电力系统调度自动化
电力系统调度自动化

电力系统调度自动化电力系统调度自动化是指利用先进的信息技术和自动控制技术,对电力系统运行过程中的各种数据进行采集、处理和分析,实现对电力系统的调度操作自动化。
通过电力系统调度自动化,可以提高电力系统的运行效率和稳定性,减少人为操作的风险,提高电力系统的安全性和可靠性。
一、电力系统调度自动化的基本原理和功能1. 基本原理电力系统调度自动化的基本原理是通过对电力系统运行过程中的各种数据进行实时采集,利用先进的计算机技术和通信技术对数据进行处理和分析,然后根据系统运行状态和调度要求,自动产生调度命令,实现对电力系统的自动调度操作。
2. 主要功能(1)数据采集功能:通过自动化设备对电力系统的各种数据进行实时采集,包括电压、电流、功率、频率等参数的采集,以及设备状态、告警信息等数据的采集。
(2)数据处理功能:对采集到的数据进行处理和分析,包括数据的计算、校验、筛选等,以及数据的存储和备份。
(3)系统监控功能:通过对电力系统运行状态的监测和分析,实时显示电力系统的运行情况,包括设备状态、负荷状况、电压、频率等参数的监测和显示。
(4)调度命令生成功能:根据电力系统的运行状态和调度要求,自动生成相应的调度命令,包括设备操作命令、负荷调度命令等。
(5)调度命令执行功能:将生成的调度命令发送给相应的设备,实现对电力系统的自动调度操作。
二、电力系统调度自动化的优势和应用1. 优势(1)提高效率:电力系统调度自动化可以实现对电力系统的实时监测和分析,快速生成调度命令,减少人为操作的时间和成本,提高调度效率。
(2)提高稳定性:通过对电力系统运行状态的实时监测和分析,可以及时发现和处理异常情况,保证电力系统的稳定运行。
(3)降低风险:电力系统调度自动化可以减少人为操作的风险,避免操作失误导致的事故和故障,提高电力系统的安全性。
(4)提高可靠性:通过自动化设备对电力系统数据的实时采集和处理,可以准确获取电力系统的运行状态,提高电力系统的可靠性。
电力系统调度自动化

电力系统调度自动化电力系统调度自动化是指利用先进的信息技术和自动控制技术,对电力系统的运行状态进行实时监测、分析和调度,以实现电力系统的安全、稳定、经济运行。
本文将从以下几个方面详细介绍电力系统调度自动化的相关内容。
一、电力系统调度自动化的概述电力系统调度自动化是电力系统运行管理的核心技术之一,通过自动化系统对电力系统运行状态进行监测、分析和调度,实现对电力系统的全面控制和管理。
电力系统调度自动化系统包括监测、分析、调度和控制四个主要功能模块,通过实时数据采集、数据处理和决策支持等手段,提高电力系统的运行效率和可靠性。
二、电力系统调度自动化的主要功能1. 监测功能:通过监测系统实时采集电力系统的运行数据,包括电压、电流、功率、频率等参数,以及设备状态、故障信息等。
监测系统能够实时显示电力系统的运行状态,并对异常情况进行报警和记录。
2. 分析功能:通过对监测数据进行分析和处理,提取电力系统的特征参数,如负荷、电压、频率等,对电力系统的运行状态进行评估和预测。
分析系统能够对电力系统的稳定性、可靠性、经济性等进行综合分析,并提供决策支持。
3. 调度功能:根据分析结果和运行要求,制定电力系统的调度计划,包括负荷分配、发机电组的启停、输电路线的开关控制等。
调度系统能够自动实现调度计划的执行,并根据实际情况进行动态调整。
4. 控制功能:通过控制系统对电力系统的设备进行控制,包括发机电组的调速、负荷的调节、变压器的调整等。
控制系统能够实现对电力系统的实时控制和调节,确保电力系统的安全、稳定运行。
三、电力系统调度自动化的关键技术1. 数据采集技术:包括传感器、测量仪器等设备,用于采集电力系统的运行数据。
