同济大学混凝土结构非线性【第一章】
混凝土结构的非线性分析与设计

混凝土结构的非线性分析与设计一、绪论混凝土结构是现代建筑中应用最广泛的结构形式之一,其具有强度高、耐久性好、施工方便等优点。
但在实际工程中,混凝土结构受到外力作用而产生的非线性响应问题已经成为一个研究热点。
本文旨在介绍混凝土结构的非线性分析与设计方法。
二、混凝土材料力学性质的分析混凝土材料的力学性质是非线性的,其应力-应变关系不符合胡克定律。
因此,在进行混凝土结构的非线性分析与设计时,需要对混凝土材料的力学性质进行分析。
1.混凝土材料的本构模型混凝土材料的本构模型是描述混凝土材料应力-应变关系的数学模型。
目前常用的混凝土材料本构模型有双曲线模型、抛物线模型、三次多项式模型等。
2.混凝土的损伤力学混凝土在受到外力作用时,会产生裂缝和微观损伤。
混凝土的损伤力学是研究混凝土在受力作用下的损伤演化规律和损伤对力学性质的影响。
三、混凝土结构的非线性分析方法混凝土结构在受到外力作用时,由于混凝土材料的非线性特性,其响应也是非线性的。
因此,需要采用一些特殊的非线性分析方法来进行分析。
1.有限元法有限元法是目前最常用的混凝土结构非线性分析方法。
有限元法的基本思想是将整个结构分割成许多小的单元,通过计算每个单元的应力-应变关系来得到整个结构的响应。
2.离散元法离散元法是一种适用于研究颗粒材料行为的方法。
它将问题离散化为许多小的颗粒,并通过计算颗粒间的相互作用来得到整个结构的响应。
3.模型试验法模型试验法是通过建立一个与实际结构尺寸相似的模型进行试验,得到结构的力学性质。
这种方法具有试验结果可靠、直观等优点,但是需要注意模型与实际结构的相似性。
四、混凝土结构的非线性设计方法混凝土结构的非线性设计是指在考虑混凝土材料非线性特性的基础上,进行混凝土结构的设计。
1.承载力设计法承载力设计法是指在混凝土结构达到破坏状态之前,其承载力必须满足规定的要求。
这种设计方法适用于规范中没有明确规定非线性分析方法的情况。
2.变形控制设计法变形控制设计法是指在混凝土结构达到一定变形或裂缝宽度之前,其承载力必须满足规定的要求。
钢筋混凝土非线性分析分解

第二讲
三、混凝土的本构关系
2、混凝土应力应变曲线的理想化
1)单调加载σ-ε曲线: 单向受压:Saenz模式 朱伯龙模式 【朱】Page 13 单向受拉:二直线模式 三直线模式 曲线模式(朱伯龙模式) 2)重复加载σ-ε曲线: 直线模式:Blakeley模式 曲线模式:朱伯龙模式 卸载:【吕】式2.23 再加载: 式2.24-2.26 (与卸载点位置有关)
a)应力不变,且σ<0.5fc (线性徐变或有限徐变): 幂表达式 指数表达式 双曲线表达式 对数表达式
其中各常数可以调整,用以考虑 时间和不同因素的影响
在此基础上,另加调整参数,对表达式进行修正 【朱】Page24 式1.37 考虑自由收缩、水泥水化程度 式1.38、1.39 考虑湿度、尺寸、龄期 式1.40 考虑湿度、尺寸、龄期、配合比、其它
(直线模型只是对反复加载曲线的一种近似简化!)
