油水分离器工作原理

油水分离器工作原理
油水分离器工作原理

制桶设备液压与气压传动系统的使用与维护(10)

第六章制桶设备气压传动系统简介

一、气源装置

大型制桶企业,车间内有压缩空气的设备很多,不宜采用小型空气机供气,最好建一个空压机站,采用集中供气的方式,不仅节能、供气质量好,而且维修、管理比较方便。

自由空气经过空气压缩机压缩后,压缩空气要经过冷却、干燥、净化等处理才能使用于气动系统。气源装置是用来产生具有足够压力和流量的压缩空气并将其净化、处理及储存的一套装置。

1、气源系统的组成

常见的气源装置如图30所示。空气首先经过滤气器过滤出部分灰尘、杂质后进入压缩机1,压缩机输出的空气先进入后冷却器2进行冷却,然后进入油水分离器3,使部分油、水和杂质从气体中分离出来,得到初步净化的压缩空气送入储气罐4中,即可供给对一般制桶设备气动装置使用。如果设备对空气质量要求高的话,还要进一步净化。

图30 气源装置组成示意图

1-空气压缩机 2-后冷却器 3-油水分离器 4-储气罐

2、空气压缩机

空气压缩机是将机械能转变为气体压力能的装置,是气动系统的动力源。空气压缩机的种类很多,一般有活塞式、膜片式、叶片式、螺杆式等类型,其中气压系统最常用的机型为活塞式压缩机。如图31为空

气压缩机的工作原理图,当活塞3向右运动时,由于左腔容积增加,压力下降,而当压力低于大气压力时,吸气阀9被打开,气体进入气缸2内,此为吸气过程。当活塞向左运动时,吸气阀9关闭,缸内气体被压缩,压力升高,此过程即为压缩过程。当缸内气体压力高于排气管道内的压力时,顶开排气阀,压缩空气被排入排气管道内,此过程为排气过程。至此完成一个工作循环,电动机带动曲柄做回转运动,通过连杆、滑块、活塞杆、推动活塞做往复运动,空气压缩机就连续输出高压气体。

图31 空气压缩机的工作原理

1-排气阀 2-气缸 3-活塞 4-活塞杆 5-滑块

6-滑道 7-连杆 8-曲柄 9-吸气阀

在选择空气压缩机时,其额定压力应等于或略高于所需的工作压力,其流量等于系统设备最大耗气量并考虑管路泄漏等因素。

3、气源净化装置

(1)后冷却器

后冷却器安装在空气压缩机出口管道上,将压缩机排出的压缩气体温度由140-170℃降至40-50℃,使其中水汽、油雾汽凝结成水滴和油滴,便于经油水分离器排出。根据冷却介质不同可分为风冷和水冷两种。常用风冷式冷却器的工作原理如图32所示,它是靠风扇产生的冷空气流吹向带散热片的热气管道来降温的。其优点为不需水源,占地面积小,重量轻,运转成本低和易于维修。

图32风冷式后冷却器工作原理图

1-冷却器2-出口温度计3-指示灯4-按钮开关5-风扇(2)油水分离器

油水分离器,用于分离压缩空气中凝聚的水分和油分等杂质,使压缩空气得到初步净化。油水分离器工作原理是:当压缩空气进入油水分离器后产生流向和速度的急剧变化,再依靠惯性作用,将密度比压缩空气大的油滴和水滴分离出来。如图33所示为常见的撞击式和环形回转式油水分离器。压缩空气自入口进入分离器壳体后,气流先受隔板阻挡撞击折回向下,继而又回升向上,产生环形回转。这样使水滴和油滴在离心力和惯性力作用下,从空气中分离析出并沉降在壳体底部,定期打开底部阀门即可排出油滴水滴。经初步净化的空气从出口送往储气罐。

图33 油水分离器

(3)储气罐

储气罐主要用来调节气流,减少输出气流的压力脉动,使输出气流具有流量连续性和气压稳定性。并且储存一定量的压缩空气,作备用和应急气源。

储气罐一般采用圆筒状焊接结构,有立式和卧式两种,如图34所示为立式储气罐的结构图。目前,在气压传动中,后冷却器、油水分离器和储气罐三者一体的结构形式已被采用,这使压缩空气的辅助设置大为简化。

图34 立式储气罐

(4)干燥器

干燥器的作用是为了把被步净化的压缩空气进一步净化以吸收和排除其中的水分、油分及杂质,使湿空气变成干空气。目前使空气干燥的方法主要是冷却法和吸附法。冷却法是利用制冷设备使压缩空气冷却到露点温度,析出相应的水分,降低含湿量,提高空气的干燥程度。吸附法则是使空气通过栅板、干燥吸附剂、滤网等除去杂质,干燥吸附剂有硅胶、铝胶、焦炭等。

如图35所示为吸附式干燥器。湿空气从管1进入干燥器,通过吸附剂层21、过滤网20、上栅板19和下部吸附剂层16后,其中的水分被吸附剂吸收而变得干燥。然后再经过铜丝网15、下栅板14和过滤网1 2,干燥、洁净的压缩空气便从管8排出。

图35 吸附式干燥器

1-空气进气管 2-顶盖 3、5、10-法兰 4、6-再生空气排气管 7-再生空气进气管8-干燥空气输出管 9-排水管 11、22-密封垫 12、15、20-铜丝网过滤网

13-毛毡 14-下栅板 16、21-吸附剂层 17-支承板 18-筒体 19-上栅板

TYJ系列立式油水分离器

一. 工作原理

TYJ系列立式油水分离器其内部有两种滤芯:聚结滤芯和分离滤芯。混合介质通过过滤、聚结、沉降、分离四个过程,实现油水分离。

第一级: 过滤

由于聚结介质的孔径较小,在聚结器内部采用高密度玻纤介质的结构过滤,使得滤芯有很大的纳污量,除去液流中存在的颗粒物质。

第二级: 聚结

烃类化合物和水的混合物由内向外流经聚结滤芯,当混合物通过特殊设计的聚结介质的聚结层时,分散相中的微小液滴就在这里汇聚即聚结,在其表面形成大水滴。

第三级:沉降

聚结出的大水滴离开聚结滤芯后在重力的作用下下沉到油水分离器底部,实现自然分离。

第四级: 分离

尺寸较小的水滴随介质流向分离滤芯,分离滤芯是由特殊材料制成,其表面具有良好的憎水性能,介质由滤芯外向内流动,可以防止水的进入。它只允许无水的油品通过,小水滴在分离滤芯外表面结合成大水滴下沉。水和油通过不同的排液口排出。

