阵列波导光栅的滤波特性集成光器件可作为波长路由器27页PPT
光纤通信课件第6章 WDM

WDM系统的基本结构
光接收机: 由光前置放大器(PA)放大经传输而衰减的主信道光信 号。 光分波器从主信道光信号中分出特定波长的光信号。 接收机不但要满足一般接收机对光信号灵敏度、过载 功率等参数的要求,还要能承受有一定光噪声的信号, 要有足够的电带宽。
WDM系统的基本结构
光监控信道(OSC: Optical Supervisory Channel): 主要功能:监控系统内各信道的传输情况。 在发送端,插入本结点产生的波长为λs(1510 nm)的 光监控信号,与主信道的光信号合波输出。 在接收端,将接收到的光信号分离,输出λs 波长的光 监控信号和业务信道光信号。 帧同步字节、公务字节和网管所用的开销字节等都是 通过光监控信道来传送的。
WDM复用原理
波分复用的常规分类
➢ 光频分复用(OFDM):光频(信)道间距很小的频分复用。 ➢ 密集波分复用(DWDM):光频(信)道间距小于10nm的波分
复用,D:Dense (密集) ➢ 粗波分复用(CWDM):光频(信)道间距大于10nm 的波分复
用, C: Coarse (粗),也称稀疏波分复用。 ➢ DWDM(1550波段)的标准信道间距:
WDM复用原理
WDM系统的基本构成: 将不同波长的信号结合在一起经一根光纤输出的器件 称为复用器(也叫合波器)。 反之,经同一传输光纤送来的多波长信号分解为各个 波长分别输出的器件称为解复用器(也叫分波器)。 复用器和解复用器一般是相同的(除非有特殊的要求)。
WDM复用原理
WDM系统的基本构成主要有以下两种形式: 双纤单向传输: 单向WDM传输:所有光通路同时在一根光纤上沿同 一方向传送。在发送端将载有各种信息的、具有不同 波长的已调光信号λ1,λ2,…,λn通过光复用器组合在一起, 并在一根光纤中单向传输。在接收端通过光解复用器 将不同波长的信号分开,完成多路光信号传输的任务。
阵列波导光栅的滤波特性集成光器件可作为波长路由器共29页文档

阵列波导光栅的滤波特性集成光器件 可作为波长路由器
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
40、人类法律,大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
阵列波导光栅结构

阵列波导光栅结构1. 引言阵列波导光栅结构(Arrayed Waveguide Grating,AWG)是一种用于光通信和光谱分析的关键器件。
它通过将输入的光信号分散成多个不同频率的波长,并将它们耦合到输出波导中,实现了光信号的多路复用和解复用。
本文将对阵列波导光栅结构的原理、制备工艺以及应用进行全面详细的介绍。
2. 原理阵列波导光栅结构由一系列平行排列的等长波导组成,其中每个波导都有一个固定的折射率。
当入射光从其中一个输入波导进入时,会在所有波导之间发生耦合,并形成一系列干涉效应。
这些干涉效应会使得不同频率的光在输出端形成不同强度的干涉峰,从而实现了对不同波长的分散和解复用。
具体而言,阵列波导光栅结构可以分为两个主要部分:输入级和输出级。
输入级包括输入端口、输入星型耦合器和阵列波导,用于将入射光耦合到阵列波导中。
输出级包括输出星型耦合器和输出端口,用于将解复用后的光信号从阵列波导中耦合出来。
在阵列波导中,入射光会被分散成不同频率的波长,并沿着波导逐渐传播。
每个波导之间的距离被精确设计,以使得不同频率的光在特定位置相位匹配,从而形成干涉峰。
这些干涉峰的强度与入射光的波长有关,因此可以通过调整波导长度和折射率来实现对不同波长的分散和解复用。
3. 制备工艺制备阵列波导光栅结构通常采用集成光学技术,其中最常见的方法是利用硅基材料。
以下是一般制备工艺流程:1.材料选择:选择具有较高折射率差异的材料作为主要构成元素,例如硅和二氧化硅。
2.芯片设计:根据应用需求设计芯片结构,并确定输入级和输出级的参数。
3.芯片制备:使用化学气相沉积(Chemical Vapor Deposition,CVD)或物理气相沉积(Physical Vapor Deposition,PVD)等技术,在硅基底上生长薄膜。
4.光刻和蚀刻:利用光刻技术将设计好的波导图案转移到薄膜上,并通过干法或湿法蚀刻将多余的材料去除。
5.抛光和平整化:对制备好的芯片进行抛光和平整化处理,以提高表面质量和波导性能。
光栅传感器重点PPT课件

