单片机-矩阵式键盘接口实验
实验一 矩阵键盘检测

实验一矩阵键盘检测一、实验目的:1、学习非编码键盘的工作原理和键盘的扫描方式。
2、学习键盘的去抖方法和键盘应用程序的设计。
二、实验设备:51/AVR实验板、USB连接线、电脑三、实验原理:键盘接口电路是单片机系统设计非常重要的一环,作为人机交互界面里最常用的输入设备。
我们可以通过键盘输入数据或命令来实现简单的人机通信。
1、按键的分类一般来说,按键按照结构原理可分为两类,一类是触点式开关按键,如机械式开关、导电橡胶式开关等;另一类是无触点式开关按键,如电气式按键,磁感应按键等。
前者造价低,后者寿命长。
目前,微机系统中最常见的是触点式开关按键(如本学习板上所采用按键)。
按键按照接口原理又可分为编码键盘与非编码键盘两类,这两类键盘的主要区别是识别键符及给出相应键码的方法。
编码键盘主要是用硬件来实现对键的识别,非编码键盘主要是由软件来实现键盘的识别。
全编码键盘由专门的芯片实现识键及输出相应的编码,一般还具有去抖动和多键、窜键等保护电路,这种键盘使用方便,硬件开销大,一般的小型嵌入式应用系统较少采用。
非编码键盘按连接方式可分为独立式和矩阵式两种,其它工作都主要由软件完成。
由于其经济实用,较多地应用于单片机系统中(本学习板也采用非编码键盘)。
2、按键的输入原理在单片机应用系统中,通常使用机械触点式按键开关,其主要功能是把机械上的通断转换成为电气上的逻辑关系。
也就是说,它能提供标准的TTL 逻辑电平,以便与通用数字系统的逻辑电平相容。
此外,除了复位按键有专门的复位电路及专一的复位功能外,其它按键都是以开关状态来设置控制功能或输入数据。
当所设置的功能键或数字键按下时,计算机应用系统应完成该按键所设定的功能。
因此,键信息输入是与软件结构密切相关的过程。
对于一组键或一个键盘,通过接口电路与单片机相连。
单片机可以采用查询或中断方式了解有无按键输入并检查是哪一个按键按下,若有键按下则跳至相应的键盘处理程序处去执行,若无键按下则继续执行其他程序。
4×4矩阵式键盘按键

一、实验目的1.掌握4×4矩阵式键盘程序识别原理2.掌握4×4矩阵式键盘按键的设计方法二、设计原理(1)如图14.2所示,用单片机的并行口P3连接4×4矩阵键盘,并以单片机的P3.0-P3.3各管脚作输入线,以单片机的P3.4-P3.7各管脚作输出线,在数码管上显示每个按键“0-F”的序号(2)键盘中对应按键的序号排列如图14.1所示三、参考电路740)this.width=740" border=undefined>图14.2 4×4矩阵式键盘识别电路原理图740)this.width=740" border=undefined>图14.1 4×4键盘0-F显示740)this.width=740" border=undefined>图14.3 4×4矩阵式键盘识别程序流程图四、电路硬件说明(1)在“单片机系统”区域中,把单片机的P3.0-P3.7端口通过8联拨动拨码开关JP3连接到“4×4行列式键盘”区域中的M1-M4,N1-N4端口上(2)在“单片机系统”区域中,把单片机的P0.0-P0.7端口连接到“静态数码显示模块”区域中的任何一个a-h端口上;要求:P0.0对应着a,P0.1对应着b,……,P0.7对应着h五、程序设计内容(1)4×4矩阵键盘识别处理(2)每个按键都有它的行值和列值,行值和列值的组合就是识别这个按键的编码矩阵的行线和列线分别通过两并行接口和CPU通信键盘的一端(列线)通过电阻接VCC,而接地是通过程序输出数字“0”实现的键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么?还要消除按键在闭合或断开时的抖动两个并行口中,一个输出扫描码,使按键逐行动态接地;另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能六、程序流程图(如图14.3所示)七、汇编源程序;;;;;;;;;;定义单元;;;;;;;;;;COUNT EQU 30H;;;;;;;;;;入口地址;;;;;;;;;;ORG 0000HLJMP STARTORG 0003HRETIORG 000BHRETIORG 0013HRETIORG 001BHRETIORG 0023HRETIORG 002BHRETI;;;;;;;;;;主程序入口;;;;;;;;;;ORG 0100HSTART: LCALL CHUSHIHUA LCALL PANDUANLCALL XIANSHILJMP START ;;;;;;;;;;初始化程序;;;;;;;;;; CHUSHIHUA: MOV COUNT#00H RET;;;;;;;;;;判断哪个按键按下程序;;;;;;;;;; PANDUAN: MOV P3#0FFHCLR P3.4MOV A P3ANL A#0FHXRL A#0FHJZ SW1LCALL DELAY10MSJZ SW1MOV A P3ANL A#0FHCJNE A#0EH K1MOV COUNT#0LJMP DKK1: CJNE A#0DH K2MOV COUNT#4LJMP DKK2: CJNE