高中数学椭圆的几何性质课件(示范课)
合集下载
椭圆的简单几何性质1标准课件(示范课)dhqw

(2) 研究了椭圆的几个基本量a,b,c,e及顶点、 焦点、对称中心及其相互之间的关系 2.数学思想方法:
(1)数与形的结合,用代数的方法解决几何问题。
(2)分类讨论的数学思想
1、教材P49 习题2.2 第4、5题 2、《三维设计》P26 第二课时
0 ,其长轴长是短轴长 例2 椭圆的一个顶点为 A2, 的2倍,求椭圆的标准方程.
2
2
0, ±b ), 说明椭圆与 x轴的交点( ±a, 0 )。
y B1(0,b)
A1 o
A2(a,0) x
B2(0,-b)
轴长和短半轴长。
问题2:圆的形状都是相同的,而椭圆 却有些比较“扁”,有些比较“圆”, 用什么样的量来刻画椭圆“扁”的程度 呢?
四、椭圆的离心率
c 离心率:椭圆的焦距与长轴长的比 e = ,叫做 a 椭圆的离心率.
2
2
1
图 形
F1
F2
A1
0
A2
x
F1 O F2
B2
_
X
A1
范 围 对 称 性
a x a,b y b
b x b,a y a
关于x轴,y轴,原点对称。
A1(0,-a),A2(0,a), B1(-b,0),B2(b,0)
顶 A (-a,0),A2(a,0), B1(0,-b),B2(0, b) 点 1 离 心 率
x y 2 1 解:把已知方程化成标准方程 2 5 4 a 5, b 4, c 25 16 3
椭圆的长轴长是: 2a=10 椭圆的短轴长是: 2b=8 焦点坐标是:
2
2
c 3 离心率: e 0.6 a 5
四个顶点坐标是:
(1)数与形的结合,用代数的方法解决几何问题。
(2)分类讨论的数学思想
1、教材P49 习题2.2 第4、5题 2、《三维设计》P26 第二课时
0 ,其长轴长是短轴长 例2 椭圆的一个顶点为 A2, 的2倍,求椭圆的标准方程.
2
2
0, ±b ), 说明椭圆与 x轴的交点( ±a, 0 )。
y B1(0,b)
A1 o
A2(a,0) x
B2(0,-b)
轴长和短半轴长。
问题2:圆的形状都是相同的,而椭圆 却有些比较“扁”,有些比较“圆”, 用什么样的量来刻画椭圆“扁”的程度 呢?
四、椭圆的离心率
c 离心率:椭圆的焦距与长轴长的比 e = ,叫做 a 椭圆的离心率.
2
2
1
图 形
F1
F2
A1
0
A2
x
F1 O F2
B2
_
X
A1
范 围 对 称 性
a x a,b y b
b x b,a y a
关于x轴,y轴,原点对称。
A1(0,-a),A2(0,a), B1(-b,0),B2(b,0)
顶 A (-a,0),A2(a,0), B1(0,-b),B2(0, b) 点 1 离 心 率
x y 2 1 解:把已知方程化成标准方程 2 5 4 a 5, b 4, c 25 16 3
椭圆的长轴长是: 2a=10 椭圆的短轴长是: 2b=8 焦点坐标是:
2
2
c 3 离心率: e 0.6 a 5
四个顶点坐标是:
椭圆的简单几何性质ppt课件

由 e 1 ,得 1 k 1 ,即 k 5 .
2
94
4
∴满足条件的 k 4 或 k 5 .