二.应用场所

最终产品(汽油,煤油,柴油)的脱水

碱处理过程后碱液的清除

在催化,裂化过程中的脱水,防止催化剂中毒

液化石油气中水分和胺的分离

其他烃类化工介质的脱水

三.适用液体:各种碳氢烃类化合物

航空燃料汽油煤油柴油

液化石油气石油焦石脑油

苯甲苯二甲苯异丙苯

聚丙苯环乙烷异丙苯环乙醇

液压油润滑油等

四.TYJ油水分离器的性能指标

1. 初始压差:<0.02Mpa

2. 脱水能力:水含量可达15%

3. 最大允许压差:0.1Mpa

五.工艺流程

六.油水分离器的结构

1在线取样接头2进口3引压口4一级托盘5罐体6聚结滤芯7压差显示装置8名牌及流向9封头固定装置10安全阀11自动排气装置12封头13滤芯压紧装置14分离滤芯15起升装置16二级托盘17界位计18排水阀19出口

七.规格型号

油水分离器使用说明

油水分离器使用方法 油水分离器就是串联在机组进油管路中,将油和水分离开来的仪器,原理主要是根据水和燃油的密度差,利用重力沉降原理去除杂质和水份的分离器,内部还有扩散锥,滤网等分离元件。 Lees power 可针对不同地区油品以及客户要求在发电机组加装此装置,且确保机组出厂前每一个此装置都经过严格测试。下面为大家讲诉如何使用油水分离器。分两部分: 一、初次使用 二、排放完积水杯内的水或者杂质后的使用方法 首先,我们先来了解下油水分离器是如何串联在机组进油管路中的:(进油油路) 图一图二图三 使用方法: 一、初次使用(工具13#开口扳手,抹布适量) 用户在初次使用发电机组时,首先将底部油箱加满柴油后。 然后使用13#的开口扳手(图1),将(图2)红色圈内的柴油滤清器总成上的螺栓逆时针方向松开后(图4),在将(图5)中红色圈内手压油泵,向下压10-15下,将柴油滤清器内部的空气排出(伴随有少量柴油)。同时会发现(图6)油水分离器的积水杯中已经吸有油箱中的柴油。 图1图2 图3 图4 图5图6 图7 图8 持续按压图五圈内手压油泵,直至油水分离器积水杯中注满油,如图7;然后将图8柴油滤清器总成上的螺栓顺时针拧紧。图七图八此时方可开启机组 二、排放完积水杯内的水或去除杂质后的使用方法 (工具13#开口扳手,抹布适量) 机组长时间使用或者油品不纯净的情况下,油水分离器积水杯内积存大量水或者杂质。此时需要对油水分离器进行清理工作。操作如下: 先用13#的开可扳手将图9红色圈内的积水杯底的白色放水栓顺时针方向松开如图11,将水

排出后(如是杂质直接卸下放水栓)再逆时针将白色放水栓拧上(放水栓为塑料易损件,故而确保不漏油即可),至图12状。然后重复图1-图8动作将油水分离器积水杯内吸满油。方可再开启机组。注:无论在何时开启机组都请确认油水分离器积水杯内柴油是满的,方可开启机组。否则机组开启后会立刻报警。 图9图10图11图12

油水分离器使用说明书

油水分离器使用说明书 1 .概述 舱底水分离器是在积累多年研制经验及吸取国外先进技术的基础上采用真空及微滤原理研制成功的新产品。可用于处理船舶舱底油污水,也适用于工矿企业、油库等含油污水处理,并能处理含乳化油浓度较高的油污水,性能符合国际海事组织规定的船舶含油污水排放标准及我国政府规定的船舶、工矿企业油污水排放标准,并符合国际海上环境保护委员会 IMO-MEPC107 ( 49 )决议规范要求。本产品己获得中国船级社颁发的国际通用的型式认可证书。 本装置有下列特点: ( l ) 配套泵不直接吸入含油污水,因此避免了原含油污水的乳化,保证分离装置有较高的分离效果。 ( 2 )分离器中的第一级聚结分离元件能自动反冲洗,不会堵塞,长期使用不需要更换。 ( 3 ) 有良好的排油自动控制及配套泵的安全保护措施,根据油污水性质能自动控制一级处理排放或转入二级处理排放,以及处理不合格时自动关闭排出口不合格处理水返回机舱功能。操作简便,可靠性高,符合无人值班机舱要求。 ( 4)装置由一级分离器、二级分离器、螺杆泵(柱塞泵)、电气控制箱、油份浓度报警记录仪、粗/精滤器、三通转换阀(电磁转换阀)等组装在公共基座上,必要时也可以根据机舱位置将一级油水分离器和电气控制箱及二级乳化油分离器和油份浓度报警记录仪分开独立安装。 3 .基本工作原理(型舱底水分离器系统原理图) 配套螺杆泵(柱塞泵)在一级分离装置排出口处抽吸处理后的排水过程中,使一级分离装置内产生真空,舱底水经粗过滤器和上部吸水/排油阀进入分离器内部扩散喷口,进行初步油水分离,大油滴浮至顶部,含有小颗粒油滴的污水向下进入特制的聚结器,在内部进行聚结分离,形成较大油滴,上浮至顶部集油室。一级处理后的污水则向下经分离器底部排出,流向底部进水三通阀(电磁阀),进入单螺杆泵(柱塞泵)吸入口,从泵的排出口流出再经过排水三通阀,一、二级转换三通阀(常开、常闭电磁阀)和一级排水截止止回阀排向舷外。 当一级分离器排出的水不合格时,油份报警记录仪发出信号,转换三通阀(常开、常闭电磁阀)动作,一级排放水进入二级乳化油分离器继续进行微滤分离处理。合格的排放水经二级排水三通阀(二级排水截止止回阀)排向舷外,每隔三十分钟再回复至一级分离器处理,恢复上述处理工况。当二级乳化油分离器处理性能失效,二级排放不合格时,油份报警记录仪再次发出信号,回舱气动阀(回舱电磁阀)打开,处理水经此阀回舱底。 当处理工况为二级微滤分离时,二级分离器中上部的排污调节阀为常开式,一部分带有细小固体悬浮物的油污水通过此阀回舱底以减少微滤器堵塞阻力,排污调节阀的开启量,通过观察流量计调节至额定的l / 2排出水量。 分离后的污油在一级分离器的顶部集聚到一定程度时,油位检测器触发信号,气控型分离装置使一级处理电磁阀开启,压缩空气同时进入三只三通阀的顶部气缸,推动活塞向下,关闭常通口,打开常闭口,舱底水暂停进入分离器,分离后的水暂停排出。海水(清水)由进水三通阀的常闭口进入泵吸入口,从泵的出口再通过排水三通阀的常闭口进入分离器底部,逆向经过聚结器进行反冲洗,并使分离器内部由真空变成压力状态。集聚在顶部的污油通过上部吸水/排油三通阀的常闭口排向污油柜。 4 .装置的主要配套件 4 .1 .电气控制箱 4 .1 .1 专用泵的启动,停止及一、二级自动转换原理(见图2电气原理接线图) 舱底水分离器专用泵组由三相交流电动机带动单螺杆泵(柱塞泵)将含油污水吸入舱底水分离器。 当舱底油污水被处理完或吸入过滤器被堵塞时,均能使专用泵停止工作,其电器工作原理为: 当污水舱内液位过低出现吸空现象时,真空度下降至大气压力,或当吸入滤器被堵塞时,分离器上部的真空度将急剧上升,在出现这二种情况时,真空度有明显变化,通过电接点真空表转换成电信号,当真空度过高时,实际真空度指针(黑色针)与高真空度接触指针(绿色指针调整至一0 . 05MPa )接通,当真空度过低时,真空度指针与低真空度接触指针(红色指针调整至一0 . 01MPa )接通,切断安装在电器控制箱内的交流接触器电源,使电动机停止工作。 4 .1 .2 污油温度自控原理 为使集油室中高粘度的油通畅地排出,并防止污油粘结在油位检测器上造成控制失灵,在油位检测器附近设置了电加热自控系统。 其工作原理为:利用装在集油室中的温度检测元件接收信号,通过电接点温度表的一根实际温度指针和另二根高、低温度调节指针转换成电信号,对电加热器加热温度实行自控。一般调整至35℃~45℃。 4 .1 .3 自动排油原理 油位是通过电阻式油位检测器检测,其工作原理如下: 在一级油水分离器顶部的集油室中装有高位、低位两根油位检测器,利用油位检测器在水和油中的导电率不同,从而在油位检测器与油水分离器壳体之间产生不同的电信号去控制一级处理电磁阀(排油电磁阀)通过压缩空气打开吸水/排油三通阀排油通道,达到自动排油的目的。 本控制箱还备有手动排油控制。(此时应将排油转换开关拨置手动位置,手动排油动作则自动排油不起作用)。 4 .1 .4 控制箱其它功能说明 (1)本控制箱设有至机舱集中控制台的控制触头,以提供集控台上的灯光,显示 舱底水分离器在工作状态。 (2)控制箱通过两个安装在精滤器和乳化油分离器上的电接点压力表提供超压报警灯以提醒操作员更换失效的滤芯或乳化油