三、混凝土的本构关系 1、混凝土的应力应变曲线 1)加载方向的影响:受压:(弹性极限、临界应力) 受拉:(弹性极限) 2)加载制度的影响:单调加载: 重复加载:等应力、等应变、渐增应变 反复加载:混凝土开裂影响 骨料咬合裂面效应 3)加载速率的影响: 特点:强度提高、弹性模量提高
2)粘弹性流变模型:广义凯尔文模型 3)粘塑性流变模型:宾哈姆模型 4)粘弹粘塑性流变模型(混凝土徐变和钢筋应力松驰) 5、断裂力学模型:张开型、剪切型、扭转型
二、钢筋的本构关系 1、钢筋的应力应变曲线 1)材料品种的影响:软钢、硬钢 2)加载速率的影响:冲击荷载(爆炸、打桩)、地震作用
特点:随加载速率提高:强度提高 曲线形状基本不变 弹性模量基本不变
二、钢筋混凝土非线性分析方法 ——有限元数值分析 有限元数值分析方法的优点: (能解决混凝土结构不能解决的问题) 1、计算模型中反映钢筋、混凝土材料的非线性特性 2、考虑钢筋和混凝土之间的粘结 3、一定程度上模拟节点和边界条件 4、提供大量信息:应力、应变的全过程分析,开裂后状况 5、部分代替试验,进行参数分析 (可作为:研究工具、计算工具、模拟现场过程)
00_混凝土结构非线性分析-资料

§3.2 单元刚度矩阵(并联模型)
§3.2 单元刚度矩阵(并联模型)
双线形模型的退化
y
§3.2 单元刚度矩阵(并联模型)
预备知识:弯矩(曲率)图面积定理 第一弯矩图面积定理
预备知识:弯矩(曲率)图面积定理
预备知识:弯矩(曲率)图面积定理
预备知识:弯矩(曲率)图面积定理 第二弯矩图面积定理
L L
§4.2 非线性柔度矩阵的一般形式
(4.19) (4.21)
§4.3 非线性刚度矩阵的实用形式 固定反弯点
§4.3 非线性刚度矩阵的实用形式
§4.4 仅含弯曲位移的单元刚度矩阵
§4.5 不计轴向变形的梁柱单元双线型弹塑性刚度矩阵
§4.5 不计轴向变形的梁柱单元双线型弹塑性刚度矩阵
假定:拉压与弯曲是相互独立的
§2.1 弯矩-曲率关系
弯矩-应力-应变-曲率
§2.1 弯矩-曲率关系
§2.1 弯矩-曲率关系
§2.1 弯矩-曲率关系
§2.1 弯矩-曲率关系
平截面假定还成立吗?
§2.1 弯矩-曲率关系
简化模型
§2.1 弯矩-曲率关系
yy
Question 2-3-4段是直线吗? 推导一下吧。
§2.2弹塑性弯矩-曲率模型的单元刚度矩阵
§2.2弹塑性弯矩-曲率模型的单元刚度矩阵
§2.2弹塑性弯矩-曲率模型的单元刚度矩阵
第三章 双线型弹塑性梁单元的刚度矩阵(并联模型) §3.1 弯矩-曲率关系
No Image
§3.1 弯矩-曲率关系
平截面假定
' p
?
平截面假定 不适用啦!