A#0BH K3 MOV COUNT#8 LJMP DKK3: CJNE A#07H K4 MOV COUNT#12K4: NOPLJMP DKSW1: MOV P3#0FFH CLR P3.5MOV A P3ANL A#0FHXRL A#0FHJZ SW2LCALL DELAY10MS JZ SW2MOV A P3ANL A#0FHCJNE A#0EH K5 MOV COUNT#1 LJMP DKK5: CJNE A#0DH K6 MOV COUNT#5 LJMP DKK6: CJNE A#0BH K7 MOV COUNT#9 LJMP DKK7: CJNE A#07H K8 MOV COUNT#13K8: NOPLJMP DKSW2: MOV P3#0FFH CLR P3.6MOV A P3ANL A#0FHXRL A#0FHJZ SW3LCALL DELAY10MS JZ SW3MOV A P3ANL A#0FHCJNE A#0EH K9 MOV COUNT#2 LJMP DKK9: CJNE A#0DH KA MOV COUNT#6 LJMP DKKA: CJNE A#0BH KB MOV COUNT#10 LJMP DKKB: CJNE A#07H KC MOV COUNT#14 KC: NOPLJMP DKSW3: MOV P3#0FFH CLR P3.7MOV A P3ANL A#0FHXRL A#0FHJZ SW4LCALL DELAY10MSJZ SW4MOV A P3ANL A#0FHCJNE A#0EH KDMOV COUNT#3LJMP DKKD: CJNE A#0DH KE MOV COUNT#7LJMP DKKE: CJNE A#0BH KF MOV COUNT#11LJMP DKKF: CJNE A#07H KG MOV COUNT#15KG: NOPLJMP DKSW4: LJMP PANDUAN DK: RET ;;;;;;;;;;显示程序;;;;;;;;;; XIANSHI: MOV A COUNT MOV DPTR#TABLE MOVC A@A+DPTRMOV P0 ALCALL DELAYSK: MOV A P3ANL A#0FHXRL A#0FHJNZ SKRET ;;;;;;;;;;10ms延时程序;;;;;;;;;;DELAY10MS: MOV R6#20D1: MOV R7#248DJNZ R7$DJNZ R6D1RET;;;;;;;;;;200ms延时程序;;;;;;;;;;DELAY: MOV R5#20LOOP: LCALL DELAY10MSDJNZ R5LOOPRET;;;;;;;;;;共阴码表;;;;;;;;;;TABLE: DB 3FH06H5BH4FH66H6DH7DH07H DB 7FH6FH77H7CH39H5EH79H71H ;;;;;;;;;;结束标志;;;;;;;;;;END八、C语言源程序#include<AT89X51.H>unsigned char code table[]={0x3f0x660x7f0x390x060x6d0x6f0x5e0x5b0x7d0x770x790x4f0x070x7c0x71};void main(void){ unsigned char i j k key;while(1){ P3=0xff; //给P3口置1//P3_4=0; //给P3.4这条线送入0//i=P3;i=i&0x0f; //屏蔽低四位//if(i!=0x0f) //看是否有按键按下//{ for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);if(i!=0x0f) //再次判断按键是否按下//{ switch(i) //看是和P3.4相连的四个按键中的哪个// { case 0x0e:key=0;break;case 0x0d:key=1;break;case 0x0b:key=2;break;case 0x07:key=3;break;}P0=table[key]; //送数到P0口显示//}}P3=0xff;P3_5=0; //读P3.5这条线//i=P3;i=i&0x0f; //屏蔽P3口的低四位//if(i!=0x0f) //读P3.5这条线上看是否有按键按下// { for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);i=P3; //再看是否有按键真的按下//i=i&0x0f;if(i!=0x0f){ switch(i) //如果有显示相应的按键//{ case 0x0e:key=4;break;case 0x0d:key=5;break;case 0x0b:key=6;break;case 0x07:key=7;break;}P0=table[key]; //送入P0口显示//}}P3=0xff;P3_6=0; //读P3.6这条线上是否有按键按下// i=P3;i=i&0x0f;if(i!=0x0f){ for(j=50;j>0;j--)for(k=200;k>0;k--);i=P3;i=i&0x0f;if(i!