将自然数1~10填入五角星各交点的“○”内使每条直线上的4个数字之和都相等?分析与解答不能,用反证法.假设可以填成数阵图,观察发现:十个点中的每一个点恰好是两条直线的公共点.因而全部直线(共5条)上数字总和,应该等于全部点上数字总和的2倍.记每条直线上数字和为S,则有5S=(1+2+3+…+10)×2,从而解出S=22.10和1必同在某一直线上.不然,如含有10的两条直线都不含有1,这样,这两条线上8个数字(10自然被计上两次)之和(本应为2S)大于等于2×10+2+3+4+5+6+7=47>44=2S.形成矛盾.所以10、1必处同一直线.此外,有三个数字与10不同线,不妨记为x、y、z.显然x+y+z={10数总和}-{其余七个数和}而这{其余七个数和}恰好为2S-10.所以x+y+z=55-2×22+10=21.已推出10,1共线.进一步看出,1无论在什么位置都与x、y、z三数中的两个共线.设1与x、y共线,此线上另一数设为v.则有1+x+y+v=22,从而x+y+v=21.前已证x+y+z=21,因而导致v=z的矛盾.其他情况推证类似,所以没有题设的填法.习题九1.将1~9这九个数字分别填入右图中的九个圆圈中,使各条边上的四个圆圈内的数的和相等.2.将0.01、0.02、…、0.09这九个数分别填入右图九个圆圈内,使每条边上的四个圆圈内的数之和都等于0.2.(此题与题1共用一图)3.在右图的空白的区域内分别填上1、2、4、6四个数,使每个圆中的四个数的和都是15.。

四年级数学思维能力拓展专题突破系列(二十)数阵图

四年级数学思维能力拓展专题突破系列(二十)数阵图

四年级数学思维能力拓展专题突破系列(二十)数阵图------数阵图基础(1)温馨提示:该文档包含本课程的讲义和课后测试题,课后测试题即每一部分内容对应的“课后练习”。

1、掌握什么是数阵图2、会灵活应用多种方法求数阵图1、掌握数阵图的概念。

2、灵活应用数阵图的求解方法。

例题1:把1~5这五个数分别填在右图中的方格中,使得横行三数之和与竖列三数之和都等于9?例题2:将1~7这七个自然数填入右图的七个○内,使得每条线上的三个数之和都等于10。

