高一必修一物理力的合成知识点
人教版高中物理必修第1册 3.5 力的合成和分解

【思考辨析】 判断正误,正确的画“√”,错误的画“×”. (1)合力的作用可以替代几个分力的共同作用,它与分力是等效替代 关系.( √ ) (2)合力总比分力大.( × ) (3)力F的大小为100 N,它的一个分力F1的大小为60 N,则另一个分 力可能小于40 N.( × ) (4)由于矢量的方向可以用正、负表示,故具有正负值的物理量一定 是矢量.( × ) (5)矢量与标量的区别之一是它们的运算方法不同.( √ )
例2 岸边两人同时用力拉小船,两力的大小和方向如图所示.请分 别用作图法和计算法求出这两个力的合力.
【答案】 600 N,方向与F1成60°
(2)计算法:如图所示,平行四边形的对角线AB、OD交于C点,由于
OA=OB,所以平行四边形OADB是菱形,OD与AB互相垂直平分, OD是∠AOB的角平分线,则∠AOD=60°,OD=2OC=2OA cos 60°
A.有唯一解 B.有两组解 C.有无数组解 D.无解
【答案】 B
例4 如图所示,水平地面上有一重60 N的物体,在与水平方向成 30°角斜向右上、大小为20 N的拉力F作用下匀速运动,求地面对物 体的支持力和摩擦力大小.
针对训练3 如图所示,已知共面的三个力F1=20 N、F2=30 N、F3=40 N作用 于物体的同一点上,三个力之间的夹角都是120°,求合力的大小和 方向.
3.力的正交分解法 把力沿着两个经选定的互相垂直的方向分解的方法叫力的正交分解 法. 如图所示,将力F沿x轴和y轴两个方向分解,则
Fx=F cos α Fy=F sin α
典例示范
例3 如图所示,将一个力F=10 N分解为两个分力,已知一个分力F1 的方向与F成30°角,另一个分力F2的大小为6 N,则在该力的分解中 ()
必修一物理力的分解合成知识点

必修一物理力的分解合成知识点必修一物理力的分解合成知识点在年少学习的日子里,大家最不陌生的就是知识点吧!知识点就是掌握某个问题/知识的学习要点。
哪些知识点能够真正帮助到我们呢?以下是店铺收集整理的必修一物理力的分解合成知识点,欢迎阅读,希望大家能够喜欢。
1、标量和矢量:(1)将物理量区分为矢量和标量体现了用分类方法研究物理问题.(2)矢量和标量的根本区别在于它们遵从不同的运算法则:标量用代数法;矢量用平行四边形定则或三角形定则.(3)同一直线上矢量的合成可转为代数法,即规定某一方向为正方向,与正方向相同的物理量用正号代人,相反的用负号代人,然后求代数和,最后结果的正、负体现了方向,但有些物理量虽也有正负之分,运算法则也一样,但不能认为是矢量,最后结果的正负也不表示方向,如:功、重力势能、电势能、电势等.2、力的合成与分解:(1)合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用在物体上产生的效果相同,这个力就叫做那几个力的合力,而那几个力叫做这个力的分力。
(2)共点力的合成:1、共点力几个力如果都作用在物体的同一点上,或者它们的作用线相交于同一点,这几个力叫共点力。
2、力的'合成方法求几个已知力的合力叫做力的合成。
①若和在同一条直线上a.同向:合力方向与、的方向一致b.反向:合力,方向与、这两个力中较大的那个力向。
②互成θ角——用力的平行四边形定则3、平行四边形定则:两个互成角度的力的合力,可以用表示这两个力的有向线段为邻边,作平行四边形,它的对角线就表示合力的大小及方向,这是矢量合成的普遍法则。
注意:(1)力的合成和分解都均遵从平行四边行法则。
(2)两个力的合力范围(3)合力可以大于分力、也可以小于分力、也可以等于分力(4)两个分力成直角时,用勾股定理或三角函数。
注意事项:(1)力的合成与分解,体现了用等效的方法研究物理问题.(2)合成与分解是为了研究问题的方便而引入的一种方法,用合力来代替几个力时必须把合力与各分力脱钩,即考虑合力则不能考虑分力,同理在力的分解时只考虑分力,而不能同时考虑合力.(3)共点的两个力合力的大小范围是|F1-F2|≤F合≤Fl+F2.(4)共点的三个力合力的最大值为三个力的大小之和,最小值可能为零.(5)力的分解时要认准力作用在物体上产生的实际效果,按实际效果来分解.(6)力的正交分解法是把作用在物体上的所有力分解到两个互相垂直的坐标轴上,分解最终往往是为了求合力(某一方向的合力或总的合力).易错现象:1.对含静摩擦力的合成问题没有掌握其可变特性2.不能按力的作用效果正确分解力3.没有掌握正交分解的基本方法常用的高中物理实验方法常用的高中物理实验方法之累积法爱高中物理实验中把某些难以用常规仪器直接准确测量的物理量用累积的方法,将小量变大量,不仅可以便于测量,而且还可以提高测量的准确程度,减小误差。
