中低速磁悬浮和轻轨、地铁的比较

合集下载

城市轨道交通各种制式系统

城市轨道交通各种制式系统

城市轨道交通的基本技术类别和优缺点城市轨道交通模式种类繁多,分类方法也较多。

目前,世界上城市轨道交通分类大体如下:按构筑物的形态或轨道相对于地面的位置划分为地下铁路、地面铁路和高架铁路;按列车服务范围划分为传统的城市轨道交通、区域快速铁路和市郊铁路;按运能等级(大运量、中运量、小运量)及车辆类型可分为地下铁道、轻轨交通、单轨交通、有轨电车、胶轮地铁、直线电机车辆、中低速磁悬浮(HSST)、磁悬浮;按照列车驱动力可以大致分为轮轨系统和磁悬浮系统两大类,城市铁路、地铁、轻轨、单轨属于轮轨系统,而直线电机车辆介乎两者之间,原理上属于磁悬浮系统。

目前,城市铁路、地铁、轻轨、单轨、胶轮地铁、磁悬浮交通等等形式在中国均有应用,北京13号线被称为国内第一条城市铁路,上海建成了世界上第一条投入商业运营的磁悬浮线路(其原理图如图2.2.1-1所示),重庆单轨,广州四号线采用直线电机驱动的车辆,各城市轨道交通模式的选择正在趋于多样化。

由于分类方法很多,而且分类的界限越来越不清晰,下面暂按列车驱动方式分类方法(即磁悬浮系统和轮轨系统)简要地对各种制式进行比较论述。

1.磁悬浮模式(1)磁悬浮(TR)磁悬浮列车分为常导型和超导型两大类。

常导型也称常导磁吸型,以德国高速常导磁浮列车Transrapid为代表,它是利用普通直流电磁铁电磁吸力的原理将列车悬起,悬浮的气隙较小,一般为10毫米左右。

常导型高速磁悬浮列车的速度可达每小时400-500公里,适合于城市间的长距离快速运输。

而超导型磁悬浮列车也称超导磁斥型,以日本MAGLEV为代表。

它是利用超导磁体产生的强磁场,列车运行时与布置在地面上的线圈相互作用,产生电动斥力将列车悬起,悬浮气隙较大,一般为100毫米左右,速度可达每小时500公里以上。

这两种磁悬浮列车各有优缺点和不同的经济技术指标。

磁悬浮系统的突出特点是速度高,造价昂贵,而且应用经验不足。

突出的缺点是:1)由于磁悬浮系统是以电磁力完成悬浮、导向和驱动功能的,断电后磁悬浮的安全保障措施,尤其是列车停电后的制动问题仍然是要解决的问题。

【专业知识】市政工程知识:地铁与轻轨有什么区别?

【专业知识】市政工程知识:地铁与轻轨有什么区别?

【专业知识】市政工程知识:地铁与轻轨有什么区别?地铁与轻轨有什么区别?按照国际标准,城市轨道交通列车可分为A、B、C三种型号,分别对应3米、2.8米、2.6米的列车宽度。

凡是选用A型或B型列车的轨道交通线路称为地铁,采用5~8节编组列车;选用C型列车的轨道交通线路称为轻轨,采用2~4节编组列车,列车的车型和编组决定了车轴重量和站台长度。

上海轨道交通3号线采用6节编组A型列车,有90%的线路都是在高架上,但是按照车型分类标准仍然属于地铁线路;上海轨道交通6号线采用4节编组C型列车,有70%的线路都是在隧道内,但是按照车型分类标准仍然属于轻轨线路。

A型车是目前最高端的城市轨道交通列车。

其特点是车体宽和编组大,A型车宽度为3米,上海轨道交通10号线采用的阿尔斯通Metroplis 地铁列车宽度达到3.2米;6节编组A型地铁列车最大载客量为2460人,上海轨道交通1、2号线的阿尔斯通和西门子8节编组A型地铁列车最大载客量达到3280人。