数据采集技术需要具备高精度、高稳定性和高可靠性,能够实时采集大量的数据。
2. 数据处理技术:包括数据传输、数据存储、数据清洗、数据压缩等处理方法,用于对采集到的数据进行处理和管理。
数据处理技术需要具备高效、可靠的特点,能够满足大规模数据处理的需求。
电力系统调度自动化

电力系统调度自动化电力系统调度自动化是指利用现代信息技术和自动化技术,对电力系统的运行、调度和管理进行智能化、自动化处理的一种技术手段。
它通过建立电力系统的模型,实时采集和处理电力系统的运行数据,利用先进的算法和优化方法,自动化地进行电力系统调度和运行控制,提高电力系统的运行效率和可靠性。
一、电力系统调度自动化的意义和背景电力系统是一个庞大而复杂的系统,涉及到大量的设备、线路和用户。
传统的电力系统调度和运行控制主要依靠人工操作和经验判断,存在效率低下、易出错等问题。
而随着电力系统规模的不断扩大和电力市场的不断发展,对电力系统调度和运行控制的要求也越来越高。
因此,引入电力系统调度自动化技术,对于提高电力系统的运行效率和可靠性具有重要意义。
二、电力系统调度自动化的基本原理和方法1. 建立电力系统模型电力系统调度自动化首先需要建立电力系统的模型,包括发电机、变压器、线路、负荷等各个组成部分的参数和拓扑关系。
模型可以基于实际的电力系统数据进行建立,也可以通过仿真软件进行模拟。
2. 实时数据采集和处理电力系统调度自动化需要实时采集和处理电力系统的运行数据,包括电压、电流、功率、频率等参数。
采集可以通过传感器和监测设备进行,处理可以利用先进的数据处理算法和技术进行。
3. 调度和运行控制算法电力系统调度自动化需要利用先进的算法和优化方法进行调度和运行控制。
常用的算法包括最优潮流算法、最优发电机组合算法、最优负荷分配算法等。
这些算法可以根据电力系统的实际情况进行调整和优化。
4. 自动化操作和控制电力系统调度自动化需要实现对电力系统的自动化操作和控制。
通过与电力系统的监控和控制系统进行连接,实现对发电机组、变压器、线路等设备的自动控制和调节。
三、电力系统调度自动化的应用和效果1. 提高电力系统的运行效率电力系统调度自动化可以通过优化调度和运行控制,提高电力系统的运行效率。
通过合理调度发电机组和负荷,最大限度地利用电力系统的资源,降低系统运行成本。
电力系统调度自动化

六、数字信号的调制与解调
1 调制与解调的意义
基带数字信号谐波成分多,占用频带很宽
传统信道多为模拟信号设计
直接进行传输波形畸变较大,容易失真
调制器(Modulator)
解调器(Demodulator)
2 调制方法
数字调幅 数字调频 数字调相
绝对 相对
七、局域网及其应用
令牌环 以太网
七、局域网及其应用
➢ 问答式通信规约(有问必答,无问不答) 多台RTU共用一个通道 提高数据传送速度 通道适应性强
十、通信信道
电力载波通信 光纤通信 微波中继通信
1 电力载波通信
➢ 可靠性高 ➢ 经济性好,无需单独架设和维护线路 ➢ 电力系统基本通信方式
2 光纤通信
➢ 形式上为有线通信方式 ➢ 优越的通信性能
3 微波中继通信
令牌环 以太网
八、现场总线
RS-422/RS485
实时性差;主从控制 现场总线
双向串行的多节点数字通信系统
九、通信规约
1 基本问题 (1)概念 (2)内容
语言;操作步骤;查错及其应对方法
(3)组成
代码;控制字符;格式;应答方式;通信方式…
2、种类
➢ 循环式通信规约(按约定的次序循环发送) 占用通道多
2 串行数据的发送和接收 3 串行传输的格式
(1)异步传输 存在起始位和终止位,有效信息比低,传输效率低
(2)同步传输 无起始位和终止位,有效信息长,传输效率高
二、数据通信中的传输速率和误码率
码元:每个信号脉冲为一个码元 (1,0)或(+1,-1)
