条件概率定义
条件概率定义

条件概率定义
unit3
条件概率是指已知一个事件发生的条件下,另一个事件发生的概率。
它的计算方法是
根据相关试验的结果统计出发生概率最大的事件作为单一结论。
具体来说,条件概率就是
指已知某一事件A发生的前提下,另一事件B发生的概率。
其计算公式是:
P(B|A)=P(A∩B)/P(A)。
条件概率可以用于各种事件的测定,如自然现象的研究、药物的效果、社会现象的分
析等。
它的应用可以在改善食品质量,改善治疗药物的疗效,提高社会安全性等方面得到
雄厚的贡献。
例如,人们可以分析一次精神分裂所犯罪行的发生概率,以及和某种心理障
碍有关的犯罪行为出现的概率等。
此外,条件概率还可以应用于提高决策效果,它来源于统计学相关概念,可以通过对
不确定事件发生概率进行统计,确定最佳的选择。
例如,假如我们可以采取的决策中,以
犯罪为条件考虑,那么我们就可以通过分析犯罪发生的概率,判断最佳方案,从而提高决
策效率。
条件概率也广泛用于财务分析中,它可以帮助金融机构分析财务风险,提高风险评估
的准确度,预测企业的盈利能力,以及确定它们的行为是否正确、合理以及可行等。
此外,条件概率还可以用于企业的投资决策。
通过它,可以根据过去的不同时期的资产表现,对
未来的投资进行估值,并有效限制投资风险,实现长期的财务收益。
条件概率公式

条件概率(conditional probability)就是事件A在另外一个事件B已经发生条件下的发生概率。
条件概率表示为P(A|B),读作“在B条件下A的概率”。
联合概率表示两个事件共同发生的概率。
A与B的联合概率表示为或者或者。
边缘概率是某个事件发生的概率。
边缘概率是这样得到的:在联合概率中,把最终结果中不需要的那些事件合并成其事件的全概率而消失(对离散随机变量用求和得全概率,对连续随机变量用积分得全概率)。
这称为边缘化(marginalization)。
A的边缘概率表示为P(A),B的边缘概率表示为P(B)。
需要注意的是,在这些定义中A与B之间不一定有因果或者时间序列关系。
A可能会先于B发生,也可能相反,也可能二者同时发生。
A可能会导致B的发生,也可能相反,也可能二者之间根本就没有因果关系。
例如考虑一些可能是新的信息的概率条件性可以通过贝叶斯定理实现。
换句话说,如果A与B是相互独立的,那么A在B这个前提下的条件概率就是A自身的概率;同样,B在A的前提下的条件概率就是B自身的概率。
考虑概率空间Ω(S, σ(S)),其中σ(S)是集S上的σ代数,Ω上对应于随机变量X的概率测度(可以理解为概率分布)为PX;又A ∈σ(S),PX(A)≥0(这里可以理解为事件A,A不是零测集)。
则∀E∈σ(S),可以定义集函数PX|A如下:PX|A(E)=PX(A∩E)/PX(E)。
易知PX|A也是Ω上的概率测度,此测度称为X在A下的条件测度(条件概率分布)。
独立性:设A,B∈σ(S),称A,B在概率测度P下为相互独立的,若P(A∩E)=P(A)P(E)。
若想分辨某些个体是否有重大疾病,以便早期治疗,我们可能会对一大群人进行检验。
虽然其益处明显可见,但同时,检验行为有一个地方引起争议,就是有检出假阳性的结果的可能:若有个未得疾病的人,却在初检时被误检为得病,他可能会感到苦恼烦闷,一直持续到更详细的检测显示他并未得病为止。
条件概率公式