2021/6/4
余弦信号 (超前)
正弦信号
零位信号
9
第9页/共28页
光栅输出信号(电压正弦波)
余弦信号 细分点
正弦信号 零位信号
2021/6/4
10
第10页/共28页
2021/6/4
脉冲细分
细分前 细分技术能在不 增加光栅刻线数及价 格的情况下提高光栅 的分辨力。细分前, 光栅的分辨力只有一 个栅距的大小。采用 4细分技术后,计数 脉冲的频率提高了4
休息一下
2021/6/4
27
第27页/共28页
感谢您的观看!
2021/6/4
28
第28页/共28页
第19页/共28页
2 自 由 度 光 栅 数 显 表X位移显示
Z(Y)位移显示
2021/6/4
20
第20页/共28页
3自由度光栅数显表
2021/6/4
21
第21页/共28页
光栅数显表(续)
三座标数显表
2021/6/4
22
第22页/共28页
SDS8-3E 光栅数显箱功能:
公制/英制转换 绝对/相对转换 线性误差补偿 正反方向计算 归零 插值补偿 到达目标值停机 PCD圆周分孔 200组零位记忆 电蚀深度目标值显示 实时工作位置显示 掉电记忆
2021/6/4
4
第4页/共28页
透射式圆光栅
固定
2021/6/4
5
第5页/共28页
莫尔条纹的光学放大作用
在透射式直线光栅中,把主光栅与指示光栅的刻线面相对叠 合在一起,中间留有很小的间隙,并使两者的栅线保持很小的夹 角θ。在两光栅的刻线重合处,光从缝隙透过,形成亮带;在两 光栅刻线的错开处,由于相互挡光作用而形成暗带。
典型的光器件AWGPPT课件

目前国外已有成熟 产品,但国内尚无
•15
5.实用化AWG的性能要求
小的中心波长偏移 宽的通带光谱响应 低的插入损耗 低的信道串扰 低的偏振相关性 平坦光谱响应
•16
典型的AWG产品性能
•17
AWG的典型参数
通带宽度 通带起伏 偏振依赖损耗
通带宽度
通带起伏
偏振依赖损耗
•18
的波长路由器等 ,是互易性的
特点:通道数多,插入损耗低,通带平坦,容易集成在一块
衬底上
阵列波导
输入波导 输入耦合器
输出波导 输出耦合器
•2
2.工作原理——罗兰圆与凹面光栅
罗兰圆的半径为r,凹面 光栅的曲率半径为R=2r ,二者内切且罗兰圆通 过光栅中心。
通过光路分析及近似可 得,罗兰圆上任一点发 出的光,经凹面光栅衍 射之后仍聚焦在罗兰圆 上,不同衍射级次对应 不同衍射角。
(WGRs)
相同的波长可承载不同的信号从不同的输入端口输入,并 且不会在输出端口发生碰撞。
11,21,13,14 12,22,23,24 13,23,33,34 14,24,43,44
AWG
11,22,33,44 14,21,32,34 13,24,31,24 12,23,34,14
•12
AWG的应用-波长路由
腔1
0 3腔
滤 波 器 的 传 输 /谱dB
玻 璃衬 底
多腔与单腔相比, 通带顶部更加平坦,
边缘更为尖锐
- 10 - 20
- 30
- 40
0.996
0.998
1 0 /
2腔 1腔
1.002
1.004 •9
TFF技术的波分复用器
介质薄膜滤光片 光纤准直镜
[WDM] 波分原理基础学习PPT
![[WDM] 波分原理基础学习PPT](https://img.taocdn.com/s3/m/bcf388a0112de2bd960590c69ec3d5bbfc0ada42.png)
损耗 3-附加损耗
附加损耗
由于光纤经过集束制成光缆,在各种环境下进行光缆 敷设、光纤接续以及作为系统的耦合与连接等引起的 光纤附加损耗
光纤/光缆的弯曲损耗、微弯损耗
光纤线路中的连接损耗 光器件之间的耦合损耗等
损耗谱
理论值:0.19-0.35dB/km 工程值:0.275dB/km
3.0
2.5
OM/OD技术-OM/OD器件类型
光栅型光波分复用器 介质薄膜滤波器型(DTF) 耦合器型(熔锥型) 阵列波导光栅型(AWG)
OM/OD器件类型 1-光栅型滤波器
l1,2,3,...n
l l l l ln
OM/OD器件类型 1-光栅型复用器
原理
– 属于角色散型器件,当光到光栅上后,由于光栅的角色散作用,使 不同的光信号以不同的角度出射,然后经过透镜会聚 到不同的输出 光纤,从而完成波长选择和分离的作用,反之就可以实现波长的合 并。
DWDM的基本原理
课程内容
DWDM系统概述 光纤的基本特性 DWDM系统关键技术 DWDM系统的技术规范
光纤传输网的复用技术
光纤传输网的复用技术经历了三个阶段:
空分复用(SDM) 时分复用(TDM) 波分复用(WDM)
DWDM产生背景
从技术和经济的角度,DWDM技术是目前最经济可行的扩容技术手 段
波长λ
DWDM技术是在波长1550nm窗口附近,在EDFA能提供增益的波长范围内,选用密集 的但相互又有一定波长间隔的多路光载波,这些光载波各自受不同数字信号的调制,复 合在一根光纤上传输,提高了每根光纤的传输容量。
DWDM系统基本结构
光发射机
信道1 光转发器1 λ1 光
BA
输入
第4章 阵列波导光栅_123-156