B型车和C型车的造价和技术含量要小于A型车。

中国城市的发展,一些大中型城市已开通或正在建设地铁和轻轨,普通民众由于对城市轨道交通系统接触较少,认识时间较晚,概念上有些误区。

对于两者的区别,有人认为城市轨道交通中,在地面以下行驶的叫地铁,在地面或高架上行驶的就是轻轨;还有人认为轻轨的钢轨重量比地铁轻,这两种认识都是错误的。

城市轨道交通分为地铁和轻轨两种制式,地铁和轻轨都可以建在地下、地面或高架上。

为了增强轨道的稳定性,减少养护和维修的工作量,增大回流断面和减少杂散电流,地铁和轻轨都选用轨距为1435毫米的国际标准双轨作为列车轨道,与国铁列车选用的轨道规格相同,并没有所谓的钢轨重量轻重之分。

地铁已经不局限于运行线在地下隧道中的这种形式,而是泛指采用高规格电客列车同时高峰小时单向运输能力在2.5万至7万人的大容量城市轨道交通系统。

运行线路多样化,地下、地面、高架三者有机结合。

国内外众多城市已用轨道交通代替地铁这一传统称呼,例如上海就将城市轨道交通系统统一命名为轨道交通XX号线。

中低运量的新型城市轨道交通系统

中低运量的新型城市轨道交通系统
3.1 轻轨系统
或超过 120km/h,最大运送能力单向可达 3万人 /h。 7)具备全产业链完全自主知识产权。
3.3 单轨系统
单轨系统是一种车辆与特制轨道梁组合成一体运行的运输 系统,分为跨座式和悬挂式两种。
单轨系统具有以下特点: 1)工 程 造 价 相 对 较 低。造 价 一 般 约 为 1.5亿 元 /km ~ 3亿元 /km,悬挂式单轨造价比跨座式更低。 2)爬坡能力强,曲线半径小。最大坡度可达 60‰,最小半径 可达 100m。 3)中低运量城市轨道交通的典型。最高运行速度 80km/h, 单向客运量跨座式单轨约为 1万人 /h~3万人 /h,悬挂式单轨约
5)采用新技术和新材料,车体可实现 100%低地板。
3.5 直线电机轮轨交通系统
直线电机轮轨交通系统是依靠电动机的定子产生的旋转磁 场使得其中的转子转动起来,再依靠传动装置将动力传递到车轮 从而使列车获得牵引动力。
直线电机轮轨交通系统特点如下: 1)工程造价相对较高。车 辆 造 价 较 传 统 旋 转 电 机 车 辆 高 出 50% ~60%。 2)运输适应性强,编组灵活。单向高峰小时输送能力最大可 达 3万人次。 3)转弯半径小、爬坡能力强。最小半径可达 60m,爬坡能力 可达 60‰ ~80‰。 4)能耗较高,运营维护成本高。直线电机的功率因数及效率 较低,电能消耗较传统旋转电机高出约 20%。 5)噪声较地铁、轻轨小。因无传统的齿轮箱等机械传动系统 有利降低振动和噪声。 6)核心部件技术需进口。
3 中低运量的新型城市轨道交通系统特点
中低运量的新型城市轨道交通的特点主要从客流等级和特 征、环境条件、系统 技 术 成 熟 度、运 营 可 靠 度、工 程 投 资 以 及 建 设 工期等方面综合 分 析,其 制 式 的 选 择 受 国 家 的 产 业 政 策、城 市 的 经济实力、价值取向和文化传统等因素的影响。