必修一物理力的分解合成知识点

必修一物理力的分解合成知识点
必修一物理力的分解合成知识点包括以下几个方面:
1. 力的合成:当多个力作用于同一个物体时,可以将这些力按照大小和方向进行合成,得到合力。
合力的大小等于各个力大小的矢量和,合力的方向与各个力的方向相同或
相反,取决于各个力的大小和方向。
合力可以通过几何法、分解法或向量法进行计算。
2. 力的分解:当一个力作用于物体上时,可以将这个力分解为两个或多个分力,分力
的方向可以任意选择,但它们的合力必须等于原力。
分力的大小和方向可以通过三角
函数(如正弦、余弦)来计算。
3. 平行力的合成与分解:当多个平行力作用于同一个物体时,可以将这些力按照大小
和方向进行合成或分解。
平行力的合力等于各个力大小的代数和,方向与各个力的方
向相同或相反。
分解平行力时,可以根据力的大小和方向,按照比例关系将力分解为
若干个平行力的合力。
4. 力的分解中的特殊情况:在力的分解过程中,有几种特殊情况需要特别注意。
如力
的分解角度为45度时,分解的两个力大小相等;如果力的方向与坐标轴平行或垂直时,分解的力具有特殊的形式。
5. 力的分解与合成在实际问题中的应用:力的分解与合成经常应用于实际问题的求解中。
例如,可以将一个斜面上的重力分解为垂直于斜面的分力和平行于斜面的分力;
可以将一个物体沿斜面下滑的摩擦力分解为垂直于斜面的分力和平行于斜面的分力等。
以上是必修一物理力的分解合成的一些基本知识点,通过掌握这些知识点,可以更好
地理解力的作用与分析,并能够解决实际问题中与力有关的计算与推理。
高一必修一物理知识点总结(6篇)

高一必修一物理知识点总结力的合成求几个共点力的合力,叫做力的合成。
(1)力是矢量,其合成与分解都遵循平行四边形定则。
(2)一条直线上两力合成,在规定正方向后,可利用代数运算。
(3)互成角度共点力互成的分析②共点的三个力,如果任意两个力的合力最小值小于或等于第三个力,那么这三个共点力的合力可能等于零。
③同时作用在同一物体上的共点力才能合成(同时性和同体性)。
④合力可能比分力大,也可能比分力小,也可能等于某一个分力。
力的分解求一个已知力的分力叫做力的分解。
(1)力的分解是力的合成的逆运算,同样遵循平行四边形定则。
(2)已知两分力求合力有唯一解,而求一个力的两个分力,如不限制条件有无数组解。
要得到唯一确定的解应附加一些条件:①已知合力和两分力的方向,可求得两分力的大小。
②已知合力和一个分力的大小、方向,可求得另一分力的大小和方向。
③已知合力、一个分力F1的大小与另一分力F2的方向,求F1的方向和F2的大小:若F1=Fsinθ或F1≥F有一组解若F>F1>Fsinθ有两组解若F<fsinΘ无解<p="">(3)在实际问题中,一般根据力的作用效果或处理问题的方便需要进行分解。
(4)力分解的解题思路力分解问题的关键是根据力的作用效果画出力的平行四边形,接着就转化为一个根据已知边角关系求解的几何问题。
因此其解题思路可表示为:必须注意:把一个力分解成两个力,仅是一种等效替代关系,不能认为在这两个分力方向上有两个施力物体。
矢量与标量既要由大小,又要由方向来确定的物理量叫矢量;只有大小没有方向的物理量叫标量矢量由平行四边形定则运算;标量用代数方法运算。
一条直线上的矢量在规定了正方向后,可用正负号表示其方向。
高一必修一物理知识点总结(二)一、运动的描述1.机械运动:物体在空间中所处位置发生变化,这样的运动叫做机械运动。
2.运动的特性:普遍性,永恒性,多样性。
3.质点:在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略时,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。
【课件】力的合成与分解——力的合成+课件高一上学期物理人教版(2019)必修第一册+

如果夹角 不变,F1 大小不变,只要 F2 增
大,合力 F 就必然增大吗?