(完整word版)三相分离器结构及工作原理

一、三相分离器结构及工作原理 1.三相分离器的工艺流程 所有来油经游离水三项分离器分离再添加破乳剂进入换热器加热升温至70~75℃然后进入高效三相分离器进行分离,分离器压力控制在0.15~0.20Mpa,油液面控制在80~100cm、水液面控制在100~120cm,除油器进出口压差控制在0.2Mpa,处理合格后的原油含水率控制在2%左右经稳定塔闪蒸稳定后进入原油储罐,待含水小于0.8%后外输至管道。 2.三相分离器工作原理 各采油队来液由分离器进液管进入进液舱,容积增大,流速降低,缓冲降压,气体随压力的降低自然逸出上浮,在进液舱油、气、水靠比重差进行初步分离。分离后的水从底部通道进入沉降室。经过分离的液体经过波纹板时,由于接触面积增加,不锈钢波纹板又具有亲水憎油的特性,再进行油、气、水的分离。随后进入沉降室,靠油水比重差进行分离;通过加热使液体温度增加,增加油水分子碰撞机会,加大了油水比重差;小油滴和小水滴碰撞机会多聚结为大油滴和大水滴,加速油水分离速度;油上浮、水下沉实现油、水进一步分离;油、气和水通过出口管线排出。 2.1重力沉降分离 分离器正常工作时,液面要求控制在1/2~2/3之间。在分离器的下部分是油水分离区。经过一定的沉降时间,利用油和水的比重差实现分离。 2.2 离心分离 油井生产出来的油气混合物在井口剩余压力的作用下,从油气分离器进液管喷到碟形板上使液体和气体,在离心力的作用下气体向上,而液体(混合)比重大向下沉降在斜板上,向下流动时,还有一部分气体向气出口方向流去,当气体流到削泡器处,需改变气体的流动方向,气体比重小,在气体中还有一部分大于100微米的液珠与消泡器碰撞掉下沉降到液面上,同时液面上的油泡碰撞在削泡器,使气体向上流动,完成了离心的初步气液分离 2.3碰撞分离 当离心分离出来的气体进入分离器上面除雾器,气体被迫绕流,由于油雾的密度大,在气体流速加快时,雾状液体惯性力增大,不能完全的随气流改变方向,而除雾器网状厚度300mm截面孔隙只有0.3mm小孔道,雾滴随气流提高速度,获得惯性能量,气体在除雾器中不断的改变方向,反复改变速度,就连续造成雾滴与结构表面碰撞并吸附在除雾器网上。吸附在除雾器网上油雾逐渐累起来,由大变小,沿结构垂直面流下,从而完成了碰撞分离。

油气分离器的故障分析及预防、解决方案..

但是,一个月前,准备出发到广州,不经意地检查了一下机油(因为是大众的车,所以以前机油检查的非常勤快,但是从来没有少过机油,所以放松了警惕),机油尺竟然到最下限了! 第一反应就是去看看小灰的菊花——晕死,好比吃了好几包奥利奥.........看来哥买的是真的大众 啥情况?早就听说过老万的故事,马上从头到尾把老万的帖子仔仔细细的读了一遍,原来罪魁祸首是缸盖顶部这个“油气分离器”,红框部分: 问了几个玩大众的高手,情况大概是这样的:

1,大众的车,包括进口大众,EA888系列发动机(二代)的“油气分离器”的性能不是很稳定,可靠性有些欠缺; 2,当油气分离器失效,分离效果不好的时候,或者发动机内部压力(曲柄箱内部机油蒸汽压力)过高的时候,机油蒸汽会溢出,进入发动机,参与燃烧,造成烧机油。 仔细的研究了一下图纸和说明书,在这里把我自己对”烧机油“的分析和理解,给大家分享一下,希望对大家有帮助,在大众改进设计或者使用更优良的油气分离器之前,尽量避免EA888烧机油,如有纰漏错误,希望高手指点更正。 故障现象——我们先来说一下因为这个油气分离器失效而造成烧机油的故障现象(借用老万的图片): 1,涡轮增压器进气口管箍处有油迹,肉眼直观就可以看出来,非常容易检查,我这里叫做A 漏油点:

2,油气分离器与进气歧管的连接管内有机油,需要拔下图中红圈的管子查看,这里叫做B

下面我们再来谈谈,出现A,B两个漏油点的原因及过程。 首相我们来看大众二代EA888发动机的进气原理图: 上图中的文字说明简单的叙述了一下油气分离器发生故障或功能下降后,机油蒸汽的流向。 最终机油蒸汽都是参与燃烧,被消耗掉了,即所谓的烧机油,而不是所谓的活塞环漏油等等.... 参照上图,简单说一下油气分离器的工作原理,方便大家更好的理解接下来的故障分析: 1,油气分离器安装于缸盖顶端,进口与发动机曲柄箱联通;