例题3:将 10~20填入右图的○内,其中15已填好,使得每条边上的三个数字之和都相等。

例题4:下把1~5这五个数填入下图中的○里,使每条直线上的三个数之和相等。

(即是该课程的课后测试)练习1:如图,将1~7这七个数分别填入图中的○里,使每条直线上的三个数之和都等于12或10。

练习2:如图将1~9这九个数分别填入图中的○里(其中9已填好),使每条直线上的三个数之和都相等。

练习3:如图,将1~9这九个数分别填入图中的小方格里,使横行和竖列上五个数之和相等。

(至少找出两种本质上不同的填法)练习4:如图,将3~9这七个数分别填入图的○里,使每条直线上的三个数之和等于20。

练习5:如图,将1~11这十一个数分别填入图的○里,使每条直线上的三个数之和相等,并且尽可能大。

练习1:解析:练习2:解析:练习3:解析:练习4:解析:练习5:解析:中心数是重叠数,并且重叠4次。

所以每条直线上的三数之和等于[(1+2+…+11)+重叠数×4]÷5=(66+重叠数×4)÷5。

为使上式能整除,重叠数只能是1,6或11。

显然,重叠数越大,每条直线上的三数之和越大。

所以重叠数是11,每条直线上的三数之和是22。

四年级数学思维能力拓展专题突破系列(二十)数阵图------数阵图基础(2)1、掌握什么是数阵图2、会灵活应用多种方法求数阵图1、掌握幻方的概念。

四年级高思奥数之幻方与数阵图扩展含答案

四年级高思奥数之幻方与数阵图扩展含答案

第20 讲幻方与数阵图扩展内容概述掌握幻方的概念,了解三、四阶幻方的构造方法;解决具有与幻方类似性质的数阵图问题;进一步学习重数分析的方法;通过计算重数来处理数阵图中的最大最小问题.典型问题兴趣篇1. 把1,2,⋯,9填人图20-1 中9个空白圆圈内,使得三个圆周及三条线段上3个数之和都相等.2. (1)如图20-2,在3×3 的方格表的每个方格中填入恰当的数,使得每行、每列、每条对角线上所填数之和都相等.(2)如图20-3,在4×4 的方格表的每个方格中填人恰当的数,使得每行、每列、每条对角线上所填数之和都相等.3.在图20-4所示的3×4 方格表的每个方格中填人恰当的数后,可以使各行所填的数之和相等,各列所填的数之和也相等.现在一些数已经填出,标有符号是多少?4.如图20-5,请在空格中填人适当的数,组成一个三阶幻方.5.请将图20-6 所示的5×5 方格表补充完整,使得每个方格内都有一个数字,并且具有如下的性质:方格表中每行,每列和每条对角线的5个方格内所填的5 个数中,l、2、3、4、5 恰好各出现一次.请问:标有符号“△”,“▽”和“○”的方格中所填的数分别是6.请将 1 至 9 这 9 个数填入图 20-7 中的方框内,使得所有不等号都成立.所有满足要求的 填法共有多少种 ?7.请在图 20-8 所示的 8 个小圆圈内,分别填入 1 至 8这 8 个数字,使得图中用线段连接的两个小圆圈内所填的数的差 (大减小 )恰好是 1、2、3、4、5、 6、7.8.将 1至 5这 5个数字填入图 20-9中的小圆圈内,使得横线、竖线、大圆周上所填数之和 都相等.9.请在图 20-10 中的六块区域内填人 相邻的区域内的数之和都相等.10.将 0至9填入图 20-11的10块区域中 (阴影区域除外 ),使得每个圆内的三个数之和都是1、2、3、4、5、6,使得对每一个小圆圈来说,与它相等的.请问:这个和最小是多少 ?最大是多少 ?拓展篇1.将1,2,3,⋯,24,25 分别填入图20-12 的各个方格中,使得每行、每列及两的数是多少2.请在图 20-13 的每个空格内填人一个合适的数,使得每行、每列及两条对角线上的3. (1)在图 20-14 的每个空格内填入一个数,使得每行、每列及两条对角线上的 的各数之和都等于 19. 95.那么,标有“ t ”的方格内所填的数是多少 ?4. 如图 20-16 ,大正方形的 4 个角上已填人 4 个数, 4 个数之和是 264.奇妙的是 , 把这个 图倒过来看,大正方形 4 个角上的数之和仍然是 264.请你在中间的小正方形的 4 个角的圆 圈里,填人另外 4个数,使得每条对角线上的 4 个数正看和倒看时,其和都是 正方形角上的 4 个数正看和倒看时,其和也都是 264.6.请将 1至 10填入图 20-18 中的 10个圆圈中 (9已经填好 ) 的数都等于与它相连的上方两个圆圈内的两数之差.7.在图 20-19 的 7 个圆圈内各填一个数,要求对于每一条直线上的 边两个数的平均数.现在已经填好了两个数,请把剩下的圆圈填好.(2)请在图 20-15 的每个空格内填人一个合适的数,使得每行、每列及两条对角线上的 个方格中的各数之和都相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四年级数学思维能力拓展专题突破系列(二十)数阵图------数阵图基础(1)1、掌握什么是数阵图2、会灵活应用多种方法求数阵图1、掌握数阵图的概念。

2、灵活应用数阵图的求解方法。

例题1:把1~5这五个数分别填在右图中的方格中,使得横行三数之和与竖列三数之和都等于9?例题2:将1~7这七个自然数填入右图的七个○内,使得每条线上的三个数之和都等于10。