图中可见,如果平板波导的焦点F到原点O的距离为Lfo和中心角θ 0 选得过小,信道 波导的弯曲半径ri会很小,因而弯曲损耗会很大。如果Lfo和θ 0 选得过大,ri会很大,因 而器件尺寸会过大。因此,兼顾弯曲损耗和器件尺寸,可以选取Lfo = 8000 µm,θ 0 = 60o ,
此时信道波导的弯曲半径rk则处于 3700~ 4500 µm的范围之内。
由上式可以看出,相邻输出信道波导的角间距Δθout与波长间隔Δλ、衍射级数m及群
折射率ng成正比,与平板波导和阵列波导的模有效折射率ns、nc及信道波导间距d成反比。
由上式还可看出,Δθout与Δλ呈线性关系,即从输入信道波导输入的等间隔波长的光将从
等间距排列的输出信道波导输出。
129. 什么是 AWG 的自由光谱区?其表达式为 FSR = λnc mn g
124. 试简述如图所示的罗兰圆原理。
QR
1G0
8
ααβ ααβ
6
4
2
K0
-2
.O
-4
-6
-8
-10
-10 -8 -6 -4 -2 0 2 4 6 8 1P0 '
S
C
P
(124 题图) 罗兰圆原理图
为了避免用透镜聚焦时对衍射光能量所造成的损失,罗兰引进了凹面光栅,其所在 的圆 G 称作光栅圆,其半径为 f,以 f/2 = OQ = OC 为半径作一个圆 K,称做罗兰圆。 可以证明,从罗兰圆 K 上任一点 S 射来的光将近似地被反射到圆上另一点 P,同时被衍 射到圆上另一些点 P' , P" ,⋅⋅⋅,这些点分别是各阶衍射光线的焦点。这就是罗兰圆聚 焦原理。
图中可见,输入平板波导的功率分布曲线 P0 (θ ) 为输出平板波导的功率分布 P(θout ) 的包络线。功率分布曲线 P 中出现许多衍射峰,其中θ = 0 处的衍射峰称为主衍射峰,
1.3 阵列波导光栅

通带平坦化设计III 通带平坦化设计III
改变阵列波导 输入端的口径
阵列波导输出端的光场分布
×
在阵列波导输出端得 到类似sinc函数分布 到类似 函数分布 的光场, 的光场,其傅立叶变 换为矩形, 换为矩形,从而实现 通带平坦化 理论依据:输出波 导接收的光场为阵 列波导输出位置光 场的傅立叶变换 3) 在阵列波导输出端引入相移 通过波导长度差实现) (通过波导长度差实现)
凹面光栅与罗兰圆
凹面光栅: 凹面光栅 : 在凹球面上 刻划一系列等间距的线 条 , 同时具有衍射和聚 焦两种功能; 焦两种功能; 罗兰圆: 罗兰圆 : 直径等于凹面 光栅的曲率半径; 光栅的曲率半径; 特性: 特性 : 罗兰圆上任一点 发出的光, 发出的光 , 衍射之后仍 聚焦在罗兰圆上, 聚焦在罗兰圆上 , 不同 衍射级次对应不同衍射 满足衍射条件: 角,满足衍射条件:
1) 采用多模输出波导 重构光场与多模输出波导 的耦合, 的耦合 , 得到平坦化的通 带特性。 带特性。 缺点是后面只能接光探测 不能继续传输。 器,不能继续传输。
通带平坦化设计II 通带平坦化设计II
2) 在输入端接 在输入端接MMI(多模干涉耦合器) (多模干涉耦合器) 在输入波导与输入星形耦合器之间串接一个MMI耦合器,将输入 耦合器, 在输入波导与输入星形耦合器之间串接一个 耦合器 光场变成一个双峰波形。 光场变成一个双峰波形。 设计成牛角形状, 将MMI设计成牛角形状,可以进一步优化损耗和通带特性。 设计成牛角形状 可以进一步优化损耗和通带特性。 基于多模波导输出或者MMI输入的通带平坦化方案,其本质是改变 输入的通带平坦化方案, 基于多模波导输出或者 输入的通带平坦化方案 输入光场与输出光场之间的耦合特性,从而优化通带特性。 输入光场与输出光场之间的耦合特性,从而优化通带特性。