油水分离器原理带自动

油水分离器工作步骤 1)油水分离器杂物与液体分离:污水进入系统的过滤腔后,可随液体流动的较大的固型物首先被过滤网筐分离出来,其余较小的杂志物沉降在设备底部,以此来保证后续的油水分离物有效进行。 2)油水分离器油水分离:通过油水分离腔2的作用,动植物脂肪和油脂浮到水面表层,当浮于水面的油脂累计到一定量时会平稳呢流动到集油槽中,再经排油阀流出,处理后的污水经排出口流出,根本实现油水分离。(为防止低温时油脂凝结不利于流出,寒冷环境下使用的设备可选配集油槽和排油阀加温系统。) 产品名称:全自动油水分离器 全自动油水分离器概述 全自动隔油器,主要结构原理是由隔油槽、自动刮油机、气浮装置三部分组成。当废水排水流入第一槽时,过滤篮或机械格栅将其中的固体杂物截流除去。进入第二槽后,利用密度差使油水分离器,废水沿斜板向下流动,进入第三槽后从溢流堰流出,再经出水管收集排出。 水中的油珠沿斜板的上表面聚向上流动,浮于水表面上;溶解在水中的油,经气浮装置将油吹到水表面,提高油水分离效果,然合通过自动刮油机,将废水平面的油刮至接油槽内。 1、自动除油除渣机主要材质均采用不锈钢制作,不易腐蚀,经久耐用。 2、过滤篮或机械格栅将废水中的固体物自动分离出来,减少后续堵塞。 3、菜渣、浮油、悬浮物、结块动物油、皂化成豆花状之油脂或硬块,同时分别排出。 4、可有效去除各类动植物油、黏稠或固化的猪油、石油、润滑剂油等各类工业用油。 5、成熟的工艺和设备使运行更稳定、自动化程度更高,设备安装操作简易,故障少;节能环保。 6、槽体的长、宽、高可根据客户使用现场订做。 全自动油水分离器适用范围 可广泛适用于宾馆、饭店、食堂、食品加工等含动值物油废水的处理,也适用于油田、石油化工、船舶、加油站、洗车场、车库、机械加工制造、以及炼焦等含矿物油的工业废水的处理,还可以与其他水处理装置配套使用。 全自动油水分离器产品特点 一、自动刮油 二、气浮装置 三、自动排渣 四、加温系统 五、电控装置

气液分离器的原理

气液分离器采用的分离结构很多,其分离方法也有: 1、重力沉降; 2、折流分离; 3、离心力分离; 4、丝网分离; 5、超滤分离; 6、填料分离等。 但综合起来分离原理只有两种: 一、利用组分质量(重量)不同对混合物进行分离(如分离方法 1、2、3、6)。气体与液体的密度不同,相同体积下气体的质量比液体的质量小。 二、利用分散系粒子大小不同对混合物进行分离(如分离方法4、5)。液体的分子聚集状态与气体的分子聚集状态不同,气体分子距离较远,而液体分子距离要近得多,所以气体粒子比液体粒子小些。 一、重力沉降 1、重力沉降的原理简述 由于气体与液体的密度不同,液体在与气体一起流动时,液体会受到重力的作用,产生一个向下的速度,而气体仍然朝着原来的方向流动,也就是说液体与气体在重力场中有分离的倾向,向下的液体附着在壁面上汇集在一起通过排放管排出。 2、重力沉降的优缺点 优点: 1)设计简单。 2)设备制作简单。

3)阻力小。 缺点: 1)分离效率最低。 2)设备体积庞大。 3)占用空间多。 3、改进 重力沉降的改进方法: 1)设置内件,加入其它的分离方法。 2)扩大体积,也就是降低流速,以延长气液混合物在分离器内停留的时间。 1)设计简单。 2)设备制作简单。 3)阻力小。 缺点: 1)分离效率最低。 2)设备体积庞大。 3)占用空间多。 3、改进 重力沉降的改进方法: 1)设置内件,加入其它的分离方法。 2)扩大体积,也就是降低流速,以延长气液混合物在分离器内停留的时间。

优点:4、由于气液混合物总是处在重力场中,所以重力沉降也广泛存在。由于重力沉降固有的缺陷,使科研人员不得不开发更高效的气液分离器,于是折流分离与离心分离就出现了。 二、折流分离 1、折流分离的原理简述 由于气体与液体的密度不同,液体与气体混合一起流动时,如果遇到阻挡,气体会折流而走,而液体由于惯性,继续有一个向前的速度,向前的液体附着在阻挡壁面上由于重力的作用向下汇集到一起,通过排放管排出。 2、折流分离的优缺点 优点: 1)分离效率比重力沉降高。 2)体积比重力沉降减小很多,所以折流分离结构可以用在(高)压力容器内。 3)工作稳定。 缺点: 1)分离负荷范围窄,超过气液混合物规定流速后,分离效率急剧下降。 2)阻力比重力沉降大。 3、改进 从折流分离的原理来说,气液混合物流速越快,其惯性越大,也就是说气液分离的倾向越大,应该是分离效率越高,而实际情况却恰恰相反,为什么呢? 究其原因: 1)在气液比一定的情况下,气液混合物流速越大,说明单位时间内分离负荷越重,混合物在分离器内停留的时间越短。 2)气体在折流的同时也推动着已经着壁的液体向着气体流动的方向流动,如果液体流到收集壁的边缘时还没有脱离气体的这种推动力,那么已经着壁的液体将被气体重新带走。在气液比一定的情况下,气液混合物流速越大,气体这种继续推动液体的力将越大,液体将会在更短的时间内

船用油水分离器原理及操作步骤

油水分离设备主要组成部分,包括控制箱,分离器(内有滤板、滤心等),管路,专用配套泵,自动排油监控系统(排油电磁阀、加热器、压力表、温度表及探头等附属设备),等。 检验依据是MARPOL73/78公约和2004国内航行海船法定检验技术规则。 任何部分的缺陷都会影响设备分离效果,所以总的要求是整体处于良好状态。 1检验控制箱 控制箱有泵浦电控箱、自动排油电控箱及排油监控系统电控箱等,有的是结合在一起,有的是分开的。 检查时,主要查看各电控箱能否对相关的用电设备正常供电及控制,有关指示灯能否亮。若电源指示灯不亮,则可能是总配电板或分配电板上油水分离设备电源开关未合闸,或电控箱内保险丝断了。 2检验分离器和管路 (1)检查分离器 查看分离器简体,确认: ·无严重锈蚀,无锈穿现象。 ·铭牌明显,标明的处理能力与证书相符。 ·查看筒体上取样口的龙头,畅通,开关自如。 (2)检查分离器的安装 安装要求是,任何情况下,都不会因虹吸作用而使分离器内水位下降,更不允许存在排空的可能。 具体衡量标准是: ·如果分离器安装在轻载水线以下,分离器的顶部要低于船舶轻载水线lm以上,或分离器排水管的舷外排出口高于分离器顶部1m以上: ·如果分离器安装在轻载水线以上,则排水管必须高于分离器顶部lm以上,并在排水管的最高点上设有透气管和透气阀。 (3)检查管路 查看有无不经油水分离器而直接排往舷外的旁通管路。若有,必须割除。若暂时不具备割除的条件,允许临时用盲板封死。 查看管路是否锈蚀严重,有无漏水现象。 3专用配套泵 (1)查看确认设有专用配套分离泵 泵的种类对油水分离器性能有显著影响。因为油水分离器的速率取决于油滴的直径,油滴直径的大小关系到分离效果,因此含油污水在进入油水分离器前就应尽可能防止其中的油滴破裂。这显然与供液泵的形式和排量密切相关。 船上的专用配套分离泵,一般为转速慢、行程小、口径大、能减小油水乳化的往复泵。 (2)查看泵的排量 泵的排量,根据IMO大会决议A.393(X)规定,必须小于或等于分离器额定处理能力的1.5倍。如果超过,应要求船方更换。 4检验排油监控系统 (1)检查报警功能 可通过试验,检查排油监控系统的报警功能,如:按动试验按钮;或无试验按钮而有试验孔时,打开试验孔盖,插入如毛刷之类的物体试验。 在船检做产品性能试验时(船上检查时一般不用),可在油水分离器简体内充满水