4
例3:酒泉卫星发射中心将一颗人造卫星送入到 距地球表面近地点(离地面 近的点)高度约200km, 远地点(离地面最远的点)高度约350km的椭圆轨 道(将地球看作一个球,其半径约为6371km),求 椭圆轨道的标准方程。(注:地心(地球的中心)位
2.椭圆的标准方程
标准方程 图形
焦点在x轴上
x2 + y2 = 1a > b > 0
a2 b2
y P
F1 O F2
x
焦点在y轴上
x2 + y2 = 1a > b > 0
b2 a2
y
F2
P
O
x
F1
焦点坐标 a、b、c 的关系 焦点位置的判断
F1 -c , 0,F2 c , 0
F1 0,- c,F2 0,c
分别叫做椭圆的长轴和短轴。 A1
o
A2 x
B2(0,-b)
a、b分别叫做椭圆的长半轴长和短半轴长。
思考:椭圆的焦点与椭圆的长轴、短轴有什么关系? 焦点落在椭圆的长轴上
椭圆的简单几何性质
长轴:线段A1A2; 长轴长
短轴:线段B1B2; 短轴长
注意
焦距
|A1A2|=2a |B1B2|=2b |F1F2| =2c
y
B2(0,b)
①a和b分别叫做椭圆的 A1 (-a, 0)
b
a
A2 (a, 0)
长半轴长和短半轴长;
F1 a
o c F2 x
② a2=b2+c2,|B2F2|=a;
B1(0,-b)
椭圆的几何性质ppt课件

的对称轴,坐标原点是对称中心. 椭圆的对称中
(3)顶点
在方程①中,令
= 0,得
轴有两个交点,可以记作
=−
作
或
1 (0,
− ),
交点,即
的顶点.
= ,可知椭圆
2 (0,
1, 2
和
=−
1(
或
− ,0),
与
). 因此,椭圆
= ,可知椭圆
2(
,0);令
与
= 0 ,得
轴也有两个交点,可以记
与它的对称轴共有 4 个
=− , = , =− , =
x
a 且 b
y
b ,这说明,椭圆
所围成的矩形内,如图所示.
(2)对称性
如果 ( , ) 是方程①的一组解,则不难看出,( − , ),( , − ),( − , − )
都是方程的解,这说明椭圆
因此,
轴、
心也称为椭圆的中心.
关于
轴是椭圆
轴、
轴、坐标原点对称,如图所示.
1 , 2 ,如图所示,这四个点都称为椭圆
注意到
1 2
椭圆的长轴,线段
=2 ,
1
而且椭圆的长轴长为 2
2
1 2
=2
,而且
>
> 0 ,所以线段
1 2
称为
称为椭圆的短轴. 显然,椭圆的两个焦点在它的长轴上,
,短轴长为 2 .
于是, ,
距为 2 ,则
分别是椭圆的半长轴长和半短轴长,如果设椭圆的焦
是椭圆的半焦距,由
轴上的椭圆是一致的,如图所示.
例 1 求下列方程表示的椭圆的长轴长、半短轴长、焦点坐标以及离心率:
椭圆的几何性质优秀课件公开课

切线斜率与法线斜率互为相反数的倒数。
3
切线、法线与椭圆关系
切线、法线都与椭圆在切点处有且仅有一个公共 点。
应用举例:求解相关问题
求给定点的切线方程
给定椭圆上一点,求该点的切线方程。
求给定斜率的切线方程
给定椭圆的方程和切线的斜率,求切线的 方程。
求椭圆与直线的交点
利用切线、法线解决最值问题
给定椭圆和直线的方程,求它们的交点坐 标。
加空间的变化和美感。
椭圆在物理学中的应用
天体运动轨道
椭圆是描述天体运动轨道的重要几何形状之一, 如行星绕太阳的轨道就是椭圆形的。
光学性质
椭圆的光学性质也被广泛应用于物理学中,如椭 圆形的透镜、反射镜等。
电磁学
在电磁学中,椭圆也被用于描述电场和磁场的分 布。
椭圆在工程学中的应用
机械工程
01
椭圆在机械工程中应用广泛,如椭圆形的齿轮、轴承等机械零
工程学
在工程学中,椭圆也经常被用来描述一些物体的形状或运动轨迹。例如,一些机械零件的 截面形状就是椭圆形的;在航空航天领域,飞行器的轨道也可能是椭圆形的。
数学及其他领域
在数学领域,椭圆作为一种重要的几何图形,经常被用来研究一些数学问题。此外,在物 理学、经济学等其他领域,椭圆也有着广泛的应用。