§3.1 弯矩-曲率关系
Solution
yy
§2.2弹塑性弯矩-曲率模型的单元刚度矩阵
混凝土结构非线性分析与设计

混凝土结构非线性分析与设计混凝土结构是工业建筑和民用建筑中最常见的建筑结构之一。
在设计和分析混凝土结构时,通常需要考虑结构的稳定性、刚度、承载能力等方面,以保证其能够满足工程使用的要求。
然而,混凝土结构是一个典型的非线性结构,这意味着结构在受外力作用下的变形和应力状态是非线性的,而这种非线性往往会导致结构的预测性能和可靠性变差。
因此,对于混凝土结构的非线性分析与设计来说,更具有挑战性。
本文将详细探讨混凝土结构非线性分析与设计的相关问题。
混凝土结构的非线性特性混凝土结构存在多种非线性性质,这些非线性特性主要包括以下几点:1. 弹塑性行为混凝土结构在小变形范围内表现出弹性行为,但随着外部载荷的增加,混凝土就开始表现出一定程度的塑性行为。
这是因为混凝土的本身是一个复合材料,内部含有许多孔隙和缺陷,难以表现出完全的线性弹性特性。
2. 非线性材料特性与金属材料相比,混凝土是一种非常脆弱的材料,其受压性能强于其受拉性能。
在混凝土的受拉过程中,裂缝会逐渐扩展。
这种非线性行为会对混凝土结构的整体性能产生很大影响。
3. 多项式应力应变关系当混凝土受到剪切力或扭矩时,其应变和应力之间的关系并不是线性的,而是一个多项式函数。
这种关系导致混凝土结构的非线性行为更加复杂。
混凝土结构的非线性分析混凝土结构的非线性分析方法有多种,主要包括有限元法、弹塑性分析法、极限等效塑性法等。
有限元法是一种非线性分析方法中应用最为广泛的方法之一。
它通过将结构划分成很多的有限元单元,在各个单元上建立力学方程,求解整个结构的应力和位移场。
这种方法可以考虑裂缝的产生和扩展等非线性因素,因而能够比较准确地模拟混凝土结构的非线性行为。
弹塑性分析法是在有限元法的基础上发展起来的一种方法。
它将结构划分为弹性区和塑性区,并同时考虑两个区域的力学行为。
弹性区的行为遵循线性弹性理论,而塑性区的行为则遵循材料的应力-应变曲线。
这种方法适用于不同类型的混凝土结构,并可以将结构的裂缝和塑性变形等非线性因素考虑在内。
钢筋混凝土非线性分析讲解

第一章:绪论
一、学习非线性分析的意义 (当前混凝土结构设计存在的问题)
1、混凝土材料工作状态的非线性 2、钢筋和混凝土共同工作条件——变形协调 3、结构内力计算和截面设计不协调 4、节点的理想化(刚接、铰接)与实际状态不符 5、长期荷载下徐变、应力松弛引起的结构内力重分布
6、动力荷载作用下的材料特性与静力下不同
理想弹性元件(弹簧元件——虎克体) 理想塑性元件(滑块元件——圣维南体) 粘性元件(阻尼器——牛顿体)
2)粘弹性流变模型:广义凯尔文模型 3)粘塑性流变模型:宾哈姆模型 4)粘弹粘塑性流变模型(混凝土徐变和钢筋应力松驰)
5、断裂力学模型:张开型、剪切型、扭转型
二、钢筋的本构关系
1、钢筋的应力应变曲线
幂表达式 指数表达式 双曲线表达式 对数表达式
其中各常数可以调整,用以考虑 时间和不同因素的影响
在此基础上,另加调整参数,对表达式进行修正 【朱】Page24 式1.37 考虑自由收缩、水泥水化程度
式1.38、1.39 考虑湿度、尺寸、龄期 式1.40 考虑湿度、尺寸、龄期、配合比、其它
五、基本概念
1、本构关系:材料力学性质的数学表达式 2、屈服极限:由弹性变形变为非弹性变形的转折点的应力
屈服条件:某一点出现塑性变形时应力状态应满足的条件 屈服函数:表示屈服条件的函数 屈服面: 屈服函数在应力空间中表示的曲面
3、强化:屈服极限提高的现象 软化:应力降低、应变增大的现象 拉伸强化:混凝土受拉构件中主裂缝之间混凝土仍承担 一部分拉应力的现象
(可作为:研究工具、计算工具、模拟现场过程)
三、钢筋混凝土结构有限元数值分析的特点 (与其它固体材料有限元分析的不同)
1、模拟混凝土的开裂和裂缝发展(包括裂缝闭合)过程 2、模型中反映钢筋与混凝土间的粘结、滑移 3、模拟混凝土材料应力峰值后和钢筋屈服后的性能 4、材料非线性和几何非线性并存 5、分析结果强烈依赖于钢筋、混凝土材料的本构关系和
混凝土结构设计原理同济大学PPT课件