F1 F2
【例2】有两个力,一个是10N,一个是2N,这两个力
的合力的最大值是1_2__N_最小值是__8_N__。它们的合力能
等于5N、10N、15N吗?
【练习】F1与F2为作用在同一物体上的两个力,
F1=10N,F2=8N,它们的合力大小可能是(BCD )
共点力:如果一个物体同时受两个或更多个力的作
用,这些力共同作用在物体上的同一点,或者虽不 作用在同一点上,但它们的延长线相交于同一点, 这几个力叫做共点力
F
F
G
●o
力的合成的平行四边形法则,只适用于共点力
第4节:力的合成
对于同一物体产
生相同的效果 已知分力
相互Leabharlann 作 用力的合成遵循
平行四边形定则
合力
作
们的作用用效果。 D.若两个分力的大小不变,则合力的大小也不会变化
返回
第4节:力的合成
2.有两个大小相等的共点力F1和F2,当它们间的夹角为90°时
合力为F,则当它们间的夹角为120°时,合力的大小为( B )
A.2F
相
B. F1=
2F 2
C. F
D. F 2
互
作
用
解: F1 =
2F 2
=1200时,F' F1
算法则,不仅适用于力的合成,也适用
相 互
于位移、速度、加速度等矢量的合成。
作
用
返回
【思考讨论】第4节:力的合成
1.两个力F1和F2的夹角在由0°变为180°过程中, 合力的大小怎样变化?你能不能确定出两个力的
高中物理必修一 力学重点 力的合成与分解 (含练习解析)

力的合成与分解【学习目标】1. 知道合力与分力的概念2. 知道平行四边形定则是解决矢量问题的方法,学会作图,并能把握几种特殊情形3. 知道共点力,知道平行四边形定则只适用于共点力4. 理解力的分解和分力的概念,知道力的分解是力的合成的逆运算5. 会用作图法求分力,会用直角三角形的知识计算分力6. 能区别矢量和标量,知道三角形定则,了解三角形定则与平行四边形定则的实质是一样的【要点梳理】要点一、力的合成要点诠释:1.合力与分力①定义:一个力产生的效果跟几个力的共同作用产生的效果相同,则这个力就叫那几个力的合力,那几个力叫做分力。
②合力与分力的关系。
a.合力与分力是一种等效替代的关系,即分力与合力虽然不同时作用在物体上,但可以相互替代,能够相互替代的条件是分力和合力的作用效果相同,但不能同时考虑分力的作用与合力的作用。
b.两个力的作用效果可以用一个力替代,进一步想,满足一定条件的多个力的作用效果也可由一个力来替代。
2.力的合成①定义:求几个力的合力的过程叫做力的合成。
②说明:力的合成的实质是找一个力去替代作用在物体上的几个已知的力,而不改变其作用效果的方法。
3.平行四边形定则①内容:两个力合成时,以表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向,这个法则叫做平行四边形定则。
说明:平行四边形定则是矢量运算的基本法则。
②应用平行四边形定则求合力的三点注意a.力的标度要适当;b.虚线、实线要分清,表示分力和合力的两条邻边和对角线画实线,并加上箭头,平行四边形的另两条边画虚线;c.求合力时既要求出合力的大小,还要求出合力的方向,不要忘了用量角器量出合力与某一分力间的夹角。
要点二、共点力要点诠释:1.共点力:一个物体受到两个或更多个力的作用,若它们的作用线交于一点或作用线的延长线交于一点,这一组力就是共点力。
2.多个力合成的方法:如果有两个以上共点力作用在物体上,我们也可以应用平行四边形定则求出它们的合力:先求出任意两个力的合力,再求出这个合力跟第三个力的合力,直到把所有的力都合成进去,最后得到的结果就是这些力的合力。