数码率:每秒传送码元数,Bd 信息速率:系统每秒传送的信息量,bit 误码率:数据传输后错误码元数与总码元数之比,
电力系统调度自动化

电力系统调度自动化电力系统调度自动化是指利用先进的信息技术手段和自动化设备,对电力系统进行实时监测、运行控制和优化调度的过程。
通过电力系统调度自动化,可以提高电力系统的运行效率,减少能源浪费,保障电力系统的安全稳定运行。
一、电力系统调度自动化的基本原理和流程电力系统调度自动化的基本原理是通过采集电力系统的实时数据,进行数据处理和分析,然后根据系统运行状态和需求,自动进行控制和调度。
其基本流程如下:1. 数据采集:通过安装在电力系统各个关键节点的传感器和监测设备,实时采集电力系统的各项参数数据,如电压、电流、频率、功率等。
2. 数据处理和分析:将采集到的数据传输到调度中心,经过处理和分析,得到电力系统的运行状态和负荷需求等信息。
3. 控制和调度:根据系统运行状态和需求,自动进行控制和调度,包括发机电组的启停控制、负荷的调节、输电路线的开关控制等。
4. 运行监测:对电力系统的运行状态进行实时监测,及时发现和处理异常情况,保障系统的安全稳定运行。
5. 优化调度:基于电力系统的实时数据和需求,进行优化调度,提高系统的运行效率和经济性。
二、电力系统调度自动化的主要功能和应用电力系统调度自动化具有以下主要功能和应用:1. 实时监测和运行控制:通过实时采集和处理电力系统的数据,对系统的运行状态进行实时监测和控制,及时发现和处理异常情况,保障系统的安全稳定运行。
2. 负荷预测和调节:通过对历史数据和实时数据的分析,预测未来的负荷需求,对发机电组进行启停控制和负荷的调节,保持系统的供需平衡。
3. 输电路线的开关控制:根据系统的负荷需求和故障情况,自动进行输电路线的开关控制,保障系统的供电可靠性。
4. 发机电组的优化调度:根据电力市场的需求和电力系统的运行状态,对发机电组进行优化调度,提高发电效率和经济性。
5. 能源管理和节能减排:通过对电力系统的监测和控制,实现对能源的有效管理和优化利用,减少能源浪费,降低排放量,实现可持续发展。
电力系统调度自动化

电力系统调度自动化一、概述电力系统调度自动化是指利用计算机技术和自动化控制技术,对电力系统进行实时监测、运行控制、故障处理和数据分析等操作的过程。
通过自动化技术的应用,可以提高电力系统的运行效率、可靠性和安全性,实现对电力系统的智能化管理。
二、系统架构1. 数据采集电力系统调度自动化系统通过各种传感器和监测设备,对电力系统的各项指标进行实时采集。
这些指标包括电压、电流、功率、频率等参数,以及设备状态、故障信息等。
采集到的数据通过通信网络传输到调度中心。
2. 数据传输数据传输是电力系统调度自动化系统的核心环节。
采集到的数据通过通信网络传输到调度中心。
常见的通信方式包括有线通信(如光纤、电缆)、无线通信(如微波、卫星)等。
为了保证数据的安全性和可靠性,通信网络需要具备高速、低时延、抗干扰等特点。
3. 数据处理与分析调度中心接收到传输过来的数据后,对数据进行处理和分析。
通过数据处理算法和模型,对电力系统的运行状态进行评估和预测。
同时,还可以通过数据分析,提取出电力系统的潜在问题和优化方案,为运行决策提供参考。
4. 运行控制根据数据处理和分析的结果,调度中心可以下发控制指令,对电力系统进行运行控制。
例如,调整发机电的输出功率、调节变压器的变比、切换路线的供电方案等。
这些控制指令可以通过自动化装置实现,也可以通过人工干预实现。
5. 故障处理电力系统调度自动化系统还具备故障处理的功能。
当电力系统浮现故障时,系统能够及时检测到故障信号,并进行故障定位和隔离。
同时,还能够根据故障类型和位置,自动调整电力系统的运行状态,保证电力系统的安全运行。