大中运量城市交通各种制式系统介绍20190524

大中运量城市交通各种制式系统介绍20190524

蓄电池 充电时间长
二、交通制式介绍
BRT系统
快速公交系统(Bus Rapid Transit)简称BRT ,是一种介于快速轨道交通与常规公交之间的新 型公共客运系统。
它是利用现代化公交技术配合智能交通和运营管理(集成调度系统),开辟公交专用道路和建 造新式公交车站,实现轨道 交通模式的运营服务,达到 轻轨服务水准的一种独特的 城市客运系统。
1883年
20世纪中叶
最早仍在运营的有轨电车线路
有轨电车兴起,全球3000多个有轨电车系统 受汽车工业发展的冲击,有轨电车逐渐衰退,线路被大规模拆除 有轨电车技术发展,同时汽车发展导致交通、能源和环境问题日益严重
传统有轨电车
20世纪60年代
20世纪90年代 至今
环保、美观、大容量的现代有轨电车复兴 全球约500个现代有轨电车系统运营和建设
各骨干公交类型对比表
类型 单向客运能力(万人次/h) 运行速度(km/h) 投资(亿元/km) 最小转弯半径(m) 路权 审批权限 建设周期(年) 应用情况 大运量 地铁 3~7 30-45 5~8 350-400 专有路权 国家发改委 4.0-5.0 普遍应用 轻轨 1.5~3 30-45 3~5 250-350 专有路权 国家发改委 3.0-4.0 普遍应用 中低速磁浮 1.5-3.0 30-40 3~6 75 专有路权 国家发改委 3.0-4.0 应用较少 有轨电车 0.8~1.5 20-30 0.8~1.8 25 部分或专有路权 地方政府 1.5-2.0 国外普遍,国内正 在兴起 中运量 BRT 0.6~1.2 20-30 0.5~1.0 20 部分或专有路权 地方政府 1.0-1.5 普遍应用
大运量
地铁 √ 轻轨 √ 中低速磁浮 √ √ √ √

中低速磁浮交通概述

中低速磁浮交通概述

03
中低速磁浮交通技术发展现状与 趋势
中低速磁浮交通技术发展现状
国内外研究与应用情况
中低速磁浮交通技术已在国内外得到 广泛研究与应用,如中国、日本、德 国等国家均已建成多条中低速磁浮交 通线路,用于城市交通、旅游观光等 场景。
技术特点与优势
中低速磁浮交通技术以其低噪音、低 振动、低污染、高速度、高安全等优 点,成为城市交通发展的重要方向之 一。
总结三
需综合考虑社会、经济和 环境效益
启示二
加强技术研发和标准化工 作
总结二
技术成熟度和资金投入是 关键因素
启示一
推广中低速磁浮交通需因 地制宜
启示三
促进产业合作和创新发展
THANKS
感谢观看
中低速磁浮交通技术的未来展望
技术成熟与产业升级
随着中低速磁浮交通技术的不断成熟,相关产业链将进一步完善, 推动产业升级和高质量发展。
国际化发展
中低速磁浮交通技术将逐步走向国际化,加强国际合作与交流,共 同推动磁浮交通技术的发展和应用。
社会经济效益提升
中低速磁浮交通技术的广泛应用将带来显著的社会经济效益,提高城 市交通效率,改善居民出行体验,促进城市可持续发展。
中低速磁浮交通系统的组成与工作原理
组成
中低速磁浮交通系统主要由磁浮列车、轨道、供电系统、信 号控制系统、车站等部分组成。
工作原理
通过磁力作用,使列车悬浮于轨道之上,实现无接触运行。 磁浮列车通过直线电机驱动,实现前进、后退和制动等动作 。轨道通常采用高架或地面铺设,供电系统提供列车所需电 力,信号控制系统确保列车安全运行。
04
中低速磁浮交通的实践案例与效 果分析
中低速磁浮交通实践案例介绍

