精密加工技术的发展及应用

合集下载

精密机械加工技术的发展趋势

精密机械加工技术的发展趋势

精密机械加工技术的发展趋势随着科技的不断进步和社会的快速发展,精密机械加工技术在制造业中扮演着越来越重要的角色。

这项技术的发展趋势也日益受到关注。

本文将探讨精密机械加工技术的发展趋势,并分析其对制造业的影响。

一、自动化与智能化随着人工智能和自动化技术的不断发展,精密机械加工技术也在向自动化和智能化方向迈进。

传统的机械加工过程需要大量的人工操作和监控,而自动化技术的应用可以极大地提高生产效率和产品质量。

例如,自动化机床可以通过预设程序自动完成加工过程,无需人工干预。

智能化技术的应用还可以实现机床的自我诊断和自我修复,大大减少了生产线停机时间和维修成本。

二、高精度与高效率精密机械加工技术的发展趋势之一是追求更高的加工精度和效率。

在制造业中,精度和效率是竞争力的重要因素。

高精度的加工可以保证产品的质量和稳定性,而高效率的加工则可以提高生产效率和降低成本。

为了实现这一目标,新型的加工设备和工艺不断涌现。

例如,五轴数控机床可以实现多轴同时加工,大大提高了加工效率和精度。

激光加工技术的应用也可以实现高精度的切割和雕刻。

三、绿色与可持续发展精密机械加工技术的发展趋势之一是追求绿色和可持续发展。

在过去,机械加工过程中产生的废水、废气和废渣对环境造成了严重的污染。

为了减少对环境的影响,新型的加工设备和工艺不断涌现。

例如,水刀切割技术可以用高压水流切割材料,无需使用化学溶剂和产生废气。

绿色加工材料的应用也可以减少对环境的污染。

此外,精密机械加工技术的发展还可以实现资源的有效利用和循环利用,促进可持续发展。

四、柔性化与定制化随着市场需求的多样化和个性化,精密机械加工技术也向柔性化和定制化方向发展。

传统的机械加工过程往往是批量生产,无法满足个性化需求。

而新型的加工设备和工艺可以实现柔性化生产和定制化加工。

例如,快速成型技术可以根据客户需求快速制造产品,大大缩短了交货周期。

柔性制造系统可以根据市场需求灵活调整生产线,提高生产效率和灵活性。

精密加工技术在国防军工中的应用

精密加工技术在国防军工中的应用

精密加工技术在国防军工中的应用随着现代科技的进步,精密加工技术在国防军工中的地位越来越重要。

精密加工技术是一种先进的制造技术,用于制造高精度、高可靠性的零部件和工具。

在国防军工中,精密加工技术被广泛应用于飞机、舰船、导弹、坦克等武器装备的研发、制造和维修。

一、精密加工技术对航空装备的重要性现代航空装备的制造对精密加工技术的要求非常高。

在航空航天领域,应用最广泛的精密加工技术是数控加工技术。

数控加工技术使用计算机控制的切削机床进行加工,能够精确地控制加工过程,提高加工质量和效率。

它不仅可用于不同材料的切削加工,还可用于零部件的打孔、抛光、刻印等多种加工工艺。

例如,航空发动机的精密零部件,如叶轮、涡轮叶片等就需要数控加工技术制造。

深孔加工技术也被广泛应用于大型航空零部件的加工,比如飞机结构部件的加工。

二、精密加工技术对舰船装备的重要性舰船装备在工作环境复杂、振动大、气候恶劣的条件下工作,需要高精度的零部件来保证系统的可靠性和安全性。

例如,水轮机、蒸汽轮机等船舶主机设备需要高精度的叶轮、轴承等零部件,以保证设备的高效工作和长寿命。

在战斗舰艇中,雷达、通讯、武器和火控系统等,更需要高精度的零部件来确保其在战斗情况下的性能和稳定性。

精密加工技术可以制造这些零部件,以提高船舶装备的可靠性和战斗力。

三、精密加工技术对导弹装备的重要性现代导弹技术对精密加工技术的要求非常高。

导弹对传感器、控制系统、推进系统等零部件的精度和可靠性要求非常高。

例如,导弹的推进系统需要高精度的燃烧室、喷嘴等零部件才能实现精准的推进。

控制系统需要高精度的传感器和执行器来控制导弹的姿态和飞行轨迹。

这些零部件的制造都需要精密加工技术的支持。