三、功能特点1. 实时监测:电力系统调度自动化系统能够实时监测电力系统的各项指标和设备状态,及时发现异常情况。
2. 运行控制:通过数据分析和运行评估,系统可以下发运行控制指令,对电力系统进行智能化运行控制。
3. 故障处理:系统能够及时检测到电力系统的故障信号,并进行故障定位和隔离,保证电力系统的可靠性和安全性。
电力系统调度自动化

电力系统调度自动化电力系统调度自动化是指利用先进的信息技术和自动化控制技术对电力系统进行实时监测、分析和调度的一种技术手段。
它通过实时采集和处理电力系统的运行数据,运用先进的算法和模型,自动化地进行电力系统的调度决策和操作指令下达,以实现电力系统的安全、稳定和经济运行。
在电力系统调度自动化中,主要包括以下几个方面的内容:1. 实时监测和数据采集:通过安装在电力系统各个关键节点的传感器和测量设备,实时采集电力系统的运行数据,包括电压、电流、功率、频率等参数,以及设备的状态信息。
通过数据采集系统将这些数据传输到调度中心,为后续的分析和决策提供数据基础。
2. 数据分析和状态评估:通过对采集到的电力系统数据进行分析和处理,利用先进的算法和模型,对电力系统的状态进行评估。
包括对电力系统的潮流分析、电压稳定性评估、频率稳定性评估等。
通过对电力系统运行状态的评估,为后续的调度决策提供依据。
3. 调度决策和操作指令下达:根据电力系统的运行状态评估结果,自动化地进行调度决策,包括发电机出力调整、负荷调整、输电线路的开关操作等。
通过下达操作指令,实现对电力系统运行状态的调整和控制。
4. 通信与协同:电力系统调度自动化需要实现调度中心与各个关键节点之间的实时通信,包括数据的传输和指令的下达。
通过建立高速、可靠的通信网络,实现调度中心与电力系统各个节点之间的实时数据交互和指令传递,以保证调度决策和操作指令的准确性和及时性。
5. 故障诊断与恢复:电力系统发生故障时,电力系统调度自动化可以自动诊断故障原因,并提供相应的恢复措施。
通过自动化的故障诊断和恢复,可以快速地定位故障点,并采取相应的措施进行修复,以减少故障对电力系统运行的影响。
6. 安全保障与应急响应:电力系统调度自动化需要具备安全保障和应急响应的能力。
包括对电力系统的安全风险进行评估和管理,以及对突发事件的应急响应能力。
通过建立完善的安全管理体系和应急响应机制,保障电力系统的安全运行。
电力系统调度自动化

电力系统调度自动化电力系统调度自动化是指通过使用先进的信息技术和自动化设备,对电力系统的运行状态进行实时监测、分析和控制,以提高电力系统的可靠性、安全性和经济性。
本文将详细介绍电力系统调度自动化的概念、原理、应用以及其带来的优势。
一、概念电力系统调度自动化是指利用计算机技术、通信技术和自动化控制技术,对电力系统的运行状态进行实时监测、分析和控制的一种技术手段。
通过自动化设备和软件系统,实现电力系统的远程监控、故障诊断、运行调度等功能,提高电力系统的运行效率和可靠性。
二、原理电力系统调度自动化主要包括以下几个方面的技术原理:1. 实时监测:通过安装传感器和监测设备,对电力系统的关键参数进行实时监测,如电压、电流、频率等。
监测数据通过通信网络传输到调度中心,实现对电力系统运行状态的实时监控。
2. 数据采集与处理:调度中心通过数据采集装置,对监测到的数据进行采集和处理,包括数据的存储、分析和计算。
通过对数据的处理,可以得到电力系统的运行状态和趋势,为调度决策提供依据。
3. 远程控制:调度中心通过控制命令,远程控制电力系统的各种设备,如发机电、变压器、开关等。
通过远程控制,可以实现对电力系统的运行状态进行调整和优化,以提高电力系统的可靠性和经济性。
4. 故障诊断与恢复:通过对电力系统的监测数据进行分析,可以实时诊断电力系统的故障,并采取相应的措施进行恢复。