高中物理(新人教版)必修第一册:力的合成和分解【精品课件】

新课讲解
知识点一 合力与分力的关系
探究点1 等效替代思想 如图所示是大家都很熟悉的“曹冲称象”的故事。 曹冲根据什么得到大象和船上石头的重力相等?其中包含什么思想方法?请你结合生 活经验再举一个相似的例子。
探究点2 同一直线上力的合成的方法 如图所示,一辆小车可以由一个人拉着向前运动,也可以由两个人反向拉着或一个 人推着另一个人拉着向前运动。 请结合图思考如何求同一直线上两个力的合力?
(7)在数学上,要确定三条线段的关系,常常将它们归入到一个几何图形中去进行分析 比较。据此请思考:合力与两个分力间存在什么关系? 提示:表示两个分力的有向线段是平行四边形的两个邻边,表示合力的有向线段就是 平行四边形两个邻边之间的对角线。这就是合力和两个分力之间的关系——平行四 边形定则。
【归纳总结】1.合力与分力的相关性 (1)等效性:合力的作用效果与分力的共同作用效果相同,它们在效果上可以相互替代。 (2)同体性:各个分力是作用在同一物体上的,分力与合力为同一物体,作用在不同物 体上的力不能求合力。
答案 D
力的分解
1.不受限制条件的分解:一个力分解为两个力,从理论上讲有无数组解。因为以同 一条线段为对角线的平行四边形有无穷多个(如图甲、乙所示)。
甲
乙
可见,将已知力F分解为两个等大的分力时,两分力间的夹角越大分力越大。
(2)力的分解问题的关键是根据力的作用效果分解,解题常用思路为
例6 如图所示,光滑固定斜面的倾角为θ,有两个相同的小球,小球所受重力均为G, 分别用光滑挡板A、B挡住,挡板A沿竖直方向,挡板B垂直于斜面,则球1对挡板
3.三个力合力范围的确定 (1)最大值:三个力方向均相同时,三力合力最大,Fm=F1+F2+F3。 (2)最小值 ①若一个力在另外两个力的和与差之间,则它们的合力的最小值为零。(即满足三 角形边的关系) ②若一个力不在另外两个力的和与差之间,则它们的合力的最小值等于三个力中最 大的力大小减去另外两个力大小。
高一物理必修一--力的合成与分解知识点及练习题

F1F2 FOF1F2FO力的合成与分解1.力的合成(1)力的合成的本质就在于保证作用效果相同的前提下,用一个力的作用代替几个力的作用,这个力就是那几个力的“等效力”(合力)。
力的平行四边形定则是运用“等效”观点,通过试验总结出来的共点力的合成法则,它给出了寻求这种“等效代换”所遵循的规律。
(2)平行四边形定则可简化成三角形定则。
由三角形定则还可以得到一个有用的推论:假如n个力首尾相接组成一个封闭多边形,则这n 个力的合力为零。
(3)共点的两个力合力的大小范围是|F1-F2| ≤F合≤F1+F2(4)共点的三个力合力的最大值为三个力的大小之和,最小值可能为零。
2.力的分解(1)力的分解遵循平行四边形法则,力的分解相当于已知对角线求邻边。
(2)两个力的合力惟一确定,一个力的两个分力在无附加条件时,从理论上讲可分解为多数组分力,但在详细问题中,应依据力实际产生的效果来分解。
(3)几种有条件的力的分解①已知两个分力的方向,求两个分力的大小时,有唯一解。
②已知一个分力的大小和方向,求另一个分力的大小和方向时,有唯一解。
③已知两个分力的大小,求两个分力的方向时,其分解不惟一。
④已知一个分力的大小和另一个分力的方向,求这个分力的方向和另一个分力的大小时,其分解方法可能惟一,也可能不惟一。