=0x0f){ switch(i){ case 0x0e:key=8;break;key=9;break;case 0x0b:key=10;break;case 0x07:key=11;break;}P0=table[key];}}P3=0xff;P3_7=0; //读P3.7这条线上是否有按键按下// i=P3;i=i&0x0f;if(i!=0x0f){ for(j=50;j>0;j--)for(k=200;k>0;k--);i=P3;i=i&0x0f;if(i!=0x0f){ switch(i){ case 0x0e:key=12;break;case 0x0d:key=13;break;key=14;break;case 0x07:key=15;break;}P0=table[key];}}}}九、注意事项在硬件电路中,要把8联拨动拨码开关JP2拨下,把8联拨动拨码开关JP3拨上去。
单片机 键盘接口实验

实验六键盘接口实验一、实验目的1、掌握Keil C51软件与Protues软件联合仿真调试的方法;2、掌握单片机的键盘接口电路;3、掌握单片机的键盘扫描原理;4、掌握键盘的去抖原理及处理方法。
二、实验仪器与设备1、微机一台2、Keil C51集成开发环境3、Protues仿真软件三、实验内容1、用Protues设计一矩阵键盘接口电路。
要求利用P1口接一4×4矩阵键盘。
串行口通过一74LS164接一共阴极数码管。
用线反转法编写矩阵键盘识别程序,用中断方式,并将按键的键值0-F通过串行口输出,显示在数码管上。
2、将P1口矩阵键盘改成8个独立按键,重新编写识别和显示程序。
四、实验说明矩阵键盘识别一般包括以下内容:⑴判别有无键按下。
⑵键盘扫描取得闭合键的行、列号。
⑶用计算法或查表发的到键值;⑷判断闭合键是否释放,如没释放则继续等待。
⑸将闭合键的键值保存,同时转去执行该闭合键的功能。
五、实验步骤1、用Protues设计键盘接口电路;2、在Keil C51中编写键盘识别程序,编译通过后,与Protues联合调试;3、按动任意键,观察键值是否能正确显示。
六、实验电路仿真图矩阵键盘电路图见附录1。
独立按键电路图见附录2。
七、实验程序实验程序见附录3、4。
八、实验总结1、矩阵键盘常用的检测方法有线反转法、逐行扫描法。
线反转法较简单且高效。
在矩阵键盘的列线上接一与门,利用中断方式查询按键,可提高CPU的运行效率。
2、注意用线反转法扫描按键时,得到的键值不要再赋给temp,最好再设一新变量接收键值,否则再按下按键显示数字的过程中,再按按键会出现乱码。
3、学会常用与门、与非门的使用方法。
附录1:矩阵键盘实验电路图附录2:独立按键实验电路图附录3:矩阵键盘实验程序#include <REG51.H>char code LED_TAB[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e};char code KEY_TABLE[]={0xee,0xde,0xbe,0x7e,0xed,0xdd,0xbd,0x7d,0xeb,0xdb,0xbb,0x7b,0xe7,0xd7,0xb7,0x77};char code tab1[10]={0xfe,0xde,0x9e,0x9a,0x92,0x82,0x82,0x80,0xff};char temp,num,i,m;int t;bit flag=0;void Delay_ms(t){int i;for(;t>0;t--)for(i=0;i<124;i++);}void main(void){TMOD=0x01;TH0=(65536-10000)/256;TL0=(65536-10000)%256;ET0=1; PT0=1; SCON=0;EX0=1; IT0=1; EA=1;P1=0xf0;while(1){SBUF=tab1[m];while(TI==0); TI=0;Delay_ms(400); //500msm++;if(m==9) m=0;}}void int_1() interrupt 0{P1=0xf0;if(P1!=0xf0){Delay_ms(10);if(P1!=0xf0){temp=P1;P1=0x0f;temp=temp|P1;for(i=0;i<16;i++){if(temp==KEY_TABLE[i]){temp=i; break;}}SBUF=LED_TAB[temp];while(TI==0); TI=0; TR0=1;while(flag==0); flag=0;} } P1=0xf0;}void timer_0() interrupt 1{TH0=(65536-10000)/256;TL0=(65536-10000)%256;t++;if(t==300){t=0; flag=1; TR0=0;}}附录4:独立按键实验#include <REG51.H>char code LED_TAB[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e};char code KEY_TABLE2[]={ 0xfe,0xfd,0xfb,0x