UASB三相分离器原理及运行简介

UASB三相分离器原理及运行简介 厌氧生物处理作为利用厌氧性微生物的代谢特性,在毋需提供外源能量的条件下,以被还原有机物作为受氢体,同时产生有能源价值的甲烷气体。厌氧生物处理法不仅适用于高浓度有机废水,进水BOD最高浓度可达数万mg/l,也可适用于低浓度有机废水,如城市污水等。 厌氧生物处理过程能耗低;有机容积负荷高,一般为5-10kgCOD/m3.d,最高的可达30-50kgCOD/m3.d;剩余污泥量少;厌氧菌对营养需求低、耐毒性强、可降解的有机物分子量高;耐冲击负荷能力强;产出的沼气是一种清洁能源。 而升流式厌氧污泥床UASB( Up-flow Anaerobic Sludge Bed,注:以下简称UASB)工艺由于具有厌氧过滤及厌氧活性污泥法的双重特点,作为能够将污水中的污染物转化成再生清洁能源——沼气的一项技术。对于不同含固量污水的适应性也强,且其结构、运行操作维护管理相对简单,造价也相对较低,技术已经成熟,正日益受到污水处理业界的重视,得到广泛的欢迎和应用。 一、UASB工作原理 UASB由污泥反应区、气液固三相分离器(包括沉淀区)和气室三部分组成。在底部反应区内存留大量厌氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下部形成污泥层。要处理的污水从厌氧污泥床底部流入与污泥层中污泥进行混合接触,污泥中的微生物分解污水中的有机物,把它转化为沼气。沼气以微小气泡形式不断放出,微小气泡在上升过程中,不断合并,逐渐形成较大的气泡,在污泥床上部由于沼气的搅动形成一个污泥浓度较稀薄的污泥和水一起上升进入三相分离器,沼气碰到分离器下部的反射板时,折向反射板的四周,然后穿过水层进入气室,集中在气室沼气,用导管导出,固液混合液经过反射进入三相分离器的沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降。沉淀至斜壁上的污泥沼着斜壁滑回厌氧反应区内,使反应区内积累大量的污泥,与污泥分离后的处理出水从沉淀区溢流堰上部溢出,然后排出污泥床。 基本要求有: (1)为污泥絮凝提供有利的物理、化学和力学条件,使厌氧污泥获得并保持良好的沉淀性能; (2)良好的污泥床常可形成一种相当稳定的生物相,保持特定的微生态环境,能抵抗较强的扰动力,较大的絮体具有良好的沉淀性能,从而提高设备内的污泥浓度; (3)通过在污泥床设备内设置一个沉淀区,使污泥细颗粒在沉淀区的污泥层内进一步絮凝和沉淀,然后回流入污泥床内。

油气计量分离器原理

第一节 计量站 一、计量分离器 二、量油、测气操作

图5-3 储集管量油示意图 2)测气方法主要有:节流式流量计测气和垫圈流量计测气两种: A)节流式流量计测气(图5-4):V1*A1=V2*A2 气计量公式: 在不精确考虑Fx,Fy,Fz时, 图5-4 测气流程示意图(1-出气管线;2-挡板;3、4-上下流管;5-上流阀;6-下流阀;7-平衡阀;8、9-防空阀;10-U型玻璃管) B)垫圈流量计测气 垫圈流量计由测气短节和“U”形管组成(图5-5),它的下流通大气,下流压力为大气压,上流测出的压差H即为上下流压差。 气量计算公式:

图5-5 垫圈测气原理图 油气分离器的结构工作原理 一、油气分离器的类型和工作要求 1、分离器的类型 1)重力分离型:常用的为卧式和立式重力分离器; 2) 碰撞聚结型:丝网聚结、波纹板聚结分离器; 3) 旋流分离型:反向流、轴向流旋流分离器、紧凑型气液分离器; 4) 旋转膨胀型: 2、对分离器工作质量的要求 1)气液界面大、滞留时间长;油气混合物接近相平衡状态。 2)具有良好的机械分离效果,气中少带液,液中少带气。 二、计量分离器 1、结构:如图所示

1)水包:分离器隔板下面的容积内装有水,其侧下部焊有小水包,小水包中间焊有小隔板,小水包中的水与分离器隔板以下的大水包及玻璃管相连通。 2)分离筒:储存油气混合物并使其分离的密闭圆筒。 3)量油玻璃管:通过闸门及管线,其上端与分离器顶部相通下部与小水包连通,玻璃管与分离筒构成一个连通器供量油用。 4)加水漏斗与闸门:给分离器的水包加水用。 5)出气管:进入分离器的油气混合物进行计量时天然气的外出通道。 6)安全阀:保护分离器,防止压力过高破坏分离器。 7)分离伞:在分离筒的上部,由两层伞状盖子组成。使上升的气体改变流动方向,使其中携带的小液滴粘附在上面,起到二次分离的作用。 8)进油管:油气混合物的进口 9)散油帽:油气混合物进入分离器后喷洒在散油帽上使油气分开,还可稳定液面。 10)分离器隔板:在分离器下部油水界面处焊的金属圆板直径与分离筒内径相同,但边缘有缺口,使其上下连通,其面上为油下面为水,中间与出油管线连通。

旋风分离器工作原理

旋风分离器的作用 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。 工作原理 净化天然气通过设备入口进入设备内旋风分离区,当含杂质气体沿轴向进入旋风分离管后,气流受导向叶片的导流作用而产生强烈旋转,气流沿筒体呈螺旋形向下进入旋风筒体,密度大的液滴和尘粒在离心力作用下被甩向器壁,并在重力作用下,沿筒壁下落流出旋风管排尘口至设备底部储液区,从设备底部的出液口流出。旋转的气流在筒体内收缩向中心流动,向上形成二次涡流经导气管流至净化天然气室,再经设备顶部出口流出。 性能指标 分离精度旋风分离器的分离效果:在设计压力和气量条件下,均可除去≥10μm的固体颗粒。在工况点,分离效率为99%,在工况点±15%范围内,分离效率为97%。压力降正常工作条件下,单台旋风分离器在工况点压降不大于0.05MPa。设计使用寿命旋风分离器的设计使用寿命不少于20年。 结构设计 旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。设备管口提供配对的法兰、螺栓、垫片等。通常,气体入口设计分三种形式:a) 上部进气b) 中部进气c) 下部进气对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm 的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。 应用范围及特点