条件概率示例:就是事件A在另外一个事件B已经发生条件下的发生概率。
条件概率表示为P(A|B),读作“在B条件下A的概率”。
若只有两个事件A,B,那么,P(A|B) = P(AB)/P(B)。
条件概率示例:就是事件A在另外一个事件B已经发生条件下的发生概率。
条件概率表示为P(A|B),读作“在B条件下A的概率”。
联合概率:表示两个事件共同发生的概率。
A与B的联合概率表示为P(AB) 或者P(A,B),或者P(A∩B)。
边缘概率:是某个事件发生的概率,而与其它事件无关。
边缘概率是这样得到的:在联合概率中,把最终结果中不需要的那些事件合并成其事件的全概率而消失(对离散随机变量用求和得全概率,对连续随机变量用积分得全概率)。
这称为边缘化(marginalization)。
A的边缘概率表示为P(A),B的边缘概率表示为P(B)。
需要注意的是,在这些定义中A与B之间不一定有因果或者时间顺序关系。
A可能会先于B发生,也可能相反,也可能二者同时发生。
A可能会导致B的发生,也可能相反,也可能二者之间根本就没有因果关系。
条件概率公式例如考虑一些可能是新的信息的概率条件性可以通过贝叶斯定理实现。
定理1设A,B 是两个事件,且A不是不可能事件,则称为在事件A发生的条件下,事件B发生的条件概率。
一般地,,且它满足以下三条件:(1)非负性;(2)规范性;(3)可列可加性。
定理2设E 为随机试验,Ω为样本空间,A,B 为任意两个事件,设P(A)>0,称为在“事件A 发生”的条件下事件B 的条件概率。
上述乘法公式可推广到任意有穷多个事件时的情况。
设A1,A2,…An为任意n 个事件(n≥2)且P(A1A2…An-1)>0,则P(A1A2…An)=P(A1)P(A2|A1)…P(An|A1A2…An-1)定理3(全概率公式1)设B1,B2,…Bn是一组事件,若(1)BiBj≠j,i≠j,i,j=1,2,…,n;(2)B1∪B2∪…∪Bn=Ω则称B1,B2,…Bn样本空间Ω的一个部分,或称为样本空间Ω的一个完备事件组。
概率论与数理统计第一章第四节:条件概率

1. 条件概率的定义
在实际问题中, 除了要考虑某事件A的概率 P(A)外,有时还要考虑在“事件A已经发生” 的条件下,事件B发生的概率。
通常记事件A发生的条件下, 事件B发生的 概率为 P(B|A)。
一般情况下, P(B|A) ≠P(B) 。
Ch1-2
引例 袋中有7只白球, 3只红球, 白球中
P(A, P(B, P(AB),P(B|A)
解
甲车间产品数
乙车间产品数
总
数
合格品数 54 32 86
次品数 6 8 14
总数 60 40 100
P(A) 86 0.86 P(B) 60 0.6 P(AB) 54 0.54
100
100
100
而求P(B|A)实质上是求在事件A发生的条件下B发生 的概率(即甲车间生产的合格品率),由于甲车间 产品有60件,而其中合格品有54件,所以
8 15
将此例中所用的方法推广到一般的情形,就
得到在概率计算中常用的全概率公式。
全概率公式
设A1, A2,…, An是两两互斥的事件,且 P(Ai)>0, i =1, 2, …, n; 另有一事件B, 它总是与 A1, A2, …, An 之一同时发生,则
n
P(B) P( Ai )P(B|Ai ) i 1
P(Ai | B)
P(Ai )P(B|Ai )
n
,
P(Aj )P(B|Aj )
j 1
i 1, 2,, n .
该公式于1763年由贝叶斯 (Bayes) 给出。 它是在观察到事件B已发生的条件下,寻找导 致B发生的每个原因的概率。
B AB AB
P(AB) P(A) P(B | A) P( AB) P( A) P(B | A)
条件概率、全概公式、贝叶斯公式

P(AB 3 36 1 ) P(A| B) = = = 。 P(B ) 6 36 2 解法2: 解法 P(A| B) = 3 = 1。 6 2
在B发生后的 发生后的 缩减样本空间 中计算
设某种动物由出生算起活到20年以上的 例2: 设某种动物由出生算起活到 年以上的 概率为0.8,活到25年以上的概率为 年以上的概率为0.4。 概率为 ,活到 年以上的概率为 。问 现年20岁的这种动物 它能活到25岁以上的 岁的这种动物, 现年 岁的这种动物,它能活到 岁以上的 概率是多少? 概率是多少? 能活20年以上 能活25年以上 解:设A={能活 年以上 B={能活 年以上 设 能活 年以上}, 能活 年以上}, 所求为P(B|A) 。 所求为 依题意, 依题意, P(A)=0.8, P(B)=0.4, ,
“先抽的人当然要比后抽的人抽到的人机会大。” 先抽的人当然要比后抽的人抽到的人机会大。 先抽的人当然要比后抽的人抽到的人机会大
我们用A 表示“ 个人抽到入场券 个人抽到入场券” 我们用 i表示“第i个人抽到入场券”, i=1,2,3,4,5。 = 。 表示“ 个人未抽到入场券 个人未抽到入场券” 则 A “第i个人未抽到入场券”, 表示 i 显然,P(A1)=1/5,P( A)=4/5, 显然, , , 1= 也就是说, 也就是说, 个人抽到入场券的概率是1/5。 第1个人抽到入场券的概率是 。 个人抽到入场券的概率是
乙两厂共同生产1000个零件,其中 个零件, 例3: 甲、乙两厂共同生产 个零件 其中300 件是乙厂生产的。而在这300个零件中,有189个 个零件中, 件是乙厂生产的。而在这 个零件中 个 是标准件,现从这1000个零件中任取一个,问这 个零件中任取一个, 是标准件,现从这 个零件中任取一个 个零件是乙厂生产的标准件的概率是多少? 个零件是乙厂生产的标准件的概率是多少? 零件是乙厂生产}, 设B={零件是乙厂生产 , 零件是乙厂生产 A={是标准件 , 是标准件}, 是标准件 所求为P(AB)。 。 所求为
1.3,1.4条件概率,全概率公式