02
从椭圆外一点向椭圆引切线,切线长 相等。这个定理在解决与椭圆切线有 关的问题时非常有用。
03
椭圆上点与焦点关系
点到两焦点距离之和为定值
椭圆上任意一点到两 个焦点的距离之和等 于椭圆的长轴长。
通过该性质,可以推 导出椭圆的其他几何 性质。
这是椭圆定义的基础 ,也是椭圆最基本的 几何性质之一。
点到两焦点距离差与长轴关系
3
切线、法线与椭圆关系
切线、法线都与椭圆在切点处有且仅有一个公共 点。
应用举例:求解相关问题
求给定点的切线方程
给定椭圆上一点,求该点的切线方程。
求给定斜率的切线方程
给定椭圆的方程和切线的斜率,求切线的 方程。
求椭圆与直线的交点
利用切线、法线解决最值问题
给定椭圆和直线的方程,求它们的交点坐 标。
加空间的变化和美感。
椭圆在物理学中的应用
天体运动轨道
椭圆是描述天体运动轨道的重要几何形状之一, 如行星绕太阳的轨道就是椭圆形的。
光学性质
椭圆的光学性质也被广泛应用于物理学中,如椭 圆形的透镜、反射镜等。
电磁学
在电磁学中,椭圆也被用于描述电场和磁场的分 布。
椭圆在工程学中的应用
机械工程
01
椭圆在机械工程中应用广泛,如椭圆形的齿轮、轴承等机械零
工程学
在工程学中,椭圆也经常被用来描述一些物体的形状或运动轨迹。例如,一些机械零件的 截面形状就是椭圆形的;在航空航天领域,飞行器的轨道也可能是椭圆形的。
数学及其他领域
在数学领域,椭圆作为一种重要的几何图形,经常被用来研究一些数学问题。此外,在物 理学、经济学等其他领域,椭圆也有着广泛的应用。
02
从椭圆外一点向椭圆引切线,切线长 相等。这个定理在解决与椭圆切线有 关的问题时非常有用。
03
椭圆上点与焦点关系
点到两焦点距离之和为定值
椭圆上任意一点到两 个焦点的距离之和等 于椭圆的长轴长。
通过该性质,可以推 导出椭圆的其他几何 性质。
这是椭圆定义的基础 ,也是椭圆最基本的 几何性质之一。
点到两焦点距离差与长轴关系
椭圆的简单几何性质ppt课件

探究 离心率对椭圆形状的影响
a=1.81
c=1.2
a=1.81
c=1.5
c
=0.66
a
c
=0.83
a
离心率越大,椭圆越扁
离心率越小,椭圆越圆
c
a 2 b2
b2
e与a,b的关系: e
1 2
2
a
a
a
离心率反映
椭圆的扁平
程度
焦点的位置
焦点在x轴上
y
图形
标准
方程
范围
对称性
顶点坐标
轴长
焦点坐标
a
b
a 2 b 2 1,
消去y,得关于x的一元二次方程.
2
2
相交
当Δ>0时,方程有两个不同解,直线与椭圆_____;
y
当Δ=0时,方程有两个相同解,直线与椭圆_____;
相切
B(x2,y2)
相离
当Δ<0时,方程无解,直线与椭圆_____.
A(x1,y1)
3.弦长公式
设直线l与椭圆的两个交点分别为A(x1,y1),B(x2,y2).
x12
y12
2 1
2
a
b
2
2
x
y
2 2 1
b2
a2
两式相减得:
y1 y1
b2 x1 x2
b2 x0
2
2
x1 x2
a y1 y1
a y0
k AB
2
2
【典例 2】已知椭圆 C:2 + 2=1(a>b>0)的左焦点为 F,过点 F 的直线 x-y+ 2=0 与椭
a=1.81
c=1.2
a=1.81
c=1.5
c
=0.66
a
c
=0.83
a
离心率越大,椭圆越扁
离心率越小,椭圆越圆
c
a 2 b2
b2
e与a,b的关系: e
1 2
2
a
a
a
离心率反映
椭圆的扁平
程度
焦点的位置
焦点在x轴上
y
图形
标准
方程
范围
对称性
顶点坐标
轴长
焦点坐标
a
b
a 2 b 2 1,
消去y,得关于x的一元二次方程.
2
2
相交
当Δ>0时,方程有两个不同解,直线与椭圆_____;
y
当Δ=0时,方程有两个相同解,直线与椭圆_____;
相切
B(x2,y2)
相离
当Δ<0时,方程无解,直线与椭圆_____.