故障诊断与恢复的自动化处理,可以大大缩短故障处理的时间,提高电力系统的可靠性和安全性。
三、应用电力系统调度自动化广泛应用于电力系统的运行和管理中,主要包括以下几个方面:1. 运行监测与调度:通过实时监测电力系统的运行状态,包括电压、电流、频率等参数,以及设备的工作状态,如发机电、变压器、开关等。
调度员可以通过调度自动化系统,实时了解电力系统的运行情况,并进行运行调度和优化。
2. 故障诊断与恢复:电力系统调度自动化系统可以实时诊断电力系统的故障,并采取相应的措施进行恢复。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章系统调度自动化发电厂是电力系统中最重要的电源,特别是大容量机组电厂,机组的稳定、经济、可靠运行,对电力系统正常、灵活运行起着至关重要的作用,为此电力系统调度均采用调度自动化系统,将遍布各地的电厂、变电所信息传送至调度中心,以使调度人员统观全局,运筹全网,有效地指挥和控制电网安全、稳定和经济运行。
调度自动化系统主要有三部分组成,即厂所数据采集与控制子系统、通信子系统、调度端数据收集与处理和统计分析与控制子系统。
1)厂所端子系统习惯的说法是远动系统。
所谓远动(Telecontrol),就是运用通信技术传输信息,以监视控制远方运行的设备。
该子系统包括远方终端RTU(Remote Terminal Unit)、测量用变送器、模拟量和状态量、脉冲量二次回路以及控制与调节执行元件。
2)通信子系统包括载波、微波、无线电台、有线电话、高频电缆、光纤以及卫星通信、程控交换机等提供的数据信道。
3)调度端子系统主要内容有:计算机、人机会话设备、各种外部设备、开发与维护设备和与之相适应的软件包等。
一、调度通信子系统电力系统常用的通信方式有电力线载波通信、微波通信(数字、模拟)、卫星通信和光纤通信等,传输的信息包括:调度电话、调度自动化的各类信息、生产管理电话及数据、继电保护及安全自动装置信息以及其他所需传送的各种信息。
1、各种通信方式比较电力载波通信:将300Hz~3400Hz的话音以及远动、继电保护信号进行调制,把它寄载在高频波的某个参量上(如幅度、频率、相位),变成频率为40kHz以上的高频信号,并借助于电力线传送。
这种通信方式称为电力载波通信。
电力载波通信是电力系统特有的通信方式,具有高度的可靠性和经济性,是电力系统基本通信方式之一。
但这种通信方式,由于可用频谱的限制,不能满足全部需要。
微波通信:微波通信是一种无线电通信的通信方式。
在进行无线电通信时,需要把待传信息转换成无线电信号,依靠无线电波在空间传播。
微波一般指频率为300MHz~300GHz、波长为1m~1mm范围的无线电波,传输速度约等于光速。
微波在自由空间像光波一样沿直线传播,在地球表面传播距离一般不超过50km,且中途不得有高山或建筑物挡住。
因此,在地球表面上进行远距离通信时,需要采用“中继”方式,一方面保证微波沿地球椭圆球体传播,另一方面收发放大,补充电波传播过程中的能量损耗。
由于微波通信传输容量大,可同时传输300~960个话路,有传输质量高,抗干扰、保密性强等特点,现已成为电力系统通信网中主要传输手段之一。
卫星通信:利用距地面高度为36000km的同步人造地球卫星作为微波通信接力站,一上一下可跨越通信距离上万公里,这种通信方式叫卫星通信。
卫星通信目前开放的业务有:电报、电话、数据、会议电视、电子邮箱等。
目前有些大型发电厂采用GPS(全球定位系统)实时校正时钟,就是利用了卫星通信方式。
光纤通信:利用光波作为传输媒介,借助于光导纤维进行通信的方式叫光纤通信。
光纤主要是用玻璃预制棒拉丝成纤维,它包含纤芯和包层,是圆柱形。