四、精密加工技术在坦克装备中的应用坦克在行进和作战时需要承受高度冲击和振动,要求其零部件的强度和精度都非常高。

例如,坦克的炮筒需要高精度和高可靠性,以确保炮弹的精准打击。

坦克的履带需要高精度的轮毂和连接件,以保证其在不平的路面上行驶的平稳性。

精密加工技术的研究和应用

精密加工技术的研究和应用

精密加工技术的研究和应用随着科技的不断发展和人类对高质量生活的不断追求,精密加工技术的研究与应用愈发重要。

精密加工技术是一种高度精细的制造工艺,可以实现对物体的精准加工,使之符合特定的要求和标准。

这种技术广泛应用于航空航天、电子信息、医疗卫生、汽车、机械工程和生物医药等领域,成为促进这些领域发展的关键因素之一。

一、精密加工技术的概述精密加工技术是一种高精度、高效率的加工手段,通常需要借助各种机床、工具和附属设备,以在工件表面制出所需形状和精度的加工方法。

精密加工技术发展至今已经涵盖了许多领域,包括直接数控加工、微纳米加工、超精密加工、联合加工、传统机械加工等。

这些技术的出现,极大地提高了现代工业生产效率和产品品质,同时也极大地促进了科技的进步。

二、精密加工技术的研究方向1.纳米技术的应用目前,纳米技术正在成为精密加工技术研究的一个重点方向。

纳米技术的应用有很多,其中最为重要的一项是纳米加工技术,即利用纳米级刀具对超薄薄膜进行加工处理。

与传统机械加工相比,纳米加工的热影响区域小,加工精度高,其被广泛应用的领域包括光学、半导体、生命科学和制造业等。

2.智能加工技术的研究智能加工技术是一种结合机械加工、自动控制技术和信息技术的新型加工技术。

它通过建立数字化模型和智能控制系统来实现加工过程的自动化和优化。

随着计算机和信息技术的飞速发展,智能制造技术得到了快速的发展,成为现代加工技术的研究热点。

与传统机械加工相比,智能加工可以大大降低生产成本和劳动强度,提高生产效率和加工品质。

三、精密加工技术的应用领域1.航空航天领域精密加工技术在航空航天领域的应用十分广泛。

在飞机和火箭发动机的制造过程中,需要对各种材料进行复杂的加工处理。

由于加工精度和质量的要求极高,传统机械加工无法满足要求,因此需要采用精密加工技术。

例如,在发动机制造过程中,使用螺纹加工中心对轴承外圈进行加工时,可以实现高精度、高质量、高效率的加工,保证发动机的工作稳定和安全。

精密加工技术-概述

精密加工技术-概述

光整加工原理
光整加工的目的
光整加工的目的是提高工件表面质量,降低表面粗糙度,去除表 面划痕、微观裂纹等缺陷。
光整加工方法
光整加工方法包括研磨、抛光、刷光、超精加工等。根据工件的材 料和表面质量要求选择合适的方法。
光整加工材料与工具
光整加工中使用的材料和工具包括研磨剂、抛光轮、刷光轮等,其 质量和选择直接影响光整加工的效果。
精密加工技术在集成电路制造中发挥着重要作用,可以用于制造芯片和封装测试等环节,提高集成电 路的性能和可靠性。
电子元器件制造
精密加工技术可以用于制造各种电子元器件,如电容、电感、电阻等,提高元器件的精度和稳定性。
医疗器械领域的应用
人工关节制造
精密加工技术可以用于制造人工关节,如髋关节、膝关节等,提高关节的匹配度和使用 寿命。
加工过程的智能控制
1 2
实时监测与反馈控制
通过传感器和检测设备实时监测加工过程,对加 工参数进行实时调整,提高加工精度和稳定性。
机器学习与人工智能
利用机器学习和人工智能技术对加工数据进行处 理和分析,实现加工过程的智能优化和控制。
3
虚拟仿真与预测
通过虚拟仿真技术预测加工过程和结果,对加工 参数进行优化,减少试制和试验成本。
精密加工技术-概述
contents
目录
• 精密加工技术简介 • 精密加工技术的基本原理 • 精密加工的关键技术 • 精密加工技术的未来发展 • 精密加工技术的应用前景
01
精密加工技术简介
定义与特点
定义
精密加工技术是指在加工过程中 ,通过高精度和高效率的方法, 将原材料转化为具有特定形状、 尺寸和表面质量的产品的技术。
03
精密加工的关键技术