f7, 0xef,0xdf,0xbf,0x7f,} ;char code tab1[10]={0xfe,0xde,0x9e,0x9a,0x 92, 0x82,0x82,0x80,0xff};char temp,i,m;int t;bit ff;bit flag=0;void Delay_ms(t){int i;for(;t>0;t--)for(i=0;i<124;i++);}void main(void){TMOD=0x01;TH0=(65536-10000)/256;TL0=(65536-10000)%256;ET0=1; SCON=0; EX0=1;IT0=1; PT0=1; EA=1;P1=0xff;while(1){ff=IE0;SBUF=tab1[m];while(TI==0); TI=0;Delay_ms(400);m++;if(m==9) m=0;}}void timer_0() interrupt 1{TH0=(65536-10000)/256;TL0=(65536-10000)%256;t++;ff=IE0;if(t==300){t=0;flag=1;}}void int_0() interrupt 0{EX0=0;Delay_ms(10);temp=P1;if(temp!=0xff){for(i=0;i<8;i++){if(temp==KEY_TABLE2[i]){temp=i; break;}}SBUF=LED_TAB[temp];while(TI==0); TI=0;TR0=1; while(flag==0);flag=0; TR0=0;P1=0xff; EX0=1;}}。
单片机教程26课单片机矩阵式键盘接口技术及程序设计

单片机教程26课:单片机矩阵式键盘接口技术及程序设计发布:2009-4-04 22:40 | 作者:hnrain | 查看:885 次在单片机系统中键盘中按钮数量较多时,为了减少I/O 口的占用,常常将按钮排列成矩阵形式,如图1所示。
在矩阵式键盘中,每条水平线和垂直线在交叉处不直接连通,而是通过一个按钮加以连接。
这样,一个端口(如P1 口)就能组成4*4=16个按钮,比之直接将端口线用于键盘多出了一倍,而且线数越多,区别越明显,比如再多加一条线就能组成20键的键盘,而直接用端口线则只能多出一键(9键)。
由此可见,在需要的键数比较多时,采用矩阵法来做键盘是合理的。
<单片机矩阵式键盘接口技术及编程接口图>矩阵式结构的键盘显然比直接法要复杂一些,识别也要复杂一些,上图中,列线通过电阻接正电源,并将行线所接的单片机的I/O 口作为输出端,而列线所接的I/O 口则作为输入。
这样,当按钮没有按下时,所有的输出端都是高电平,代表无键按下。
行线输出是低电平,一旦有键按下,则输入线就会被拉低,这样, 通过读入输入线的状态就可得知是否有键按下了。
具体的识别及编程办法如下所述。
矩阵式键盘的按钮识别办法确定矩阵式键盘上何键被按下介绍一种行扫描法”行扫描法行扫描法又称为逐行(或列)扫描查询法,是一种最常用的按钮识别办法,如上图所示键盘,介绍过程如下。
判断键盘中有无键按下将全部行线Y0-Y3置低电平,然后检测列线的状态。
只要有一列的电平为低,则表示键盘中有键被按下,而且闭合的键位于低电平线与4根行线相交叉的4个按钮之中。
若所有列线均为高电平,则键盘中无键按下。
判断闭合键所在的位置在确认有键按下后,即可进入确定具体闭合键的过程。
其办法是:依次将行线置为低电平,即在置某根行线为低电平时,其它线为高电平。
在确定某根行线位置为低电平后,再逐行检测各列线的电平状态。
若某列为低,则该列线与置为低电平的行线交叉处的按钮就是闭合的按钮。
单片机实验报告——矩阵键盘数码管显示

单片机实验报告信息处理实验实验二矩阵键盘专业:电气工程及其自动化指导老师:***组员:明洪开张鸿伟张谦赵智奇学号:152703117 \152703115\152703118\152703114室温:18 ℃日期:2017 年10 月25日矩阵键盘一、实验内容1、编写程序,做到在键盘上每按一个键(0-F)用数码管将该建对应的名字显示出来。
按其它键没有结果。
二、实验目的1、学习独立式按键的查询识别方法。
2、非编码矩阵键盘的行反转法识别方法。
3、掌握键盘接口的基本特点,了解独立键盘和矩阵键盘的应用方法。
4、掌握键盘接口的硬件设计方法,软件程序设计和贴士排错能力。
5、掌握利用Keil51软件对程序进行编译。
6、会根据实际功能,正确选择单片机功能接线,编制正确程序。
对实验结果能做出分析和解释,能写出符合规格的实验报告。
三、实验原理1、MCS51系列单片机的P0~P3口作为输入端口使用时必须先向端口写入“1”。
2、用查询方式检测按键时,要加入延时(通常采用软件延时10~20mS)以消除抖动。
3、识别键的闭合,通常采用行扫描法和行反转法。
行扫描法是使键盘上某一行线为低电平,而其余行接高电平,然后读取列值,如读列值中某位为低电平,表明有键按下,否则扫描下一行,直到扫完所有行。
行反转法识别闭合键时,要将行线接一并行口,先让它工作在输出方式,将列线也接到一个并行口,先让它工作于输入方式,程序使CPU通过输出端口在各行线上全部送低电平,然后读入列线值,如此时有某键被按下,则必定会使某一列线值为0。