例题3:将 10~20填入右图的○内,其中15已填好,使得每条边上的三个数字之和都相等。

例题4:下把1~5这五个数填入下图中的○里,使每条直线上的三个数之和相等。

(即是该课程的课后测试)练习1:如图,将1~7这七个数分别填入图中的○里,使每条直线上的三个数之和都等于12或10。

练习2:如图将1~9这九个数分别填入图中的○里(其中9已填好),使每条直线上的三个数之和都相等。

练习3:如图,将1~9这九个数分别填入图中的小方格里,使横行和竖列上五个数之和相等。

(至少找出两种本质上不同的填法)练习4:如图,将3~9这七个数分别填入图的○里,使每条直线上的三个数之和等于20。

练习5:如图,将1~11这十一个数分别填入图的○里,使每条直线上的三个数之和相等,并且尽可能大。

练习1:解析:练习2:解析:练习3:解析:练习4:解析:练习5:解析:中心数是重叠数,并且重叠4次。

所以每条直线上的三数之和等于[(1+2+…+11)+重叠数×4]÷5=(66+重叠数×4)÷5。

为使上式能整除,重叠数只能是1,6或11。

显然,重叠数越大,每条直线上的三数之和越大。

所以重叠数是11,每条直线上的三数之和是22。

四年级数学思维能力拓展专题突破系列(二十)数阵图------数阵图基础(2)1、掌握什么是数阵图2、会灵活应用多种方法求数阵图1、掌握幻方的概念。

2、求解幻方的方法。

例题1:请你将1~9这九个自然数填入图中的空格内每行、每列、每条对角线上的三数之和相等。

例题2:用11,13,15,17,19,21,23,25,27编制成一个三阶幻方。

例题3:在下图中的A、B、C、D处填上适当的数,使下图成为一个三阶幻方。

例题4:在九宫图中,第一行第三列的位置上填5,第二行第一列位置上填6,如下图。

请你在其他方格中填上适当的数,使方阵横、纵、斜三个方向的三个数之和均为27 。

(即是该课程的课后测试)练习1:将九个连续自然数填入3行3列的九个空格中,使每一横行及每一竖列的三个数之和都等于60。

练习2:在下面两幅图的空格中填入不大于15且互不相同的自然数(其中已填好一个数),使每一横行、竖列和对角线上的三数之和都等于30。

练习3:已知如图是一个四阶幻方,那么标有*的方格中所填的数是多少?3811165*49712练习4:将5、7、9、17、19、21、29、31、33各九个数分别填入下面图中的方格内,使每行、每列和每条对角线上的和都相等。

练习5:下图是一个三阶幻方,请说明A+B=2×C 。

练习1:解析:在三阶幻方的基础上每个数增加15即可。

练习2:解析:首先找出中心数为10,然后设某一个空格数为x,根据横行、竖列、对角线的和都等于30,填上其余各数(含x)再由各数互不相同,且不大于15确定各数。

练习3:解析:对角线上的和为34,由此可以确定第四行第三列的数为2,右下角的数为13,于是便可以确定标有*的方格中所填的数为6。

练习4:解析:练习5:解析:只利用题目中的A、B、C三个位置上的数字是不可能做出来的,至少还要利用一个其它位置上的数字作为过渡,比如我们可以选择左上角的数字,并用x来表示它:现在考虑*处的数字。

如果我们只看上面第一行和右边第一列,可以知道*+C=B+x,也就是*=B+x-C;而如果我们只看中间第二行和左上到右下的对角线,可以知道x+C=A+*,也就是*=x。

四年级数学思维能力拓展专题突破系列(二十)数阵图------数阵图提高(1)1、掌握什么是数阵图2、会灵活应用多种方法求数阵图1、掌握数阵图的求解方法。

2、注意一题多解的特点。

例题1:将1~6这六个自然数分别填入下图的六个○内,使得三角形每条边上的三个数之和都等于11 。

例题2:把1~6这六个数填入右图的○里,使每个圆圈上的四个数之和都相等。

例题3:将2~9这八个数分别填入右图的○里,使每条边上的三个数之和都等于18 。

例题4:将1~7这七个数分别填入下图的○里,使得每条直线上三个数之和与每个圆圈上的三个数之和都相等。

(即是该课程的课后测试)练习1:将1~9这九个数字分别填入下的圈中使横竖两条线上的和相等。

练习2:将1~6分别填入下式的六个圈内,使三条线上的数字和相等:练习3:能否将1至6填入下列圈中,使得两条线上的数字和都相等?练习4:20以内共有10个奇数,去掉9和15还剩下八个奇数,将这八个奇数填入下图的八个圈中,有一个已经填好。