制冷系统中油分离器结构及工作原理

制冷系统中油分离器结构及工作原理 一、油分离器与集油器 (一)油分离器的作用 在蒸汽压缩式制冷系统中,经压缩后的氨蒸汽(或氟利昂蒸汽),是处于高压高温的过热状态。由于它排出时的流速快、温度高。汽缸壁上的部份润滑油,由于受高温的作用难免成油蒸汽及油滴微粒与制冷剂蒸汽一同排出。且排汽温度越高、流速越快,则排出的润滑油越多。对于氨制冷系统来说,由于氨与油不相互溶,所以当润滑油随制冷剂一起进入冷凝器和蒸发器时会在传热壁面上凝成一层油膜,使热阻增大,从而会使冷凝器和蒸发器的传热效果降低,降低制冷效果。据有关资料介绍在蒸发表面上附有0.1mm油膜时,将使蒸发温度降低2.5℃,多耗电11~12%。所以必须在压缩机与冷凝器之间设置油分离器,以便将混合在制冷剂蒸汽中的润滑油分离出来。总结起来,油分离器的主要作用有: 1.确保润滑油返回到压缩机储油槽中,防止压缩机由于润滑油的缺乏而引起故障,延长压缩机适用寿命。 2.流动速度减小和流动方向变化的互相作用引起润滑油的聚集,这样在高温下分离出来的润滑油被集中收集,并自动返回到曲轴箱中,提高效率。 3.防止压缩机产生液击。 4.更好的发挥冷凝器和蒸发器的效率。 5.减小系统高压端的震动和噪音。 6.同时这些特点还可以会使得系统的电费用降低。 (二)油分离器的工作原理 大家都知道,汽流所能带动的液体微粒的尺寸是与汽流的速度有关。若把汽流垂直向上运动产生的升力与微粒的重量相平衡时的汽流速度称为平衡速度,并用符号ω表示。则显然当汽流速度等于平衡速度时,则微粒在汽流中保持不动;如果汽流速度大于平衡速度时则将微粒带走;而当汽流速度小于平衡速度,微粒就会跌落下来,从而使油滴微粒制冷剂汽流中分离出来。 油分离器的基本工作原理主要就是利用润滑油和制冷剂蒸气的密度不同;以及通道截面突然扩大,气流速度骤降(油分离器的筒径比高压排气管的管径大3~15倍,使进入油分离器后蒸气的流速从原先的10~25m/s下降至0.8~1m/s);同时改变流向,使密度较大的润滑油分离出来沉积在油分离器的底部。或利用离心力将油滴甩出去,或采用氨液洗涤,或用水进行冷却降低汽体温度,使油蒸汽凝结成油滴,或设置过滤层等措施来增强油的分离效果。 (三)油分离器的形式和结构目前常见的油分离器有以下几种:洗涤式、离心式、过滤式、及填料式等四种结构型式,下面分述它们的结构及工作原理。 1、洗涤式油分离器 洗涤式油分离器适用于氨系统,它的主体是钢板卷焊而成的圆筒,两端焊有钢板压制的筒盖和筒底。进汽管由筒盖中心处伸入至筒下部的氨液之内。进气管的下端焊有底板,管端

三相分离器资料

高效三相分离器 1.型号释疑 JM-WS3.0×8.0-0.8 设计压力MPa 设备筒体长度m 设备筒体内径m W:卧式容器 S:三相分离器 骏马集团 2.三相分离器分离原理及结构特点 刚从地下开采出来的石油我们称为原油,它是复杂的油水乳化混合物,还含有部分气体和少量泥沙。气体的主要成分是天然气和二氧化碳。为了分别得到有利用价值的高纯度的天然气和石油,我们研制出了原油用高效三相分离器,来满足原油开发开采者的需要。 所谓的三相,就是气相、液相、固相。三相分离器的工作原理就是利用原油中所含各物质的密度不同、粘度不同以及颗粒大小等的区别来进行分离的。来自井口的原料油首先经过井口阀门、管线到一个加药装置,加药装置可连续可控制的来给原油加破乳剂。这是用来降低原料油中水、油、泥沙之间的粘连混合程度以及分化乳化混合物的颗粒,有利于三相分离器更好的进行分离。我们可根据原油的参数(粘度和温度)来看是否需要在加破乳剂之前设置水套加热炉。水套加热炉就是对原油加热,来降低原油的粘度,提高原油的运输速度。 加了破乳剂的原料油首先进入三相分离器的一级分离装置,进口是在一级分离装置中部,沿切线方向旋转式进入。通过旋风分离,根据离心力和重力的作用,将原油所含的各物质由里到外、由上到下的排列为气、油、水、泥沙。为了延长分离器的使用寿命,我们在一级分离装置的入口处沿筒壁方向增加一块垫板,这样泥沙在冲涮筒壁时,只磨损到这块垫板。等于说是把一级分离装置能接触到的高

速流体的那段筒体壁厚进行了加强。 经过旋风分离,大部分气体涌向一级分离装置的上部,在分离装置的上部我们设有一个伞状板,伞状板由三根扁钢呈120°角分布支承。下部靠一个焊接在筒体内壁上的支承圈支撑。气体冲击到伞状板之后,经过伞状板和一级分离器筒体之间的空隙到达分离器的顶部出气口,由出气口进入二级分离装置。我们设置这个伞状板的原因,就是因初步分离的气体中,含有部分雾状的小颗粒,颗粒中有水和原油以及细微的泥沙,经碰撞到伞状板上之后,由于粘度的原因,大部分都附着在伞状板的内壁上,积累到一定程度会沿伞状板的内壁边缘滴落。但还是有少部液体被气流带走,进入二级分离器装置再进行精细过滤的分离。 再谈一级分离装置中的除了气体之外的其它物质,由于旋风分离利用离心力和重力的合力原理,绝大部分液相和固相物质从分离器的底部流入三相分离器的主体分离装置,我们在一级分离装置的底部出液口处设有一个防涡流挡板,呈“十”字状,这是由于流体经过旋转,在分离装置的底部易形成涡流,若不设置挡板,就会有较多一部分气体随之涌入主体分离装置,这样会使主体分离装置中流体引起较大波动,也影响到流体中各物质的分离效果。 我们根据许多科研人员的试验结果:油在水中上升的速度,远远快于水在油中下降的速度。这就是由于油的粘度大于水的粘度的原因。这一发现使我们利用这个原理将一级分离装置底部的流体出口的接管延长至主分离装置的底部区域。从底部进入主分离装置,这样流体会慢慢的涌出,而不是直接喷洒进入,这样大大减小了流体在主分离装置中的波动,慢慢上升的流体中,油上升的速度快于水下降的速度。流体中的油就会迅速的浮上水面,为了减小这些流体在主分离装置中的振动和波浪,我们在延长管的底部附近一圈焊接一块有许多小孔的方形折边向下的挡板。这样能有效地降低流体的流速和动能。而且还能够将流体中的乳状团块细化。我们也考虑到流体直接冲击主分离装置的底部,会使底部钢板受到冲涮侵蚀,寿命会大大降低,我们在主分离装置的来液底部,也设置了一块碗状垫板。这样的形状同时使来液绝大部分都可以反弹到孔板上进行团块细化分离。 当液量达到一定高度,我们在主分离装置的中部上半部设置了一段填料装置。它的结构就是规整填料,术语称TP板,又称聚结板、消泡器、斜板填料。该板每片都呈波纹形状,就象一把挂在主分离装置内部的梳子,用于油田油水处理系