C表示抽到的人有色盲症。
则
1 P( A) P( B) , P(C | A) 0.05, P(C | B) 0.0025 2
由Bayes公式有
P( A) P(C | A) 0.5 0.05 P( A | C ) P( A) P(C | A) P( B) P(C | B) 0.5 0.05 0.5 0.0025
2 1 3 2 2 , 5 4 5 4 5
P( A3 ) P( A3) P( A3 ( A1 A2 A1 A2 A1 A2 ))
P ( A1 A2 A3 ) P ( A1 A2 A3 ) P ( A1 A2 A3 )
P ( A1 ) P ( A2 A1 ) P ( A3 A1 A2 ) P ( A1 ) P ( A2 A1 ) P ( A3 A1 A2 ) P ( A1 ) P ( A2 A1 ) P ( A3 A1 A2 )
i 1 n
全概率公式
证明 B B B ( A A A ) 1 2 n
BA1 BA2 BAn .
由 Ai A j ( BAi )( BAj ) P( B) P( BA1 ) P( BA2 ) P( BAn ) P( B) P( A1 ) P( B | A1 ) P( A2 ) P( B | A2 )
解
设A表示取得一等品,B表示取得合格品,则
(1)因为100 件产品中有 70 件一等品,所以 70 P( A) 0.7 100 因为95 件合格品中有 70 件一等品,所以 (2)方法1: 70 P( A B) 0.7368 95 方法2:
《条件概率》课件

两次都取到白球的概率为$frac{6}{10} times frac{6}{10} = frac{36}{100} = frac{9}{25}$。解析:第一次取到白球 的概率为$frac{6}{10}$,第二次取到白球的概率为 $frac{6}{10}$,因此两次都取到白球的概率为 $frac{6}{10} times frac{6}{10} = frac{36}{100} =
《条件概率》ppt课件
contents
目录
• 条件概率的定义 • 条件概率的性质 • 条件概率的应用 • 条件概率的实例分析 • 条件概率的习题与解答
CHAPTER 01
条件概率的定义
条件概率的数学定义
定义
在事件B发生的条件下,事件A发生的概率称为条件概率,记作P(A|B)。
公式
P(A|B) = P(A∩B) / P(B)
条件概率的几何意义
条件概率P(A|B)表示在事件B发生的条 件下,事件A发生的概率,这可以表示 为在事件B发生的条件下,事件A发生 的区域与整个样本空间的比值。
CHAPTER 02
条件概率的性质
条件概率的加法性质
总结词
条件概率的加法性质是ቤተ መጻሕፍቲ ባይዱ当某一事件B发 生时,另一事件A发生的概率等于两事件 A和B同时发生的概率加上A不发生但B发 生的概率。
贝叶斯决策
贝叶斯决策是一种基于贝叶斯定理的决策方法,通过计算不 同行动方案在不同自然状态下的期望效用值,选择最优的行 动方案。贝叶斯决策中需要用到条件概率来计算不同自然状 态下的期望效用值。
在机器学习中的应用
分类器设计
在分类器设计中,常常需要计算不同类别下的条件概率,以设计最优的分类器。例如, 在朴素贝叶斯分类器中,通过计算不同特征在不同类别下的条件概率,实现分类器的设
条件概率