纤芯直径约5~75μm左右,包层有一定厚度,它的外径约100~150μm,最外面是塑料,作保护用。
光波局限在纤芯与包层的界面以内向前传播,故光纤属于光波导。
一根光纤就是一个波导,多根光纤组成光缆。
光纤通信具有通信容量大、通信质量高、抗电磁干扰、抗核辐射、抗化学侵蚀、重量轻、节省有色金属等一系列优点。
2、我公司通信子系统本发电厂由山西省调调度管理,并接受省调下发的自动发电控制(AGC)、自动电压控制(AVC)及机组运行方式的命令,远动信息送山西省调、山西省备调和吕梁地调在送出工程中,沿电厂至孝义220kV变新建的同塔双回220kV线路架设两条24芯OPGW光缆,光缆线路长度约2×11公里,在孝义变接入省主干光纤网系统,作为电厂至系统的主用通信通道。
建成后,本电厂从孝义220kV变接入已建的主干光纤网至吕梁地调和山西省调,作为本电厂至系统的主、备用传输通道,同时为220kV线路提供光纤保护主、备用通道。
本工程在220KV线路上新建的OPGW光缆如下图。
二、远动系统1、RTURTU是REMOTE TERMINAL UNIT的简称,既远方数据终端,用于监视、控制与数据采集的应用。
具有遥测、遥信、遥调、遥控功能。
RTU(Remote Terminal Unit)是一种远端测控单元装置,负责对现场信号、工业设备的监测和控制。
与常用的可编程控制器PLC相比,RTU通常要具有优良的通讯能力和更大的存储容量,适用于更恶劣的温度和湿度环境,提供更多的计算功能。
正是由于RTU完善的功能,使得RTU产品在SCADA系统中得到了大量的应用。
远程终端设备(RTU)是安装在远程现场的电子设备,用来监视和测量安装在远程现场的传感器和设备。
RTU将测得的状态或信号转换成可在通信媒体上发送的数据格式。
它还将从中央计算机发送来得数据转换成命令,实现对设备的功能控制。
监视控制和数据采集是一个含义较广的术语,应用于可对安装在远距离场地的设备进行中央控制和监视的系统。
SCADA系统可以设计满足各种应用(水、电、气、报警、通信、保安等等),并满足顾客要求的设计指标和操作概念。
SCADA系统可以简单到只需通过一对导线连在远端的一个开关,也可复杂到一个计算机网络,它由许多无线远程终端设备(RTU)组成并与安装在中控室的功能强大的微机通信。
SCADA系统的远程终端设备可以用各种不同的硬件和软件来实现。
这取决于被控现场的性质、系统的复杂性、对数据通信的要求、实时报警报告、模拟信号测量精度、状态监控、设备的调节控制和开关控制。
变电站是电力系统的一个重要组成部分,它的安全可靠运行是电网安全经济运行的根本保证。
当前变电站正以分项自动化向着综合自动化方向发展,综合自动化的近期目标是把变电站的保护、测量、监控、远动等融为一体,取得数据共享,资源共享,大幅度提高自动化的功效。
对于电力系统,为了进行现代化管理,往往实现电网调度自动化,虽然省、地、县各级调度有不同的职能和责任,但其组成基本相同,一般是由主站和远动终端(RTU)组成。
远动终端就是电网监视和控制系统中安装在发电厂或变电站的一种远动装置,它负责采集所在发电厂或变电站电力运行状态的模拟量和状态量,监视并向调度中心传送这些模拟量和状态量,执行调度中心发往所在发电厂或变电站的控制和调度命令。