第16页/共362页
2.1 混凝土的物理力学性能
3)轴心抗拉强度
混凝土的轴心抗拉强度可以采用直接轴心受拉的试验 方法来测定,但由于试验比较困难,目前国内外主要采 用圆柱体或立方体的劈裂试验来间接测试混凝土的轴心 抗拉强度。
F
压
a
拉
f sp
2F
a2
压
F
劈拉试验
第17页/共362页
2.1 混凝土的物理力学性能
fl ——侧向约束压应力。
侧向压应力的存在还可提高混凝土的延性。
第23页/共362页
2.1 混凝土的物理力学性能
第二章 钢筋和混凝土的材料性能
混凝土的变形
1、单轴受压应力-应变关系 混凝土单轴受力时的应力-应变关系反映了混凝土受力全过
程的重要力学特征,是分析混凝土构件应力、建立承载力和变形 计算理论的必要依据,也是利用计算机进行非线性分析的基础。
⑶ 耐久性和耐火性较好,维护费用低:钢筋有混凝
土的保护层,不易产生锈蚀,而混凝土的强度随时间
而增长;混凝土是不良热导体,30mm厚混凝土保护
层可耐火2小时,使钢筋不致因升温过快而丧失强度。
第3页/共362页
1.1 混凝土结构一般概念和特点
第一章 绪论
⑷ 现浇混凝土结构的整体性好,且通过合适的配 筋,可获得较好的延性,适用于抗震、抗爆结构; 同时防振性和防辐射性能较好,适用于防护结构。 ⑸ 刚度大、阻尼大,有利于结构的变形控制。 ⑹ 易于就地取材:混凝土所用的大量砂、石,易 于就地取材,近年来,已有利用工业废料来制造人 工骨料,或作为水泥的外加成分,改善混凝土的性 能。
❖混凝土结构的开始应用于土木工程距今仅150多年。
❖与砖石结构、钢木结构相比,混凝土结构的历史并 不长,但发展非常迅速,是目前土木工程结构中应用 最为广泛结构,而且高性能混凝土和新型混凝土结构 形式还在不断发展。
同济大学研究生《高等混凝土结构理论》复习要点与教学大纲

这是同济大学《高等混凝土结构理论》期末考试的复习要点,希望对考博选考3007高等混凝土与钢结构这门课的同学有所帮助。
1.Stress-strain curves of concrete under monotonic, repeated and cyclic uniaxial loadings. 单轴受力时混凝土在单调、重复、反复加载时的应力应变曲线。
2.Creep of concrete (linear and nonlinear) 混凝土的徐变(线性、非线性徐变)3.Components of deformation of concrete 混凝土变形的多元组成4.Process of failure of concrete under uniaxial compression 混凝土在单向受压时破坏的过程。
5.Strength indices of concrete and the relations among them 混凝土的强度指标及其之间关系6.Features of stress-strain envelope curve of concrete under repeated compressive loading. 混凝土单向受压重复加载时的应力应变关系的包络线的特征。
7.The crack contact effect of concrete and its representation in stress-strain diagram. 混凝土的裂面效应及其在应力应变关系图上的表示。
8.The multi-level two-phase system of concrete. 混凝土的多层次二相体系。
9.The rheological model of concrete. 混凝土的流变学模型。
10.Influence of stress gradient on strength of concrete. 应力梯度对混凝土强度的影响。
同济大学混凝土结构非线性【第一章】

( ps 0.7 f pu )
ps
E p' ps
1
E p' ps f pu
m
1/ m
( ps 0.7 f pu )
Ramberg-Osgood曲线的形 状系数,可取为4
Ep
零荷载时Ramberg-Osgood 曲线的斜率,可取为 214000MPa