A(x1,y1)
3.弦长公式
设直线l与椭圆的两个交点分别为A(x1,y1),B(x2,y2).
x12
y12
2 1
2
a
b
2
2
x
y
2 2 1
b2
a2
两式相减得:
y1 y1
b2 x1 x2
b2 x0
2
2
x1 x2
a y1 y1
a y0
k AB
2
2
【典例 2】已知椭圆 C:2 + 2=1(a>b>0)的左焦点为 F,过点 F 的直线 x-y+ 2=0 与椭
椭圆的简单几何性质ppt课件

解:建系如图,以AB所在直线为x轴,AB中点为原点
则
a
可设椭圆方程为:x2 a2
y2 b2
1
a b 0
c | OA | | OF2 | | F2A | 6371 439
6810
y
a c | OB | | OF2 | | F2B | 6371 2384 8755
解得 a 7782.5,c 972.5 .
1
复习:
1.椭圆的ห้องสมุดไป่ตู้义:
到两定点F1、F2的距离之和为常数(大于|F1F2 |)的
动点的轨迹叫做椭圆。
| PF1 | | PF2 | 2a(2a | F1F2 |)
2.椭圆的标准方程是:
当焦点在X轴上时
x2 a2
y2 b2
1(a
b 0)
当焦点在Y轴上时
y2 x2 a2 b2 1(a b 0)
b
a
oc
F2
B1 (0,-b)
A2(a,0)
a、b分别叫做椭圆的长半 轴长和短半轴长。
6
根据前面所学有关知识画出下列图形
(1)
x2 y2 1
25 16
(2) x2 y2 1 25 4
y
4 B2
3
2
A1
1
A2
-5 -4 -3 -2 --11 1 2 3 4 5 x
-2
-3
-4 B1
y
4
3 2
B2
4、已知椭圆 则m= 4或-5/4 .
的离心率为1/2,
19
练习:
1. 根据下列条件,求椭圆的标准方程。
① 长轴长和短轴长分别为8和6,焦点在x轴上 ② 长轴和短轴分别在y轴,x轴上,经过P(-2,0),
高中数学椭圆公开课全省一等奖PPT课件

03
提高数学思维能力
通过学习和练习,提高数学思 维能力,包括逻辑推理、归纳 分类、化归等思想方法的应用 能力。
04
关注数学文化
了解数学史、数学名著和数学 家的故事等数学文化内容,丰 富自己的数学素养和视野。
2024/1/25
30
感谢您的观看
THANKS
2024/1/25
31
PF_2$,若$Delta PF_1F_2$的面积为9,求椭圆的方程。
7
02
椭圆与直线关系
2024/1/25
圆方程的解的情况,可以确定直线与椭圆的位置关系, 如相切、相交或相离。
判别式法
将直线方程代入椭圆方程,消去一个未知数,得到一个关于另一个未知数的二 次方程,通过判别式Δ的值来判断位置关系。当Δ>0时,直线与椭圆相交;当 Δ=0时,直线与椭圆相切;当Δ<0时,直线与椭圆相离。
例题4
结合实际问题,利用参数方程求 解最值问题。
01
02
例题1
已知椭圆的参数方程,求其普通 方程和焦点坐标。
03
04
例题3
利用参数方程研究椭圆上点的运 动轨迹和性质。
2024/1/25
22
05
高考真题回顾与拓展延伸
2024/1/25
23
历年高考真题回顾
(2019年全国卷II)椭圆的焦点 三角形面积问题
解题思路
首先根据题目条件列出方程或不等式,然后结合图形分析,运用相关知识点进行 求解。在解题过程中,需要注意数形结合思想和转化与化归思想的应用。
2024/1/25
12
03
椭圆在几何图形中应用
2024/1/25
13
利用椭圆性质求最值问题
椭圆的简单几何性质(第1课时)(30张PPT)高中数学人教A版选择性必修第一册

椭圆的简单几何性质
例3.已知F₁,F₂ 是椭圆的两个焦点,过F₁且与椭圆长轴垂直的直线交椭圆于A,B 两点,若△ABF₂是正三角形,求该椭圆的离心率.解:不妨设椭圆的焦点在x轴上,因为ABLF₁F₂, 且△ABF₂ 为正三角形,所以在Rt△AF₁F₂中,∠AF₂F₁=30°,令|AF₁ I=x, 则|AF₂ I=2x, 所以|F₁F₂ I= √ |AF₂ I²-|AF₁ I²= √3x=2c,再由椭圆的定义,可知|AF₁ I+|AF₂ I=2a=3x,所)
椭圆的简单几何性质
03性质应用P A R T 0 N
于是a=5,b=4,c= √25-16=3.因此,椭圆的长轴和短轴的长分别是2a=10, 和2b=8,离心率两个焦点坐标分别是F₁ (-3,0)和F₂ (3,0),四个顶点坐标分别是A₁ (-5,0),A₂ (5,0),B₁ (0,-4),B₁ (0,4).