使得图中用线连接起来的四个数之和都相等。

练习5:下面圈中每三个相邻数之和为21,那么A代表的数字是多少:练习1:解析:答案不唯一。

练习2:解析:如下图:练习3:解析:不可能,因为1到6所有数字和为21,两个竖线的和为21,但是21不是偶数,不能平分。

所以不可能。

练习4:解析:如下图:练习5:解析:因为相邻三个数的和相等,所以隔两个位置的数是相等的。

所以6左边的数字为5,又因为和为21,那么右边的数字A为10。

四年级数学思维能力拓展专题突破系列(二十)数阵图------数阵图提高(2)1、掌握什么是数阵图2、会灵活应用多种方法求数阵图掌握特幻方的求解方法。

例题1:如图所示,在3×3方格表内已填好了两个数19和95,在其余的空格中填上适当的数,可以使得每行、每列以及两条对角线上的三个数之和都相等。

(1)求x;(2)如果中间的空格内填入100,试在上一小(1)题的基础上,完成填图。

例题2:如图,有一个11位数,它的每3个相邻数字之和都是20。

问标有*的那个数位上的数字应是几?例题3:在图中所示的方格表的每个方格内填入一个恰当的字母,可以使得每行、每列及两条对角线上4个方格中的字母都是A,B,C,D,那么,表中标有★的方格内应填的字母是什么?并完成这个数表。

(即是该课程的课后测试)练习1:如下图,在方格中填入一些数以后使得无论横行、竖行相邻三个数的和都为20,那么“*”所代表的数是多少?练习2:在下图的每个方格中填入一个数字,使得每行、每列以及每条对角线上的方格中的四个数字都是1,2,3,4。

练习3:请完成下面的三阶幻方:练习4:在下图中九个方格中填入不大于12且互不相同的9个数,使得每一行、每一列、及两条对角线上的数字和为21,其中有一个位置已经填好。

练习5:在一个3×3的网格中填入9个数使得每一横行、竖列、对角线上三个数的乘积相等。

练习1:解析:设左上角方格中的数为x,由相邻三个数的和为20,可知横行、竖行都以3为循环,那么右上角的数为14-x,左下角方格中的数为12-x,由此还能求到右下角的数为6+x,“*”所代表的数为20-(14-x)-(6+x)=0。

练习2:解析:如中间图所示,受列及对角线的限制,a处只能填1,从而b处填3;进而推知c 处填4,d处填3,e处填4,……右上图为填好后的数阵图。

练习3:解析:根据比较法,A=19+29-17=31; C=(19+31) ÷2=25,“幻和”=25×3=75。

下面也就只要根据幻方的概念填就可以了。

答案如下:练习4:解析: 答案不唯一。

练习5:解析:先填出一个普通幻方,任意取一个自然数n ,然后将幻方中的数改成以n 为底,原来的数为指数的形式即可,取n=2,如果取2,则九个数字为:2、4、8、16、64、128、256、512,如图:563987421512256128641684232四年级数学思维能力拓展专题突破系列(二十)数阵图------数阵图综合巩固1、掌握什么是数阵图2、会灵活应用多种方法求数阵图1、掌握数阵图的求解方法(1)关键位置(2)用字母表示相等的和(3)口诀(4)幻和的利用(5)尝试例题1:把2,3,4,5,6,7,9这七个数填入奥运五环剩下的空白处,使每个环里的数的和为15。

例题2:把下面的数分别填入下图的圈中,使得每种颜色线上的四个数之和相等。

2 3 5 7 11 13 17 19例题3:用1,3,5,7,9,11,13,15,17编制成一个三阶幻方。

例题4:如图是一个三阶幻方,那么标有*的方格中所填的数是多少?(即是该课程的课后测试)练习1:把1~12这十二个数,填入下图中的12个○内,使每条线段上四个数的和相等,两个同心圆上的数的和也相等。

练习2:将1~8填入下图中的○内,要求按照自然数顺序相邻的两个数不能填入有直线段连接的相邻的两个○内。

练习3:将1~12这十二个数分别填入图中的十二个小圆圈里,使每条直线上的四个小圆圈中的数字之和26。

练习4:将1~8分别填入八个圈内,使小正方形四顶点数之和等于大正方形四顶点数之和。

练习5:将1至11各数分别填入下图的空格内,使相邻的两个或三个方格内的数的和都等于14或15。

练习1:分析:练习2:分析:因为中间两个○分别只与一个○不相邻,只能填1和8,其余数的填法见图。

练习3:分析:练习4:分析:如下图:练习5:分析:。

相关文档
最新文档