0
0
1
2
3
4
Deformation /mm (b) Steel wire
18
一、钢筋的应力-应变关系
5. 锈蚀预应力钢筋应力-应变关系
试验结果
1.2 βEC 1.10
0.8 0.6 0.4 0.2
0 0
Strand
0.1
0.2
ηs
(a)
Steel wire
1.2
0.9 αpuc
0.6
0.3
0
0.3
0C T 370C 370C T 700C T 700C
10
一、钢筋的应力-应变关系
3. 高温作用时及高温作用后钢筋应力-应变关系
原则:只对屈服应力和弹性模量进行修正,应力-应变关 系不变
高温后
当受火温度低于600C时,冷却后热轧钢筋的屈服强 度和抗拉强度基本不变,只是当受火温度高于600C 时,才略有下降,且下降幅度小于原抗拉强度的10%
24
加载速度减慢
68
10
d (10-3)
22
二、混凝土的应力-应变关系
1. 单调加载时的应力-应变关系
单轴受压----理论曲线
c
fc
c
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2450
47.0
0.12
Measured corrosion rate(MCR)
0.0632 0.0648 0.0651 0.0600 0.0651 0.0676 0.1246 0.1254 0.1260
MCR /TCR
1.05 1.08 1.09
1 1.09 1.13 1.04 1.05 1.05
高温后
当受火温度低于600C时,冷却后热轧钢筋的屈服强 度和抗拉强度基本不变,只是当受火温度高于600C 时,才略有下降,且下降幅度小于原抗拉强度的10%
近似地认为钢筋的抗拉强度和在弹性模量火灾冷却后 保持不变。
11
一、钢筋的应力-应变关系
4. 锈蚀钢筋应力-应变关系
试验结果
荷载(KN)
80
70
9.32% 16.89%
单轴受压----试验曲线
混凝土强度提高
(MPa)
25 fc
c
20 15 10
5
o
作用是:峰值 应力后,吸收 试验机的变形 能,测出下降 段
b
a 0
24
加载速度减慢
68
10
d (10-3)
22
二、混凝土的应力-应变关系
1. 单调加载时的应力-应变关系
单轴受压----理论曲线
c
fc
c
f
c
1
1
c 0
1.2
1
y = -1.119x + 1 R2 = 0.7298
0.8
0.6
0.4
0.2
0
0
0.2
0.4
0.6
0.8
1
截面锈蚀率
名义极限强度相对值—截面锈蚀率关系
名义极限强度相对值
极限延伸率相对值
名义屈服强度相对值—截面锈蚀率关系
1.6
1.4
y = e-2.5009x
1.2
R2 = 0.6171
1
0.8
0.182 f y
T 700C
E
T s
((11..50150.418.967810103T3)TE)sEs 0.182Es
0C T 370C 370C T 700C T 700C
10
一、钢筋的应力-应变关系
3. 高温作用时及高温作用后钢筋应力-应变关系
原则:只对屈服应力和弹性模量进行修正,应力-应变关 系不变
27
二、混凝土的应力-应变关系
1. 单调加载时的应力-应变关系
火灾下混凝土单轴受压----当0 < T 400℃时
T c
c0
2
T c
T c0
1 1 0.002T
T c
T c0
2
1
1 0.002T
2
T c
c0
1
100
T c
1 0.0 c0
1. 单调加载时的应力-应变关系
硬钢
0.2
0.2%
s fs,u fy
s=Ess
y
s,h
s,
u
s
6
一、钢筋的应力-应变关系
1. 单调加载时的应力-应变关系
硬钢
硬钢(预应力)钢筋的弹 性模量
ps fpu
0.7fpu Ep
ps E p ps
( ps 0.7 f pu )
ps
E
' p
ps
t c
2 Asv f yv s d c or
o
Ec Esec
c0 2c0 sp cc
c cu
cc
5
f cc fc
1
1
c0
25
二、混凝土的应力-应变关系
1. 单调加载时的应力-应变关系
受皂化油浸蚀混凝土单轴受压
t c
c0
0.0004t 2