简述城市轨道交通的基本类型

简述城市轨道交通的基本类型

简述城市轨道交通的基本类型城市轨道交通,简称城轨,是指在城市内建设的以轨道交通技术为基础的城市交通系统。

城轨有多种基本类型,包括地铁、轻轨、城市铁路和单轨等。

下面将对这些类型进行简要介绍。

地铁是指在城市地下或地面建设的轨道交通系统,通常为双轨或四轨,采用电力牵引、直流或交流供电方式,车辆速度达到每小时80公里以上,且具有高度的运行稳定性和安全性。

地铁的优点在于载客量大、安全稳定、能独立通行等,但是建设成本高、线路贯通困难等缺点存在。

轻轨又称城市轨道交通,是指建设在城市区域内、轨距比地铁大、车体轻便的轨道交通系统。

轻轨在建设成本、运营成本等方面都优于地铁,同时也具有较高的通行能力。

轻轨的线路长度较短,车速较慢,但对城市交通的影响比地铁更小。

城市铁路是指连接城市中心和近郊区域的铁路,采用电力牵引,行驶速度较快。

城市铁路可以和城市的其他交通方式(如地铁、公共汽车等)进行衔接,可以解决市区与郊区之间的交通瓶颈问题。

城市铁路的建设成本较低,但在城市建设规划、线路使用纠纷等方面存在一些问题。

单轨交通是指交通工具在单轨轨道上行驶的交通方式,轨道一般为悬挂在高空的、单轨独立的轨道,具有较高的运行稳定性和安全性。

单轨交通技术成熟,但在载客量、截面尺寸、建设成本等方面存在一些限制,一般适用于短距离、低载客量的交通线路。

除了这些基本类型的城轨系统外,还有一些特殊类型的城轨系统,例如磁悬浮列车。

磁悬浮列车是一种新型城市轨道交通系统,采用磁悬浮技术,行驶速度可以达到每小时300公里以上,成为目前世界上速度最快的交通工具之一。

磁悬浮列车具有高速、无污染、无噪音等特点,但是建设成本高,投资回报周期长。

总的来说,城市轨道交通系统的类型众多,每个类型都有其优缺点和适用范围。

城市轨道交通可以缓解城市交通拥堵,提高城市交通效率,为城市可持续发展奠定基础。

中低速磁悬浮与轻轨、地铁地比较

中低速磁悬浮与轻轨、地铁地比较

中低速磁悬浮在城市轨道交通中的运用磁悬浮技术的研究源于德国,1922年德国工程师赫尔曼·肯佩尔提出了电磁悬浮原理,1934年他申请了磁悬浮列车的专利,1953年完成科学报告《电子悬浮导向的电力驱动铁路机车车辆》。

20世纪70年代以后,世界工业化国家经济实力不断加强,为提高交通运输能力以适应经济发展的需要,德国、日本、美国、加拿大、法国、英国等发达国家相继开始对磁悬浮运输系统进行开发,并取得令人瞩目的进展。

磁悬浮列车与传统轮轨列车不同,它用电磁力将列车浮起,导向和驱动。

在运行时不与轨道发生摩擦,中低速磁悬浮列车(时速小于200km)在运行时发出的噪声非常低。

此外,磁悬浮列车还具有速度高,制动快,爬坡能力强,转弯半径小,振动小,舒适性好等优点。

在修建城市轨道交通线路的造价攀升的情况下,中低速磁悬浮线的性能价格比好的优势得以显示出来。

1 磁悬浮技术的种类目前,载人试验获得成功的磁浮列车系统有3种,它们的磁悬原理和系统技术完全不同,不能兼容。

(1)用常导磁吸式(EMS)进行悬浮导向,同步长定子直线电机驱动的高速磁浮列车系统。

以德国的TR(Trans rapid)磁浮列车系统为代表。

TR采用常规电导吸引的方式进行悬浮和导向,悬浮的气隙较小,一般为 10mm 左右;由地面一次控制的直线同步电机驱动。

我国上海机场磁悬浮线就是引进的德国 TR系统(2)采用超导磁斥式(EDS)进行悬浮和导向,同步长定子直线电机驱动的高速磁浮列车系统。

高速超导磁悬浮列车以日本的ML系统为代表。

车上的超导线圈在低温下进入超导状态,通电后产生很强的磁场,列车运动时,超导磁体使线路上的导体产生感应电流,该电流也将产生磁场,并与车上的超导磁体形成斥力,使车辆悬浮(悬浮高度较大,一般为100mm左右)。