三相分离器工作原理、结构、工艺参数

三相分离器工作原理、结构、工艺参数 一、工作原理 生产汇管来原油进入三相分离器,利用油、气、水密度的不同进行油、气、水三相初步分离。 1、预分离段 从三相分离器进口来的油气由切向进入预分离器,利用离心力而不是机械的搅动来分离来液成为液体和气体,进行初步气、液两相旋流分离。 分离后的气体向上进入预分离器下伞和上伞,按折流方式先后与下伞、上伞壁碰撞,从而将气中带出的液体形成较大的液滴,重力使液滴进一步分离出来,经上、下伞碰撞分离后的气体则通过气连通管导入到三相生产分离器的分离沉降段上部。 分离后的液体通过预分离器向下导液管导入到三相分离器底部,经布液管从液面以下的水层向上喷出,进入到三相分离器预分离段进行油、水初步分离,主要分离出游离水。 布液管的作用:避免了气体对液体的扰动,保持了油水界面的稳定,有利于油水更好地分离。 2、分离沉降段 经预分离段进行初步分离后的液体,沿水平方向向右移动进入分离沉降段。这一段内有较大的沉降空间(分离沉降时间20分钟左右),其中部有两段聚结填料,有助于水中油滴和油中水滴的聚结,从而有促进油、水分离。液体在水平移动过程中,密度较小的原油逐渐上浮,而密度较大的污水(主要是游离水)则向下沉入设备底部,同时使油气逐步分离开来。 气体则在分离沉降段上部空间内,沿水平方向向右运动进入到分气包,重力作用使气体中的液体沉降到三相分离器分离沉降段液面上。 3、集液段 由于油、水密度的不同,使分离沉降段中的液体出现分层,水的密度较大在下层,油的密度较小在上层。 在下层的水则通过集液段底部的喇叭口,利用连通器原理向上溢流进入三相分离器水室,水室中的水通过出水口导出进入5000m3沉降罐。 在上层的油经集液段上部堰板溢流到导油汇管,进入到三相分离器的油室,油室中的油通过油出口导出进入热化学脱水器。 4、捕雾段

LPG气液分离器原理

气液分离器的工作原理 饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴·随气体一起流动。 气液分离器作用就是处理含有少量凝液的气体,实现凝液回收或者气相净化。 其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。 一般气体由上部出口,液相由下部收集。 汽液分离罐是利用丝网除沫,或折流挡板之类的内部构件,将气体中夹带的液体进一步凝结,排放,以去除液体的效果。 基本原理是利用气液比重不同,在一个突然扩大的容器中,流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被进口高速气流甩到器壁上,碰撞后失去动能而与转向气体分离。 QQ截图未命名.gif (93.74 KB) 分离器的结构与原理相辅相成,分离器不止是分离气液也分离气固,如旋风除尘器原理是利用离心力分离气体中的固体. 气液分离器,根据分离器的类型不同,有旋涡分离,折留板分离,丝网除沫器, 旋涡分离主要是根据气体和液体的密度,做离心运动时,液体遇到器壁冷凝分离。 基本都是利用沉降原理的,瞬间扩大管道半径,造成压降,温度等的变化,达到分离的目的. 使用气液分离器一般跟后系统有关,因为气体降温减压后会出现部分冷凝而后系统设备处理需要纯气相或液相,所以

主反应后装一个气液分离器静止分离出气相和液相给后系统创造条件。。。 工厂里常见的气液分离器是利用闪蒸的原理,闪蒸就是介质进入一个大的容器,瞬间减压气化并实现气液分离,出口气相中含饱和水,而游离的水和比重大的液滴会由于重力作用分离出来,另外分离器一般带捕雾网,通过捕雾网可将气相中部分大的液滴脱除。 气液分离器无非就是让互相混杂的气相液相各自聚合成股,液滴碰撞聚结,气体除去液滴后上升,从而达到分离的目的。 原理是利用气液比重不同,在一个突然扩大的容器中,流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被进口高速气流甩到器壁上,碰撞后失去动能而与转向气体分离。算过一个气液分离器就是一个简单的压力容器,里面有相应的除沫器一清除雾滴。 气液分离器其基本原理是利用惯性碰撞作用,将气相中夹带的液滴或固体颗粒捕集下来,进而净化气相或获得液相及固相。其为物理过程,常见的形式有丝网除雾器、旋流板除雾器、折板除雾器等。 单纯的气液分离并不涉及温度和压力的关系,而是对高速气流(相对概念)夹带的液体进行拦截、吸收等从而实习分离,旋流挡板等在导流的同时,为液体的附着提供凭借,就好像空气中的灰尘要有物体凭借才能停留下来一样。而不同分离器在设计时,还优化了分离性能,如改变温度、压力、流速等 气液分离是利用在制定条件下,气液的密度不同而造成的分离。 我觉得较好的方法是利用不同的成分其在不同的温度或压力下熔沸点的差异,使其发生相变,再通过不同相的物理性质的差异进行分离 饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴·随气体一起流动。 气液分离器作用就是处理含有少量凝液的气体,实现凝液回收或者气相净化。 其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。 一般气体由上部出口,液相由下部收集。 化工厂中的分离器大都是丝网滤分离气液,这种方法属于机械式分离,原理就是气体分子小可以通过丝网空隙,而液态分子大,被阻分离开, 还有一种属于螺旋式分离,气体夹带的液体由分离器底部螺旋式上升,液体被碰撞“长大”最终依靠重力下降,有时依靠降液管引至分离器底部 气液分离器,出气端一般在上,因为比重低,内部空气被抽离,或在出气端连气泵 而液体经旋转,再次冷凝下降从下部排出 利用气体与液体的密度不同。。从而将气体与液体进行隔离开来 1、气液分离器有多种形式。 2、主要原理是:根据气液比重不同,在较大空间随流速变化,在主流体转向的过程中,气相中细微的液滴