然后,程序对两个并行端口进行方式设置,使行线工作于输入方式,列线工作于输出方式,并将刚才读得的列线值从列线所接的并行端口输出,再读取行线上输入值,那么,在闭合键所在行线上的值必定为0。
这样,当一个键被接下时,必定可以读得一对唯一的行线值和列线值。
由于51单片机的并口能够动态地改变输入输出方式,因此,矩阵键盘采用行反转法识别最为简便。
单片机4×4矩阵键盘设计方案

1、设计原理(1)如图14.2所示,用单片机的并行口P3连接4×4矩阵键盘,并以单片机的P3.0-P3.3各管脚作输入线,以单片机的P3.4-P3.7各管脚作输出线,在数码管上显示每个按键“0-F”的序号。
(2)键盘中对应按键的序号排列如图14.1所示。
2、参考电路图14.2 4×4矩阵式键盘识别电路原理图3、电路硬件说明(1)在“单片机系统”区域中,把单片机的P3.0-P3.7端口通过8联拨动拨码开关JP3连接到“4×4行列式键盘”区域中的M1-M4,N1-N4端口上。
(2)在“单片机系统”区域中,把单片机的P0.0-P0.7端口连接到“静态数码显示模块”区域中的任何一个a-h端口上;要求:P0.0对应着a,P0.1对应着b,……,P0.7对应着h。
4、程序设计内容(1)4×4矩阵键盘识别处理。
(2)每个按键都有它的行值和列值,行值和列值的组合就是识别这个按键的编码。
矩阵的行线和列线分别通过两并行接口和CPU通信。
键盘的一端(列线)通过电阻接VCC,而接地是通过程序输出数字“0”实现的。
键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么?还要消除按键在闭合或断开时的抖动。
两个并行口中,一个输出扫描码,使按键逐行动态接地;另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能。
5、程序流程图(如图14.3所示)6、汇编源程序;;;;;;;;;;定义单元;;;;;;;;;;COUNT EQU 30H;;;;;;;;;;入口地址;;;;;;;;;;ORG 0000HLJMP STARTORG 0003HRETIORG 000BHRETIORG 0013HRETIORG 001BHRETIORG 0023HRETIORG 002BHRETI;;;;;;;;;;主程序入口;;;;;;;;;;ORG 0100HSTART: LCALL CHUSHIHUALCALL PANDUANLCALL XIANSHILJMP START;;;;;;;;;;初始化程序;;;;;;;;;;CHUSHIHUA: MOV COUNT,#00HRET;;;;;;;;;;判断哪个按键按下程序;;;;;;;;;;PANDUAN: MOV P3,#0FFHCLR P3.4MOV A,P3ANL A,#0FHJZ SW1LCALL DELAY10MS JZ SW1MOV A,P3ANL A,#0FHCJNE A,#0EH,K1 MOV COUNT,#0 LJMP DKK1: CJNE A,#0DH,K2 MOV COUNT,#4 LJMP DKK2: CJNE A,#0BH,K3 MOV COUNT,#8 LJMP DKK3: CJNE A,#07H,K4 MOV COUNT,#12K4: NOPLJMP DKSW1: MOV P3,#0FFH CLR P3.5MOV A,P3ANL A,#0FHJZ SW2LCALL DELAY10MS JZ SW2MOV A,P3ANL A,#0FHCJNE A,#0EH,K5 MOV COUNT,#1 LJMP DKK5: CJNE A,#0DH,K6 MOV COUNT,#5 LJMP DKK6: CJNE A,#0BH,K7 MOV COUNT,#9 LJMP DKK7: CJNE A,#07H,K8 MOV COUNT,#13K8: NOPLJMP DKSW2: MOV P3,#0FFH CLR P3.6MOV A,P3ANL A,#0FHJZ SW3LCALL DELAY10MS JZ SW3MOV A,P3ANL A,#0FHCJNE A,#0EH,K9 MOV COUNT,#2 LJMP DKK9: CJNE A,#0DH,KA MOV COUNT,#6 LJMP DKKA: CJNE A,#0BH,KB MOV COUNT,#10 LJMP DKKB: CJNE A,#07H,KC MOV COUNT,#14 KC: NOPLJMP DKSW3: MOV P3,#0FFH CLR P3.7MOV A,P3ANL A,#0FHJZ SW4LCALL DELAY10MSJZ SW4MOV A,P3ANL A,#0FHCJNE A,#0EH,KDMOV COUNT,#3LJMP DKKD: CJNE A,#0DH,KE MOV COUNT,#7LJMP DKKE: CJNE A,#0BH,KF MOV COUNT,#11 LJMP DKKF: CJNE A,#07H,KG MOV COUNT,#15KG: NOPLJMP DKSW4: LJMP PANDUAN DK: RET ;;;;;;;;;;显示程序;;;;;;;;;; XIANSHI: MOV A,COUNTMOV DPTR,#TABLEMOVC A,@A+DPTRMOV P0,ALCALL DELAYSK: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ SKRET;;;;;;;;;;10ms延时程序;;;;;;;;;;DELAY10MS: MOV R6,#20D1: MOV R7,#248DJNZ R7,$DJNZ R6,D1RET;;;;;;;;;;200ms延时程序;;;;;;;;;;DELAY: MOV R5,#20LOOP: LCALL DELAY10MSDJNZ R5,LOOPRET;;;;;;;;;;共阴码表;;;;;;;;;;TABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H DB 7FH,6FH,77H,7CH,39H,5EH,79H,71H;;;;;;;;;;结束标志;;;;;;;;;;END7、C语言源程序#includeunsigned char code table[]={0x3f,0x66,0x7f,0x39,0x06,0x6d,0x6f,0x5e,0x5b,0x7d,0x77,0x79,0x4f,0x07,0x7c,0x71};void main(void){ unsigned char i,j,k,key;while(1){ P3=0xff; //给P3口置1//P3_4=0; //给P3.4这条线送入0//i=P3;i=i&0x0f; //屏蔽低四位//if(i!=0x0f) //看是否有按键按下//{ for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);if(i!=0x0f) //再次判断按键是否按下//{ switch(i) //看是和P3.4相连的四个按键中的哪个// { case 0x0e:key=0;break;case 0x0d:key=1;break;case 0x0b:key=2;break;case 0x07:key=3;break;}P0=table[key]; //送数到P0口显示//}}P3=0xff;P3_5=0; //读P3.5这条线//i=P3;i=i&0x0f; //屏蔽P3口的低四位//if(i!=0x0f) //读P3.5这条线上看是否有按键按下// { for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);i=P3; //再看是否有按键真的按下//i=i&0x0f;if(i!=0x0f){ switch(i) //如果有,显示相应的按键//{ case 0x0e:key=4;break;case 0x0d:key=5;break;case 0x0b:key=6;break;case 0x07:key=7;break;}P0=table[key]; //送入P0口显示//}}P3=0xff;P3_6=0; //读P3.6这条线上是否有按键按下// i=P3;i=i&0x0f;if(i!=0x0f){ for(j=50;j>0;j--)for(k=200;k>0;k--);i=P3;i=i&0x0f;if(i!=0x0f){ switch(i){ case 0x0e:key=8;break;case 0x0d:key=9;break;case 0x0b:key=10;break;case 0x07:key=11;break;}P0=table[key];}}P3=0xff;P3_7=0; //读P3.7这条线上是否有按键按下//i=P3;i=i&0x0f;if(i!=0x0f){ for(j=50;j>0;j--) for(k=200;k>0;k--); i=P3;i=i&0x0f;if(i!=0x0f){ switch(i){ case 0x0e:key=12;break;case 0x0d:key=13;break;case 0x0b:key=14;break;case 0x07:key=15;break;}P0=table[key];}}}}8、注意事项在硬件电路中,要把8联拨动拨码开关JP2拨下,把8联拨动拨码开关JP3拨上去。
矩阵式键盘设计实训报告

一、实验目的1. 掌握矩阵式键盘的工作原理及电路设计方法。
2. 熟悉单片机与矩阵键盘的接口连接及编程技巧。
3. 提高动手实践能力,培养创新意识。
二、实验设备1. 单片机实验平台2. 矩阵键盘模块3. 数字多用表4. 编译器(如Keil51)5. 连接线三、实验原理矩阵键盘是一种常用的键盘设计方式,通过行列交叉点连接按键,从而实现多个按键共用较少的I/O端口。
矩阵键盘通常采用逐行扫描的方式检测按键状态,当检测到按键按下时,根据行列线的电平状态确定按键位置。
四、实验内容1. 矩阵键盘电路设计2. 矩阵键盘编程3. 矩阵键盘测试与调试五、实验步骤1. 电路设计(1)根据矩阵键盘的规格,确定行线和列线的数量。