列车由地面一次控制的线性同步电机进行驱动,同步电机定子三相绕组铺设在地面线路两侧,无需通过弓网受电方式供电。

(3)采用常导磁吸式(EMS)进行悬浮和导向,异步短定子直线电机驱动的中低速磁浮列车系统。

中低速磁浮列车与跨坐式单轨车辆的综合比选

中低速磁浮列车与跨坐式单轨车辆的综合比选

中低速磁浮列车与跨坐式单轨车辆的综合比选刘亚宁;李梁;刘家栋【摘要】目前中小运量轨道交通车辆的需求越来越多,就其中比较有代表性的中低速磁浮以及跨坐式单轨车辆从其技术特性、经济性、环境适应性、安全性以及应用前景方面进行了综合分析,为城市进行轨道交通制式的规划选型提供参考.【期刊名称】《技术与市场》【年(卷),期】2017(024)009【总页数】2页(P29-30)【关键词】中低速;磁浮列车;跨坐式;单轨【作者】刘亚宁;李梁;刘家栋【作者单位】中车株洲电力机车有限公司产品研发中心,湖南株洲412001;中车株洲电力机车有限公司产品研发中心,湖南株洲412001;中车株洲电力机车有限公司产品研发中心,湖南株洲412001【正文语种】中文随着城市的快速发展,城市人口的不断增长,现行的城市交通已难以满足城市客流出行的需要,因此很多城市都需要中小运量轨道交通和常规公交等共同承担城市人口的出行。

中小运量的轨道交通有中低速磁浮列车、单轨、有轨电车等。

以下就中低速磁浮列车、跨坐式单轨车辆进行综合比较,为城市轨道交通模式选择提供借鉴与参考。

磁悬浮列车与传统轮轨列车不同,它用电磁力将列车浮起、导向和驱动。

运行时不与轨道发生摩擦,列车的运营速度在120 km/h以下,目前国内仅长沙具有中低速磁浮列车的实际运营经验。

跨座式单轨是通过单根轨道来支承、稳定和导向, 车体骑跨在轨道梁上运行。

主要特点是转向架、轨道梁和道岔三方面, 走行机理不同于钢轮—钢轨系统, 轨道梁承受较大的扭转荷载。

2.1 技术特性2.1.1 线路适应能力中低速磁浮列车在运行时距离轨面有8~10 mm的悬浮高度,车身与轨道之间无接触,列车的行驶和制动不再依赖轮轨间的粘着力,而是直线电机产生的电磁牵引力,故车辆具有良好的加减速性能及爬坡能力,最大爬坡能力可达70‰,最小曲线半径50 m。

因车辆运行不受轨道粘着系数的影响,即使在冰雪天气等情况下列车牵引力也不会发生变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中低速磁悬浮在城市轨道交通中的运用磁悬浮技术的研究源于德国,1922年德国工程师赫尔曼·肯佩尔提出了电磁悬浮原理,1934年他申请了磁悬浮列车的专利,1953年完成科学报告《电子悬浮导向的电力驱动铁路机车车辆》。

20世纪70年代以后,世界工业化国家经济实力不断加强,为提高交通运输能力以适应经济发展的需要,德国、日本、美国、加拿大、法国、英国等发达国家相继开始对磁悬浮运输系统进行开发,并取得令人瞩目的进展。