(4)用力的矢量三角形定则分析力最小值的规律:①当已知合力F的大小、方向及一个分力F1的方向时,另一个分力F2取最小值的条件是两分力垂直。
如图所示,F2的最小值为:F2min=F sinα②当已知合力F的方向及一个分力F1的大小、方向时,另一个分力F2取最小值的条件是:所求分力F2与合力F垂直,如图所示,F2的最小值为:F2min=F1sinα③当已知合力F的大小及一个分力F1的大小时,另一个分力F2取最小值的条件是:已知大小的分力F1与合力F同方向,F2的最小值为|F-F1|(5)正交分解法:把一个力分解成两个相互垂直的分力,这种分解方法称为正交分解法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一必修一物理力的合成知识点高一必修一物理力的合成是力学中的一个基本概念,本文将介绍力的合成的概念、实施方法以及相关应用。
一、力的合成的概念
力的合成是指将多个力合成为一个力的过程。
当多个力作用在同一个物体上时,它们可以被合成为一个等效的力,作用在物体上的效果与多个力作用在物体上的效果完全相同。
二、力的合成的方法
1. 合力的方向
当两个力的方向相同时,它们的合力的方向也与它们相同;
当两个力的方向相反时,合力的方向与它们相反。
2. 合力的大小
若两个力具有相同的大小,则它们的合力的大小是它们的力的大小之和;
若两个力大小不同,则合力的大小可以通过使用力的平行四边形法则来计算。
三、力的合成的应用
力的合成的应用非常广泛,下面将介绍几个常见的应用。
1. 物体在水平面上的受力分析
当一个物体在水平面上受到多个力的作用时,可以将这些力分解为水平方向和垂直方向的两个力,并分别计算它们的合力。
这种受力分析方法在实际生活中广泛应用于运动力学、摩擦力分析等领域。
2. 物体在斜面上的受力分析
当一个物体放置在斜面上时,它受到的力可以分解为平行于斜面和垂直于斜面方向的两个力。
利用力的合成的原理,可以计算这两个力的合力,从而确定物体在斜面上的运动状态。
3. 物体在平衡状态下的受力分析
在物体处于平衡状态时,合力为零。
通过对物体所受的各个力进行受力分析,可以确定物体在平衡状态下所受的各个力的大小和方向。
四、例题分析
为了更好地理解力的合成,下面将通过一个例题进行分析。
例题:一个力1的大小为10N,一个力2的大小为8N,两个力的夹角为30°,求合力的大小和方向。
解析:首先,根据题目给出的信息,我们可以利用力的合成的方法计算合力。
首先,将力1和力2的大小和方向画在坐标系中,力1的大小为10N,力2的大小为8N,夹角为30°。
然后,通过力的平行四边形法则可以计算出合力的大小,如下图所示:
|
F1 | F2
---------> | -------->
\ | \
\ | \
\ | \
------------
F合力
在这个示意图中,力1和力2的方向、长度和夹角都按照题目给出的信息绘制。
通过平行四边形法则,画出力1和力2的平行四边形,假设平行四边形的对角线为F合力。
通过测量发现,合力的大小约为14N。
接下来,根据力1和力2的夹角,可以确定合力的方向。
根据图示,合力的方向与力1的方向相反。
因此,合力的方向为从力2指向力1的方向。
综上所述,根据题目给出的信息,合力的大小约为14N,方向从力2指向力1。
五、总结
通过本文的介绍,我们了解了力的合成的概念、实施方法以及相关应用。
力的合成在物理学中具有重要的意义,广泛应用于各个领域。
掌握了力的合成的原理和方法,我们可以更好地理解物体的受力情况,并在实际问题中进行受力分析。
六、参考文献暂无。