(2)将行线和列线分别连接到单片机的I/O端口。
(3)在行线上串联电阻,防止按键抖动。
(4)连接电源和地线。
2. 编程(1)初始化单片机的I/O端口,将行线设置为输出,列线设置为输入。
(2)编写逐行扫描程序,逐行拉低行线,读取列线状态。
(3)根据行列线状态判断按键位置,并执行相应的操作。
3. 测试与调试(1)将编写好的程序下载到单片机中。
(2)连接矩阵键盘,观察按键是否正常工作。
(3)使用数字多用表检测行列线电平,确保电路连接正确。
(4)根据测试结果,对程序进行调试,直到矩阵键盘正常工作。
六、实验结果与分析1. 电路连接正确,按键工作正常。
2. 逐行扫描程序能够正确检测按键位置。
3. 按键操作能够触发相应的程序功能。
七、实验总结1. 通过本次实训,掌握了矩阵式键盘的工作原理及电路设计方法。
2. 熟悉了单片机与矩阵键盘的接口连接及编程技巧。
3. 提高了动手实践能力,培养了创新意识。
八、心得体会1. 在实验过程中,遇到了电路连接错误和程序调试困难等问题,通过查阅资料、请教老师和同学,最终成功解决了问题。
2. 本次实训让我深刻体会到理论知识与实际操作相结合的重要性,同时也认识到团队合作的重要性。
九、改进建议1. 在电路设计过程中,可以考虑增加去抖动电路,提高按键稳定性。
proteus矩阵键盘

实验三:矩阵键盘电路设计(一)实验目的1掌握键盘接口的基本特点,了解独立键盘和矩阵键盘的应用方法。
2学会使用proteus软件设计矩阵键盘电路掌。
3握键盘接口的硬件设计方法,软件程序设计和贴士排错能力。
(二)实验要求能熟练的编写8951单片机汇编程序设计键盘接口仿真电路图,并使之正常运行(三)连接图(四)结果图当矩阵键盘的3号键被按下时,P2口的七段数码管显示的数据为3.如下图1所以:当矩阵键盘的A号键被按下时,P2口的七段数码管显示的数据为A.如下图2所以:(五)代码ORG 0000HAJMP MAINORG 0030HMAIN:MOV DPTR,#TABLE ;将表头放入DPTRLCALL KEY ;调用键盘扫描程序MOVC A,@A+DPTR ;查表后将键值送入ACCMOV P2,A ;将ACC值送入P0口LJMP MAIN ;返回反复循环程序KEY: LCALL KS ;调用检测按键子程序JNZ K1 ;若有按键按下,则继续LCALL DELAY2 ;若无按键按下,则调用延时去抖程序 AJMP KEY ;返回,继续检测按键K1: LCALL DELAY2LCALL DELAY2 ;若有按键按下,则延时去抖动LCALL KS ;再调用检测按键程序JNZ K2 ;确认有键按下,进行下一步AJMP KEY ;若无按键按下,则返回继续检测K2: MOV R2,#0EFH ;将扫描值送入R2暂存MOV R4,#00H ;将第1列值送入R4暂存K3: MOV P1,R2 ;将R2的值送入P1口L6: JB P1.0,L1 ;P1.0等于1跳转到L1 MOV A,#00H ;将第1行值送入ACCAJMP LK ;跳转到键值处理程序L1: JB P1.1,L2 ;P1.1等于1跳转到L2 MOV A,#04H ;将第2行值送入ACCAJMP LK ;跳转到键值处理程序进行键值处理L2: JB P1.2,L3 ;P1.2等于1跳转到L3 MOV A,#08H ;将第3行值送入ACCAJMP LK ;跳转到键值处理程序L3: JB P1.3,NEXT ;P1.3等于1跳转到NEXT处 MOV A,#0CH ;将第4行值送入ACCLK: ADD A,R4 ;将行值与列值相加后的键值送入APUSH ACC ;将A中的值送入堆栈暂存K4: LCALL DELAY2 ;调用延时去抖程序LCALL KS ;调用检测按键程序JNZ K4 ;若按键没有松开,则继续返回检测POP ACC ;键堆栈的值送入ACCRETNEXT:INC R4 ;将列值加一MOV A,R2 ;将R2的值送入AJNB ACC.7,KEY ;扫描至KEY处进行下一扫描RL A ;扫描未完,将A中的值右移一位进行下一列的扫描MOV R2,A ;将ACC的值送入R2暂存AJMP K3 ;跳转到K3继续KS: MOV P1,#0FH ;将P1口的高4为置0,低4位置1 MOV A,P1 ;读P1口XRL A,#0FH ;将A中的值与0FH相异或RET ;子程序返回DELAY2: ;40ms延时去抖子程序MOV R5,#08HL7: MOV R6,#0FAHL8: DJNZ R6,L8DJNZ R5,L7RETTABLE: ;7段显示器的数据定义DB 0C0H,0F9H,0A4H,0B0H,99H ;01234DB 92H,82H,0F8H,80H,90H ;56789DB 88H,83H,0C6H,0A1H,86H ;ABCDEDB 8EH ;FEND ;程序结束。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽文达信息工程学院学生实验报告
一、【实验目的】
1.掌握单片机按键的使用和编程方法;
2.掌握矩阵式键盘的编程方法。
二、【实验原理及内容】
按照代码转换方式,键盘可以分为编码式和非编码式两种。