·
·
椭圆的简单几何性质
椭圆的简单几何性质 方法总结利用性质求椭圆的标准方程的方法:(1)确定标准方程的形式.(2)由a,b,c,e 的关系列出方程.(3)利用待定系数法求出椭圆方程,焦点不明确时要分类讨论.
练习:求适合下列条件的椭圆的标准方程.(1)长轴长是短轴长的5倍,且过点A(5,0).(2)离心率 焦距为12.解:(1)若椭圆焦点在x 轴上,设其标准方程为由题意得
椭圆的简单几何性质
一个焦点F(c,O), 则直线l 的方程 ,即bx+cy-bc=0.
解 , 即 故选B.
由题意知
练习:若椭圆 的离心率 则 k 的值等于 解:分两种情况进行讨论:当焦点在x 轴 上 时 ,a²=k+8,b²=9, 得 c²=k—1,又 少 解得k=4.当焦点在y 轴 上 时 ,a²=9,b²=k+8, 得 c²=1—k,
例3.已知F₁,F₂ 是椭圆的两个焦点,过F₁且与椭圆长轴垂直的直线交椭圆于A,B 两点,若△ABF₂是正三角形,求该椭圆的离心率.解:不妨设椭圆的焦点在x轴上,因为ABLF₁F₂, 且△ABF₂ 为正三角形,所以在Rt△AF₁F₂中,∠AF₂F₁=30°,令|AF₁ I=x, 则|AF₂ I=2x, 所以|F₁F₂ I= √ |AF₂ I²-|AF₁ I²= √3x=2c,再由椭圆的定义,可知|AF₁ I+|AF₂ I=2a=3x,所)
椭圆的简单几何性质
03性质应用P A R T 0 N
于是a=5,b=4,c= √25-16=3.因此,椭圆的长轴和短轴的长分别是2a=10, 和2b=8,离心率两个焦点坐标分别是F₁ (-3,0)和F₂ (3,0),四个顶点坐标分别是A₁ (-5,0),A₂ (5,0),B₁ (0,-4),B₁ (0,4).
·
·
椭圆的简单几何性质
椭圆的简单几何性质 方法总结利用性质求椭圆的标准方程的方法:(1)确定标准方程的形式.(2)由a,b,c,e 的关系列出方程.(3)利用待定系数法求出椭圆方程,焦点不明确时要分类讨论.
练习:求适合下列条件的椭圆的标准方程.(1)长轴长是短轴长的5倍,且过点A(5,0).(2)离心率 焦距为12.解:(1)若椭圆焦点在x 轴上,设其标准方程为由题意得
椭圆的简单几何性质
一个焦点F(c,O), 则直线l 的方程 ,即bx+cy-bc=0.
解 , 即 故选B.
由题意知
练习:若椭圆 的离心率 则 k 的值等于 解:分两种情况进行讨论:当焦点在x 轴 上 时 ,a²=k+8,b²=9, 得 c²=k—1,又 少 解得k=4.当焦点在y 轴 上 时 ,a²=9,b²=k+8, 得 c²=1—k,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
· · F1
o F2
x
x2 + a2
y2
2
b
=1
5
y
· · F1
o F2
x
x2 + a2
y2
2
=1
b
6
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
7
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
8
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
9
y
· · F1
o F2
x
x2 + a2
.
5
71
例3、椭圆的中心在原点,一个顶点是(0,2), 离心率 e 3 ,求椭圆的标准方程。
2
解:(1)当(0,2)点是长轴端点时
所以a=2 又e c 3 c 3 b 1
a2
所求的椭圆的标准方程是
y2
x2
1
4
(2)当(0,2)点是短轴端点时
所以b=2 又e c
a
a2 b2 a
3 2
x
x2 + a2
y2
2
b
=1
48
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
49
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
50
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
51
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
52
y
· · F1
o F2
x
x2 + a2
y2
4
3,
2
焦点坐标为( 2 ,3 , 0顶)点坐标(±4,0),(0,±2). (2)已知方程化为标准方程为 y2 x故2 可1,得长轴长
81 9
为18,短轴长为6,离心率为 2 2 ,
3
焦点坐标为(0, 6,2顶) 点坐标(0,±9),(±3,0). 68
例2. 椭圆的一个焦点和短轴的两端点 构成一个正三角形,则该椭圆的离心 率是 3 .