2、主要功能1)采集状态量并向远方发送,带有光电隔离,遥信变位优先传送;2)采集数据量并向远方发送,带有光电隔离;3)直接采集系统工频电量,实现对电压、电流、有功、无功的测量并向远方发送,可计算正反向电度;4)采集脉冲电度量并向远方发送,带有光电隔离;5)接收并执行遥控及返校;6)程序自恢复;7)设备自诊断(故障诊断到插件级);8)设备自调;9)通道监视;10)接收并执行遥调;11)接收并执行校时命令(包括GPS对时功能选配);12)与两个及两个以上的主站通讯;13)采集事件顺序记录并向远方发送;14)提供多个数字接口及多个模拟接口;15)可对每个接口特性进行远方/当地设置;16)提供若干种通信规约,每个接口可以根据远方/当地设置传输不同规约的数据;17)接受远方命令,选择发送各类信息;18)可转发多个子站远动信息;19)当地显示功能,当地接口有隔离器;20)支持与扩频、微波、卫星、载波等设备的通讯;21)选配及多规约同时运行,如DL451-91CDT规约,同进应支持POLLING规约和其他国际标准规约(如DNP3.0、SC1801、101规约);22)可通过电信网和电力系统通道进行远方设置。
3、远动信息发电厂的远动信息依据(DL5003-2005)《电力系统调度自动化设计技术规程》并结合调度运行需要确定如下:发电厂总有功功率、总无功功率;发电机有功功率、无功功率、电压;发电机定子电流和转子电流;高压厂用变压器高压侧有功功率、无功功率、电流;起动/备用变压器高压侧有功功率、无功功率、电流;主变压器高压侧有功功率、无功功率、电流;220kV线路有功功率、无功功率、电流;220kV母线电压、母联电流、母线频率;事故总信号;断路器合闸、跳闸位置信号及隔离开关位置信号;自动发电控制(AGC)和自动电压控制(AVC)交换信息。
4、发电厂远动系统方案及设备配置本发电厂远动信息采集、处理以及自动发电控制AGC等功能由电厂网控计算机监控(NCS)系统完成。
NCS除采集电厂升压站信息外,发电机出口、厂用变高压侧等处也应配置测控单元,满足远动信息直采要求,并通过调度数据网设备与调度端信息交换。
另外NCS还需具备控制输出模块,完成AGC功能。
根据运行要求,电厂设置网络型AVC装置一套,完成自动电压控制等任务。
NCS(含RTU、AGC功能)和AVC装置分别通过调度数据网设备实现与调度端信息交换。
远动AVC装置组柜1面,布置在集控。
设备电源由电气专业设置的专用不停电电源(UPS)和直流电源提供。
三、自动电压控制(AVC)子站系统1、概述:电力系统自动电压控制系统(AVC)是电网调度自动化的有机组成部分,通过AVC对发电机无功出力进行实时跟踪调控,对变电站无功补偿设备及主变分接头进行适时调整,有效地控制区域电网无功的合理流动,优化电网内无功潮流的分布,改善电网整体的供电水平,是提高电压质量,减少网损的重要手段。
电网AVC系统包括装设于省调或地调的AVC主站,装设于发电厂或变电站的AVC子站两个部分。
AVC主站根据最优潮流(OPF)对整个电压控制区域进行软分区,并计算各个关键分区接点或枢纽点的电压目标,通过RTU下发到子站,子站上位机接收主站控制信息并分解到各个执行下位机,下位机将经过安全限制的励磁调节器(AVR)控制量控制励磁调节器(AVR)的输出,同时下位机将测量的机端电压,电流及励磁电流通过上位机同时将节点电压及有功无功发送到主站,完成整个闭环控制过程。
电厂AVC自动调控装置是电网AVC系统的子系统,它既能配合电网调度自动化系统中的电网电压无功综合优化控制,实现对电网的无功优化,显著减少线损,提高电能质量,又能实施电厂的独立控制,以达到厂内降损节能,优化无功出力和改善母线电压水平。
通过协调控制每台发电机的无功进相,电厂AVC装置可以实现对高压母线电压的控制,降低对网内无功补偿设备的要求。
2、装置主要功能(一)电压-无功控制1.根据电网AVC系统或区域无功系统的不同要求,可以实现电压/无功的当地、遥调和人工优化三种控制模式控制。
在通讯故障情况下,装置根据预设的逻辑,实现三种控制模式的无缝切换。
2.根据发电机组不同情况,可按平均、比例和等功率因数方式为参与调节的不同机组分配无功目标。
3.按照控制的约束目标,可以选择设定为电压目标或无功目标。