2
t c
0.02t
1 c0
t c
2
(1
0.002T ) c0
(0
T c
T c0
)
28
二、混凝土的应力-应变关系
1. 单调加载时的应力-应变关系
火灾下混凝土单轴受压----当400℃ < T 800℃时
T c
(1.6
0.0015T
)
c0
2cT T
c0
1
1 0.002T
cT T
c0
2
1
1 0.002T
2
(0 cT
60
20.30%
50
40
30
20
10
0
0
2
4
6
8
10
变形(mm)
φ14荷载—变形关系
20
15
27.90%
13.10%
10
39.97% 5
0
0
2
4
6
8
10
变形(mm)
荷载(KN)
荷载(KN)
荷载(KN)
70 60 50 40 30 20 10 0
0
20
15
10
5
0 0
11.30%
0%
25.89%
2
4
6
变形:30% 光圆:15%
变形:20% 光圆:10%
适用条件
试验室电化学加速 锈蚀
大气环境自然裸露 锈蚀
实际工程混凝土中 钢筋锈蚀
15
一、钢筋的应力-应变关系
5. 锈蚀预应力钢筋应力-应变关系
应力对锈蚀速度的影响
Balance hammer
Leverage Weight
Stent
Hanging basket
0
Steel wire
Strand
0.1 0.2 0.3
η s
(b)
1.2
1.10
βpuc 0.8 0.6
0.4
0.2
0
0.4
0
Steel wire
0.03
0.06
0.09
η s
(c)
19
一、钢筋的应力-应变关系
5. 锈蚀预应力钢筋应力-应变关系
理论模型
pc f puc
0.85 fpuc
当s<0.08时,
pc Epc
pc
0.85
fpuc
pc p0c
0.15
puc
fpuc
p0c
pc p0c pc p0c
Epc
s0 s0
Epc 0
当s≥0.08时,
pc pc Epc
0.85 fpuc pc
20
一、钢筋的应力-应变关系
5. 锈蚀预应力钢筋应力-应变关系
理论模型
pc f puc
8
10
12
变形(mm)
φ12荷载—变形关系
0% 10.21% 27.10%
1
2
3
4
5
6
7
变形(mm)
φ8荷载—变形关系
φ6荷载—变形关系
12
一、钢筋的应力-应变关系
4. 锈蚀钢筋应力-应变关系
弹性模量
试验结果
4 3.5
3 2.5
2 1.5
1 0.5
0
0
0.1
0.2
0.3
0.4
0.5
截面锈蚀率
弹性模量—截面锈蚀率关系
3
混凝土结构非线性分析
第一章 钢筋和混凝土单向受力时的本构关系
同济大学土木工程学院 顾祥林 gxl@
一、钢筋的应力-应变关系
1. 单调加载时的应力-应变关系
s
软钢 fy
D
B’
E
A B
C
s=Ess
y
s, s s
h
fs,u
fy
s=Ess
s,u
s, s
y
h
5
一、钢筋的应力-应变关系
17
一、钢筋的应力-应变关系
5. 锈蚀预应力钢筋应力-应变关系
试验结果
300
50
0.07
250
5
0
40
200 0.112 Load /kN150
0.01 0.04 8 6
Load /kN30
0 0.055
0.095
100
0.189
20
0.175
50
10
0
0
20
40
60
80
Nominal deformation (a) S/tmramnd
2
o
c
f
c
1
0.15
c u
0 0
c
fc 0.15fc
0=0.002
c
fc
1
1
c 0
2
c
u=0.0038
o
0=0.002
c u=0.0035
美国Hognestad模型
德国Rüsch模型
23
二、混凝土的应力-应变关系
1. 单调加载时的应力-应变关系
单轴受压----理论曲线
n
2
1 60
0
0
1
2
3
4
Deformation /mm (b) Steel wire
18
一、钢筋的应力-应变关系
5. 锈蚀预应力钢筋应力-应变关系
试验结果
1.2 βEC 1.10
0.8 0.6 0.4 0.2
0 0
Strand
0.1 0.2
η s
(a)
Steel wire
1.2
0.9 αpuc