磁悬浮列车与传统轮轨列车不同,它用电磁力将列车浮起,导向和驱动。

在运行时不与轨道发生摩擦,中低速磁悬浮列车(时速小于200km)在运行时发出的噪声非常低。

此外,磁悬浮列车还具有速度高,制动快,爬坡能力强,转弯半径小,振动小,舒适性好等优点。

在修建城市轨道交通线路的造价攀升的情况下,中低速磁悬浮线的性能价格比好的优势得以显示出来。

1 磁悬浮技术的种类目前,载人试验获得成功的磁浮列车系统有3种,它们的磁悬原理和系统技术完全不同,不能兼容。

(1)用常导磁吸式(EMS)进行悬浮导向,同步长定子直线电机驱动的高速磁浮列车系统。

以德国的TR(Trans rapid)磁浮列车系统为代表。

TR采用常规电导吸引的方式进行悬浮和导向,悬浮的气隙较小,一般为 10mm 左右;由地面一次控制的直线同步电机驱动。

我国上海机场磁悬浮线就是引进的德国 TR系统(2)采用超导磁斥式(EDS)进行悬浮和导向,同步长定子直线电机驱动的高速磁浮列车系统。

高速超导磁悬浮列车以日本的ML系统为代表。

车上的超导线圈在低温下进入超导状态,通电后产生很强的磁场,列车运动时,超导磁体使线路上的导体产生感应电流,该电流也将产生磁场,并与车上的超导磁体形成斥力,使车辆悬浮(悬浮高度较大,一般为100mm左右)。

列车由地面一次控制的线性同步电机进行驱动,同步电机定子三相绕组铺设在地面线路两侧,无需通过弓网受电方式供电。

(3)采用常导磁吸式(EMS)进行悬浮和导向,异步短定子直线电机驱动的中低速磁浮列车系统。

以日本的HSST为代表,采用常规电导吸引的方式进行悬浮和导向,悬浮的气隙较小,一般为10mm左右,采用车载一次控制的直线感应电机驱动。

由于需要通过导电轨和受流器向车辆供电而限制了提速,列车最高速度比上述两种磁浮列车低。

日本于1974 年开始HSST 的开发,以最高速度以100~300km/h为目标速度,用于城市近郊运输以及市中心与机场之间的中转运输。

2 中低速磁悬浮交通系统组成中低速磁悬浮交通系统主要由线路、车辆、轨道、道岔、供电、信号、站场、等子系统构成。

城市轨道交通系统都是以车辆为核心进行设计、运营,中低速磁悬浮车辆与轮轨车辆在驱动方式、技术特征方面的根本差异,导致其他子系统技术上也有很大的变化,某些技术已经超出传统轨道交通的技术领域。

中低速磁悬浮交通系统供电、信号、线路、站场的设计与现运营的轨道交通系统理念、技术路线相同,可采用已有的成熟可靠的技术,仅针对磁悬浮车辆的技术特点进行专项设计和改进即可。

但车辆、轨道、道岔的设计策略由于磁悬浮技术的引入产生了根本性的变革,需要专业的研发、验证。

国内外研究机构、厂商已经进行了大量的前期工作,其中日本HSST中低速磁悬浮系统已经商业运营近10年,运行情况良好,充分展示了其技术成熟,独具特点和优势;国内也修建了实验线路,已证明是安全可靠的。

2.1 车辆技术从功能角度上看轨道车辆都是人员从一个地点安全、舒适地运送到另一个地点,车辆与人的人机界面都是一样的,与之对应的车体、座椅、门、空调、灯、PIS系统在技术层面不存在差异,可采用轨道车辆成熟技术甚至产品。

但如何开发运输装载人的车体则采用了不同的思路,用磁悬浮技术代替了车轮,随之必须用直线电机替代旋转电机和轮对组成的驱动系统,接着形成了承载车辆、悬挂电磁铁和直线电机的悬浮架,与之配合的轨道也变成了F轨形状。

从系统上看,正是磁悬浮技术的应用改变了整个系统的技术形态。

2.2磁悬浮技术磁悬浮系统有常导电磁吸力悬浮(Electrical Magnetic Suspension,EMS)、超导电动斥力悬浮、永久磁铁悬浮3种基本的悬浮方式。