编码式键盘是通过数字电路直接产生对应于按键的ASCⅡ码,这种方式目前很少使用。
非编码式键盘将按键排列成矩阵的形势,由硬件或软件随时对矩阵扫描,一旦某一键被按下,该键的行列信息即被转换为位置码并送入主机,再由键盘驱动程序查表,从而得到按键的ASCⅡ码,最后送入内存中的键盘缓冲区供主机分析执行。
非编码式键盘由于结构简单,按键重定义方便而成为目前最常采用的键盘类型。
非编码键盘又分为独立式键盘和矩阵式键盘。
因为独立式键盘较为简单,此次实验以矩阵键盘的查询扫描方式为主。
矩阵式(行列式)键盘的接口电路
对上图矩阵式键盘,编写查询式的键盘处理程序。
先判有无键按下,即把所有行线P1.0~P1.3均置为低,然后检测各列线状态,若列线不全为高电平,则表示键盘中有键被按下;若所有列线列均为高电平,说明键盘中无键按下。
在确认有键按下后,即可查找具体闭合键位置,其方法是依次将行线置为低电平,再逐行检查各列线的电平状态。
若某列为低,则该列线与行线交叉处键就是闭合键。
三、【实验器材】
1.PC机
2.Proteus仿真软件
3.Keilc51仿真软件
四、【实验步骤】
1、基础实验
数码管显示4×4矩阵键盘键号。
单片机的P1口的P1.0~P1.7连接4×4矩阵键盘,矩阵
中各键编号见下图。
数码管显示由P0口控制,当4×4矩阵键盘中的某一按键按下时,数码管上显示对应键号。
例如,1号键按下时,数码管显示“1”;E键按下时,数码管显示“E”等等。
数码管显示4×4矩阵键盘键号的原理电路
2、扩展实验
在P3.0~p3.3口各连接一个LED小灯,每当按下一个按键,数码管显示数字之后,小灯也以亮灭来表示数字,例如按键为5,则小灯依次“亮灭亮灭”。
五、【实验过程原始记录】(可附页)
1.基础实验:
#include <reg51.h>
#define uchar unsigned char
sbit L1=P1^0;
sbit L2=P1^1;
sbit L3=P1^2;
sbit L4=P1^3;
uchar
dis[16]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf 8,0x80,0x90,0x88,0x83,
0xc6,0xa1,0x86, 0x8e };
unsigned int time;
Void delay(time)
{
unsigned int j;
for(j=0;j<time;j++)
{}
}
main()
{
uchar temp;
uchar i;
while(1)
{
P1=0xef;
for(i=0;i<=3;i=i++)
{
if (L1==0) P0= dis [i*4+0];
if (L2==0) P0= dis [i*4+1];
if (L3==0) P0= dis [i*4+2];
if (L4==0) P0= dis [i*4+3];
delay(500);
temp=P1;
temp=temp|0x0f;
temp=temp<<1;
temp=temp|0X0f;
P1=temp;
}
}
}
2.扩展实验:
#include <reg51.h>
#define uchar unsigned char
sbit L1=P1^0;
sbit L2=P1^1;
sbit L3=P1^2;
sbit L4=P1^3;
uchar
dis[16]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf 8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86, 0x8e }; uchar
led[16]={0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x 07,0x08,0x09,0x0a,0x0b,0x0c,
0x0d,0x0e,0x0f};
unsigned int time;
void delay(time)
{
unsigned int j;
for(j=0;j<time;j++)
{}
}
main()
{
uchar temp;
uchar i;
while(1)
{
P1=0xef;
for(i=0;i<=3;i=i++)
{
if (L1==0) {P0= dis [i*4+0];P3=led[i*4+0];}
if (L2==0) {P0= dis [i*4+1];P3=led[i*4+1];}
if (L3==0) {P0= dis [i*4+2];P3=led[i*4+2];}
if (L4==0) {P0= dis [i*4+3];P3=led[i*4+3];}
delay(500);
temp=P1;
temp=temp|0x0f;
temp=temp<<1;
temp=temp|0X0f;
P1=temp;
}
}
}
六、【实验结果分析】
实验结果达到预期效果,按下按键后成功在数码管上显示了键值,并且在LED灯以二进制表示出来。
本次试验加深了我对单片机功能的认知,了解了矩阵式键盘的实现原理及编程方法,同时也锻炼了自己代码分析和修改的能力。
教师评语:。