精密加工制造技术的研究与发展

精密加工制造技术的研究与发展

精密加工制造技术的研究与发展摘要:在现代工业制造中,精密加工制造技术是不可或缺的重要组成部分,涉及到诸如航空、航天、汽车、半导体等高科技领域,是现代工业制造的核心技术之一。

本文将从精密加工制造的定义入手,探讨其发展历程、选型原则、现状与趋势,并指出未来的确切发展方向。

一、精密加工制造技术的定义精密加工制造技术是指通过机械加工以及其他相关的技术手段,将材料的形状、尺寸和表面质量等方面达到高精度、高表面质量的制造技术。

其具有工业制造和制造技术的核心地位,也是工业制造中不可或缺的组成部分。

精密加工制造技术已经涉及到诸如航空、航天、汽车、半导体等高科技领域,在现代制造业中已经成为了重要的核心技术。

二、精密加工制造技术的发展历程自20世纪50年代起,精密加工制造技术便开始在各个行业领域中得到广泛的应用。

最初,精密加工制造技术主要是通过手工操作来完成的,对于材料的尺寸和表面质量控制的精确度较低。

随着科技水平的提高和机械设备的不断更新,精密加工制造技术也得到了快速的发展与改进。

各种精密加工制造的新技术和新工艺也越来越多地应用于工业制造中。

在当今的制造业中,我们已经可以看到高端机床,多轴机、数控加工设备、激光加工设备、电解加工设备等等,这些设备都是以精密加工制造技术为核心而诞生的。

三、精密加工制造技术的选型原则正确的加工选型是精密加工制造技术的成功应用的前提。

选择适合本次精密加工的机床、设备和工具材料等,是非常关键的。

一般来说,精密加工制造会依据材料的种类、制造工艺的要求来选择该精密加工技术的方法。

为了确保质量和生产效率,还需要在加工选型的过程中,充分考虑材料的硬度、表面欠损、精度要求以及加工工艺的适应性和经济性,并且需要定期地维护设备的表面质量,进行磨损情况的监测和判断,保证设备的加工质量。