这里讲述的车辆采用EMS技术。

磁悬浮系统由控制器、传感器、电磁铁、F轨道构成。

控制器采用二电平的H型斩波电路、电流环和位置双环PID控制策略。

测量间隙的传感器采用电涡流原理,冗余设计,以适应轨缝和提高可靠性。

电磁铁采用铝制导线绕制,选择具有导磁性好、强度足够高的钢材作为铁心和极板。

F轨道用耐候钢轧制而成。

国内乘凉磁悬浮系统的关键部件技术、控制技术已经得到充分验证,成熟可靠,技术水平完全满足工程化应用的需要。

电磁吸力型悬浮、导向原理示意图2.3直线电机牵引技术中低速磁悬浮列车采用短定子直线电机驱动方式,电机定子安装在车辆左右两侧,转子(铝材感应板)沿列车前进方向铺设在F轨道上。

受到悬浮架安装空间的限制,直线电机长度比较短,工程上每节车辆采用5串2并的方案实现电机三相平衡。

逆变主电路与地铁牵引系统采用相同技术,由高压电器箱、电抗器和牵引逆变器构成。

直线电机产生的垂直法向力对磁悬浮系统稳定有重要的影响。

一方面法向力增加了磁悬浮重量,法向力的变化还会影响磁悬浮系统控制的稳定性;另一方面磁悬浮气隙的变化会影响到直线感应电机牵引力的发挥。

为保证磁悬浮系统的稳定性和气隙的相对稳定,牵引控制采用恒滑差频率控制,使法向力控制调节随速度变化时比较平稳,实现牵引系统与磁悬浮系统的解耦,从而保证磁悬浮和直线电机牵引系统都能稳定运行,充分发挥各自的性能。

2.4 悬浮架技术悬浮架是磁悬浮车辆的走行机构,相当于轮轨车辆转向架,是列车实现悬浮、导向、牵引、制动的执行机构。

与轮轨车辆转向架相比,柔性悬浮架具有其特有的技术特征:1)通过电磁吸力实现支撑和导向中低速磁悬浮车辆悬浮架上电磁铁与轨道之间的电磁吸力支撑相当于轮轨转向架的一系悬挂,为车辆提供支撑和导向力。

2)左右模块相互解耦单悬浮架模块装配是直线电机、悬浮电磁铁、空气弹簧悬挂等多个重要部件的安装基础,由结构和功能相同的左右模块连接装配,采用螺栓、螺母、吊杆、抗侧滚梁、关节轴承等零部件装配而成,可以实现相互解耦。

这样车辆在起浮时悬浮架的垂向运动不会相互干扰,通过抗侧滚梁和关节球轴承可以实现纵向相对平动,使模块装配产生菱形变形。

当悬浮架模块通过曲线时,在电磁吸力的导向作用下,菱形变形后的左右模块沿曲线轨道径向排列,使模块与F轨道重合度达到最大,以保证车辆悬浮、导向和牵引能力损失最小,仅在预定的允许范围内波动。

3)采用迫导向径向机构和线性轴承当车辆进入曲线时,在离心力的作用下,先进入曲线的端部模块相对F轨道最先发生横向偏离,此时电磁吸引力立即产生横向分力,将模块拉向F轨道。

横向力通过滑台迫使该径向机构运动,带动中间滑台横向运动,迫使后进入曲线的中间模块沿曲线方向径向排列。

这种迫使导向机构显著降低了滑台的横移量,并将悬浮架所承担的横向力均匀地分配到各滑台上,提高了悬浮架曲线通过能力。

同时,线性轴承使车辆经过最小曲线时,悬浮架与车体之间的位移不会造成车体与悬浮架的脱离,保证平稳地经过最小曲线。

2.5 制动技术中低速磁悬浮列车的制动系统借鉴了成熟的地铁车辆制动技术,采用微机控制,具有以电制动优先、空气制动补充且能平滑过渡等特性。

由于磁悬浮列车没有车轮,所以采用气-液转换技术,将低气压转化为中高液压,以液压驱动制动夹钳抱紧F轨,有效解决因空间限制,制动夹钳结构尺寸小而不能满足制动力要求的问题。