油气分离器的结构工作原理

油气分离器的结构工作原理 一、油气分离器的类型和工作要求 1、分离器的类型 1)重力分离型:常用的为卧式和立式重力分离器; 2)碰撞聚结型:丝网聚结、波纹板聚结分离器; 3)旋流分离型:反向流、轴向流旋流分离器、紧凑型气液分离器;4)旋转膨胀型: 2、对分离器工作质量的要求 1)气液界面大、滞留时间长;油气混合物接近相平衡状态。 2)具有良好的机械分离效果,气中少带液,液中少带气。 二、计量分离器 1、结构: 如图所示 1)水包:分离器隔板下面的容积内装有水,其侧下部焊有小水包,小水包中间焊有 小隔板,小水包中的水与分离器隔板以下的大水包及玻璃管相连通。 2)分离筒: 储存油气混合物并使其分离的密闭圆筒。 3)量油玻璃管: 通过闸门及管线,其上端与分离器顶部相通下部与小水包连通,玻璃管与分离筒构成一个连通器供量油用。 4)加水漏斗与闸门:

给分离器的水包加水用。 5)出气管:进入分离器的油气混合物进行计量时天然气的外出通道。 6)安全阀: 保护分离器,防止压力过高破坏分离器。 7)分离伞:在分离筒的上部,由两层伞状盖子组成。使上升的气体改变流动方向,使其中携带的小液滴粘附在上面,起到二次分离的作用。 8)进油管: 油气混合物的进口 9)散油帽:油气混合物进入分离器后喷洒在散油帽上使油气分开,还可稳定液面。 10)分离器隔板: 在分离器下部油水界面处焊的金属圆板直径与分离筒内径相同,但边缘有缺口,使其上下连通,其面上为油下面为水,中间与出油管线连通。 11)排油管:是分离器中的油排出通道,其焊在分离器隔板中心处,并与分离器隔板以上相通。 12)支架: 用来支撑分离器。 2、工作原理 油气混合物经进油管线进入分离器后,喷洒在挡油帽上(散油帽),扩散后的 油靠重力沿管壁下滑到分离器的下部,经排油管排出。同时,气体因密度小而上升,经分离伞集中向上改变流动方向,将气体中的小油滴粘附在伞壁上,聚集后附壁而下,脱油后的气体经分离器顶部出气管进入管线进行测气。

制冷系统中油分离器结构及工作原理

一、油分离器与集油器 (一)油分离器的作用 在蒸汽压缩式制冷系统中,经压缩后的氨蒸汽(或氟利昂蒸汽),是处于高压高温的过热状态。由于它排出时的流速快、温度高。汽缸壁上的部份润滑油,由于受高温的作用难免成油蒸汽及油滴微粒与制冷剂蒸汽一同排出。且排汽温度越高、流速越快,则排出的润滑油越多。对于氨制冷系统来说,由于氨与油不相互溶,所以当润滑油随制冷剂一起进入冷凝器和蒸发器时会在传热壁面上凝成一层油膜,使热阻增大,从而会使冷凝器和蒸发器的传热效果降低,降低制冷效果。据有关资料介绍在蒸发表面上附有油膜时,将使蒸发温度降低℃,多耗电11~12%。所以必须在压缩机与冷凝器之间设置油分离器,以便将混合在制冷剂蒸汽中的润滑油分离出来。总结起来,油分离器的主要作用有: 1.确保润滑油返回到压缩机储油槽中,防止压缩机由于润滑油的缺乏而引起故障,延长压缩机适用寿命。 2.流动速度减小和流动方向变化的互相作用引起润滑油的聚集,这样在高温下分离出来的润滑油被集中收集,并自动返回到曲轴箱中,提高效率。 3.防止压缩机产生液击。 4.更好的发挥冷凝器和蒸发器的效率。 5.减小系统高压端的震动和噪音。 6.同时这些特点还可以会使得系统的电费用降低。 (二)油分离器的工作原理 大家都知道,汽流所能带动的液体微粒的尺寸是与汽流的速度有关。若把汽流垂直向上运动产生的升力与微粒的重量相平衡时的汽流速度称为平衡速度,并用符号ω表示。则显然当汽流速度等于平衡速度时,则微粒在汽流中保持不动;如果汽流速度大于平衡速度时则将微粒带走;而当汽流速度小于平衡速度,微粒就会跌落下来,从而使油滴微粒制冷剂汽流中分离出来。 油分离器的基本工作原理主要就是利用润滑油和制冷剂蒸气的密度不同;以及通道截面突然扩大,气流速度骤降(油分离器的筒径比高压排气管的管径大3~15倍,使进入油分离器后蒸气的流速从原先的10~25m/s下降至~1m/s);同时改变流向,使密度较大的润

空压机油气分离器的工作原理

空压机油气分离器的工作原理 空压机油气分离器的工作原理 产品关键字:油气分离器 油气分离元件是决定空压机压缩空气品质的关键部件,高质量的油气分离元件不仅可保证压缩机的高效率工作,且滤芯寿命可达数千小时。从压缩机头出来的压缩空气夹带大大小小的油滴。大油滴通过油气分离罐时易分离,而小油滴(直径1um以下悬浮油微粒)则必须通过油气分离滤芯的微米及玻纤滤料层过滤。油微粒经过滤材的扩散作用,直接被滤材拦截以及惯性碰撞凝聚等机理,使压缩空气中的悬浮油微粒很快凝聚成大油滴,在重力作用下油集聚在油分芯底部,通过底部凹处回油管进口返回机头润滑油系统,从而使压缩机排出更加纯净无油的压缩空气。压缩空气中的固体粒子经过油分芯时滞留在过滤层中,这就导致了油分芯压差(阻力)不断增加。随着油分芯使用时间增长,当油分芯压差达到0.08到0.1Mpa时,滤芯必须更换,否则增加压缩机运行成本(耗电)。上海信然公司以使用世界一流滤材为基础,测试油分芯排气含油量,压差为依据,愿为您提供低残油量、低压差、长寿命的油分芯。 高效滤芯超期使用的危害: (1)过滤效率差,压缩机空气品质无法满足使用要求,导致用气设备不能正常工作或产品合格率大大降低;

(2)堵塞后压阻增大,导致机组实际排气压力增大,机组能耗增加,生产成本增高; 2、油滤芯的作用: 油滤芯的作用是滤除空压机专用油中的金属颗粒、杂质等,使进入主机的油是非常干净的,以保护主机安全运行。 油滤芯的材料:高精度滤纸 油滤芯的更换标准: (1)实际使用时间达到设计寿命时间后更换。油滤芯设计使用寿命通常为2000小时。到期后必须予以更换。空压机环境状况较差的应缩短使用时间。 (2)设计使用寿命期限内堵塞报警后立即予以更换,油滤芯堵塞报警设定值通常为1.0-1.4bar。 油滤芯超期使用的危害: (3)堵塞后回油量不足导致排气温度过高,缩短油和油分芯使用寿命; (4)堵塞后回油量不足主机润滑不足,导致主机寿命严重缩短;滤芯破损后未经过滤的含大量金属颗粒杂质的油进入主机,导致主机损坏。 3、空滤芯的作用:空滤芯是空压机的一道重要的保护屏障! (1)滤除空压机吸入的空气中的粉尘杂质,吸入的空气越洁

相关文档
最新文档