A1 (-a, 0) F1
b
a
A2 (a, 0)
o c F2
x
B1(0,-b)
60
根据前面所学有关知识画出下列图形
(1)
x2 y2 1
25 16
(2) x2 y2 1 25 4
y
y
4 B2
3 2
4
3 2
B2
A1
1
A2
A1
1
A2
-5 -4 -3 -2 --11 1 2 3 4 5 x
-2 -3
o F2
x
x2 + a2
y2
2
b
=1
32
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
33
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
34
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
35
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
36
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
10
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
11
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
12
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
13
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
14
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
15
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
43
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
44
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
45
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
46
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
47
y
· · F1
o F2
e=0,这时两个焦点重合,图形变为圆.
e=1,为线段。
[3]e与a,b的关系: e c a2 b2 1 b2
a
a2
a2
64
问:对于椭圆C1
: 9x2
y2
36与椭圆C2:1x62
y2 12
2,
C 更接近于圆的是2
。
65
标准方程
图象
范围 对称性 顶点坐标 焦点坐标 半轴长 焦距 a,b,c关系 离心率
[2]离心率对椭圆形状的影响:
o
x
1)e 越接近 1,c 就越接近 a,请问:此时椭圆的变化情况?
b就越小,此时椭圆就越扁。 2)e 越接近 0,c 就越接近 0,请问:此时椭圆又是如何变化的?
b就越大,此时椭圆就越趋近于圆。
如果a=b,则c=0,两个焦点重合,椭圆的标准方程就变
为圆的方程: x2 y2 a2
a2=b2+c2
e c a
e c a2 b2 1 b2
a
a2
a2
66
例1已知椭圆方程为16x2+25y2=400,
它的长轴长是: 10 。短轴长是: 8 。
焦距是 6
3
。 离心率等于: 5 。
焦点坐标是: (3, 0) 。顶点坐标是:(5, 0) (0, 4)
外切矩形的面积等于:
80
。
分析:椭圆方程转化为标准方程为:
16x2 25 y2 400 x2 y2 1 25 16
a=5 b=4 c=3
y
o
x
67
强化训练
1.求下列各椭圆的长轴长和短轴长,离心率,焦点坐 标,顶点坐标.
(1)x2 4y2 16.
(2)9x 2
【解析】
y
2
81.
(1)已知方程化为标准方程为
x2
+
y2
=
1,
故可得长轴长为8,短轴长为4,离心率为16
x2 y2 1或 y2 x2 1
9
81 9
73
解法二:设椭圆方程为 x2 y2 1(m 0, n 0, m n) mn
则由题意得
9 m
1
或
9 m
1
2 m 3 2 n 2 n 3 2 m
解得
m n=1
9或
m 9 n 81
椭圆的方程为 x2 y2 1或 y2 x2 1
2
69
强化训练
1 , 椭圆
x2 y2 1(a b 0)的
a2 b2
左、右顶点分别是A,B,左、右焦点分别是F1,F2.若
5
AF1 ,F1F2 ,F1B 成等比数列,则此椭圆的离心率为___5_.
70
2.已知焦点在x轴上的椭圆 mx2 5 y 2 5m 的离心率是
e 10 ,则m= 3
x
x2 + a2
y2
2
b
=1
21
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
22
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
23
ቤተ መጻሕፍቲ ባይዱ
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
24
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
25
y
· · F1
o F2
x
x2 + a2
y2
3.椭圆中a,b,c的关系是:
c2 a2 b2
1
2
一、椭圆的范围
由
x2 a2
y2 b2
1
x2 a2
1
和
y2 b2
1
即 x a和 y b
y
y=b
-a≤x≤a , -b≤y≤b x =-a
由
x =a
o
x
y = -b
3
二、椭圆的对称性 y
· · F1
o F2
x
x2 + a2