制动夹钳2.6测速系统由于没有车轮,脉冲转速传感器测速方式无法在中低速磁悬浮列车上应用,常用非接触式的测速方法,如交叉感应环线和枕轨计数测速法。

交叉感应环线测速是通过在轨道上铺设交叉环线,在列车上安装车载感应线圈实现。

对交叉环线输入一定频率的交流信号,当列车线圈处于交叉环线正上方时,会产生最大感应电压,而位于相邻环线的交叉部分时,产生最小感应电压。

由此,当车辆运行时,感应线圈将产生按一定规律变化的感应电压,感应电压经处理形成脉冲信号,再经过适当的算法处理,可以得到列车当前的速度。

轨枕计数测速,采用接近感应式传感器检测轨枕的方法进行测速。

当列车运行经过轨枕时,相邻2个传感器都会产生脉冲信号,采集系统会自动记录2个脉冲信号上升沿的时间差,依据传感器之间的距离就可以计算出列车的速度。

3 轨道磁悬浮系统中的轨道是承载磁悬浮列车的钢轨,其作用与轮轨交通中的钢轨相同,但形式上有很大的差别。

轨道主要由感应板、F轨、紧固件、轨枕、扣件系统、混凝土承台组成。

其整条线路为有缝线路。

感应板采用铝型材感应板;F轨采用经济耐候钢,并进行防腐处理;轨枕可采用热轧H型钢轨枕或方钢轨枕,刚轨枕常采用经济耐候钢,并进行防腐处理;扣件是连接钢轨枕和承台的重要部件,结构较复杂,针对路基沉降、F轨形变实现三维调节,保证轨道的平顺度。

在实际铺设过程中,受到最大轨缝、热胀冷缩值的限制,还需要增加多种轨道接头,来保证轨道平滑顺畅。

系统需要传感器检测极板与轨道的间隙进行自动控制,对F轨道检测面的要求较高,若接缝处错位超差或出现折角,会对磁悬浮系统带来冲击,严重时会在接缝处响应异常,影响车辆运行。

F轨的磁极面与电磁铁构成磁回路,F轨2个磁极面的平行度、磁极面的平顺度都会影响磁悬浮系统性能及列车的运行性能。

4 道岔磁悬浮道岔系统作为磁悬浮交通线路中的重要组成部分,是实现车辆在线路或车场内进行换线、避让等操作的基本装置,为磁悬浮车辆高效运营管理提供了必要条件。

传统铁路道岔只移动尖轨和心轨,基本轨保持不动。

因为中低速磁悬浮车辆是抱轨形式,支撑方式使得磁悬浮道岔必须采用整体移梁的方式实现线路转换。

按照线路转换的需求,中低速磁悬浮道岔可以分为单开道岔、对开道岔、多开道岔、单渡线道岔组合和交叉渡线道岔组合。

道岔的转换控制分为远程控制、现场控制和手动控制3种模式。

在远程控制模式下,由运控系统向道岔控制系统发出转换指令,道岔系统自动完成解锁、转换、锁闭,并判断是否到位,当确认转换到位后,向运控系统输出位置表示信号,切断给定信号,完成转换过程。

在实际运营线路中,《中低速磁悬浮道岔系统设备技术条件》规定道岔转辄时间不大于15s。

5 供电系统中低速磁悬浮交通供电系统的结构及设备配置与其他形式的城市轨道交通系统一致,但在受流方式、接地方式和漏电保护装置等方面存在差异。

1)三轨受流四轨回流的侧部受流方式中低速磁悬浮列车运行时与走行轨无接触,且走行轨被作为直线电机的一极,不能再承担牵引负荷回流的作用。

系统必须为车辆提供供电与回流2个通道,若采用接触网--受电弓形式,则必须架设2条接触线路,车辆上配置2个受电弓,这样系统复杂,也会影响景观效果,所以磁悬浮交通线路均使用第三轨受流、第四轨回流的接触轨--集电靴方式,这样结合车辆抱轨形式节约空间,同时负极轨回流从源头上杜绝杂散电流的产生,对地下设施和金属构筑的腐蚀降到最低。

相关文档
最新文档