全概率公式
设B1,B2,…,Bn是n个互不相容的事
n
件,且 P(Bi)>0 (i=1,2,…,n) ,若 A
则 P ( A) P ( Bi ) P ( A | Bi )
i 1 n
i1
Bi
A AB
1
AB
2
AB
B2
n
B1
A B3
P ( A)
P ( B ) P ( A| B
0 . 02 0 . 3 0 . 01 0 . 5 0 . 01 0 . 2 0 . 013 .
例6 两批相同种类的产品各有十二件和 十件,每批产品中各有一件废品,现在先从 第一批产品中任取一件放入第二批中,然 后再从第二批中任取一件,求这时取到废 品的概率 解: A:“取到废品” B:“从第一批中取到的是废品” 有,
而且,前面对概率所证明的一些重要性质 都适用于条件概率.
P ( A1 A 2
B ) P ( A1 B ) P ( A 2
B ) P ( A1 A 2
B)
P(A
B) 1 P(A B)
P ( A1 A 2
B ) P ( A1 B ) P ( A1 A 2
B)
4. 条件概率的计算 1) 用定义计算:
P ( A | B) P ( AB) P ( B) ,
P(B)>0
掷骰子 2)从加入条件后改变了的情况去算
例:A={掷出2点}, B={掷出偶数点} 1
P(A|B)=
3
B发生后的 缩减样本空间 所含样本点总数 在缩减样本空间 中A所含样本点 个数
例1 掷两颗均匀骰子,已知第一颗掷出6点,问 “掷出点数之和不小于10”的概率是多少? 解: 设A={掷出点数之和不小于10}
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
条件概率定义
条件概率,也称为条件期望,是概率论中描述不确定性的一种基本概念。
它以某种程度反映事件或结果发生的概率,准确地表达事件间的联系,并建立统计关联或因果关系。
条件概率是统计学中最重要的一种概率样式,它表示了某种事件发生的条件下,另一种事件发生的概率。
为了清晰地表述条件概率的定义,假设有两个事件A和B,其中P(A)是A事件发生的概率,P(B)是B事件发生的概率。
如果要确定A事件发生的条件下B事件发生的概率,我们可以定义的条件概率为P(B|A)。
这里的“|”表示“条件”的意思,即P(A)是P(B|A)的条件。
因此,条件概率P(B|A)表示A事件发生的条件下,B事件发生的概率。
根据条件概率的定义,条件概率可以分为两种形式:(1)全概率定理:P(A B)= P(A)+ P(B|A),即两个事件A、B的总概率等于A事件发生的概率加上A事件发生的条件下B事件发生的概率。
(2)贝叶斯公式:P(A|B)= P(B|A)* P(A)/ P(B)。
根据以上定义,可以看出,条件概率是一个衡量不确定性的重要概念。
它可以用来计算不同结果出现的概率,并基于先验知识和已知信息给出有效的决策。
条件概率的应用
条件概率是统计学中应用最广泛的概念之一,它在几乎所有的统计领域都有广泛的应用。
例如,在市场营销领域,条件概率可以用来
预测市场营销活动的成功程度,也可以用来分析竞争对手的行动策略;在统计推断中,条件概率可以用来衡量不同的数据背景下的统计模型的拟合程度;在概率编程中,条件概率可以用来演示一定程度上的规则,并用来预测系统的行为;在保险领域,条件概率可以用来预测产品发生保险风险的概率和费用;在金融领域,条件概率可以用来预测投资于某只股票的期望收益率以及发生市场振荡的概率等。
此外,条件概率还被应用于计算机视觉领域,特别是用于图像识别和分类等。
由于图像的不同部分的特征是不同的,因此可以使用条件概率来计算图像中不同部分特征的相关性,以及这些特征之间发生复杂模式的概率。
条件概率的局限性
尽管条件概率具有广泛的应用,但它也存在一定的局限性。
首先,条件概率仅可以准确地预测发生概率,但不能准确地预测结果的准确性。
其次,条件概率只能用于预测实际事件的发生,而不能用于虚拟场景或概念的评估。
最后,条件概率假设无论何时,某种可能的事件的发生概率都是相同的,但实际上,不同时空条件和先验知识可能会影响事件本身发生的概率。
总结
条件概率是概率论中最重要的一种概率样式,它表示了某种事件发生的条件下,另一种事件发生的概率,具有广泛的应用。
然而,条件概率也存在一定的局限性,比如不能准确预测结果的准确性,只能用于预测实际事件,以及不同时空条件影响事件本身发生的概率等。