四、精密加工制造技术的现状与趋势当今的精密加工制造技术已经非常成熟,其应用范围覆盖了汽车、航空、航天、半导体等多个领域。

精密加工行业报告

精密加工行业报告

精密加工行业报告精密加工是一种高精度的机械加工技术,它在各种行业中都有着广泛的应用。

随着科技的不断发展和进步,精密加工行业也在不断壮大和壮大。

本报告将对精密加工行业的发展现状、市场需求、技术趋势等方面进行分析和展望。

一、精密加工行业的发展现状。

随着科技的不断进步和发展,精密加工行业也在不断壮大。

目前,全球精密加工行业的市场规模已经达到了数千亿美元。

在中国,精密加工行业也在快速发展,成为了国民经济中不可或缺的一部分。

从国内外市场来看,精密加工行业的需求量也在不断增加,市场潜力巨大。

二、精密加工行业的市场需求。

精密加工行业的市场需求主要来自于汽车、航空航天、电子、医疗器械、光学仪器等行业。

随着这些行业的不断发展,对精密加工零部件的需求也在不断增加。

特别是在汽车和航空航天行业,对零部件的精度和质量要求非常高,这就对精密加工行业提出了更高的要求。

三、精密加工行业的技术趋势。

随着科技的不断进步,精密加工行业的技术也在不断更新和改进。

目前,数控机床、激光加工、电火花加工、超声波加工等先进技术已经在精密加工行业中得到了广泛应用。

这些先进技术不仅提高了加工效率,还提高了加工精度,降低了成本,提高了产品质量。

四、精密加工行业的发展趋势。

未来,精密加工行业将会朝着智能化、自动化、数字化的方向发展。

随着人工智能、大数据、云计算等技术的不断发展,精密加工行业将会迎来新的发展机遇。

同时,随着全球制造业的转移和升级,精密加工行业也将会面临更大的市场机遇和挑战。

总之,精密加工行业是一个充满活力和发展潜力的行业。

随着科技的不断发展和进步,精密加工行业也将迎来新的发展机遇。

我们相信,在政府的政策支持和企业的不懈努力下,精密加工行业一定会迎来更加美好的未来。

超精密加工技术的理论和应用研究

超精密加工技术的理论和应用研究

超精密加工技术的理论和应用研究超精密加工技术是指在微米和纳米级别下进行的精密加工过程。

随着现代科技的不断发展,超精密加工技术越来越受到重视,并广泛应用于电子、光学、航空航天和生物医疗等领域。

1. 超精密加工技术的发展历程超精密加工技术的发展历程可以追溯到20世纪50年代末期,当时主要应用于金属和陶瓷的球面加工和制造。

随着微电子技术的不断进步,超精密加工技术被广泛运用于微电子制造和微机电系统(MEMS)中,如晶体管、光学元件、压电陶瓷和生物芯片等。

在后来的发展中,超精密加工技术逐渐扩展到玻璃、塑料和石英等非金属材料的加工上。

同时,超精密加工技术还被应用于卫星、航天器和精密仪器的制造和维修中。

2. 超精密加工技术的理论基础超精密加工技术的理论基础主要涉及到两个方面:加工力学和加工控制。

加工力学研究表明,超精密加工过程中的切削作用受到材料本身的特性、切削工具的形状和刃口尺寸、切削速度和切削深度的影响。

因此,了解加工物料的相关特性并选择适当的切削参数,对加工质量和加工效率的提高具有重要意义。

加工控制方面的研究主要涉及到加工路径规划、加工速度和切削深度的控制以及加工设备的精度检测等。

3. 超精密加工技术在电子制造领域中的应用在电子制造领域中,超精密加工技术被广泛应用于半导体器件的制造和加工。

例如,通过超精密加工技术制作的半导体器件可以达到微米甚至纳米级别的精度,从而大大提高了器件的性能和稳定性。

此外,超精密加工技术还可以用于电子元器件的制造,如阻值、电容器和电感器等。

通过超精密加工技术制作的电子元器件具有更好的性能和精度,可以提高电路的稳定性和可靠性。

4. 超精密加工技术在航空航天领域中的应用在航空航天领域中,超精密加工技术主要应用于航空发动机部件的制造和维修。

例如,通过超精密加工技术制造的涡轮叶片具有更好的气动性能和材料特性,可以提高发动机的性能和效率。

同时,超精密加工技术还可以用于航空航天器件的制造和加工,如导航系统和通信设备等。

精密加工技术的研究与应用

精密加工技术的研究与应用

精密加工技术的研究与应用随着科技的不断进步和人类对于生活品质的追求,精密加工技术的研究和应用已经成为了今天的热点话题。

精密加工技术是指使用高精度技术和设备进行加工生产的一类产品,具有精度、稳定性、可靠性等优点,在机械、电子、信息、光学、生物医学等领域均有广泛的运用。

在现代制造工业发展过程中,精密加工技术的优势和作用越来越受到广泛关注。

一、精密加工技术的发展现状当前的精密加工技术已经发展到了一个非常成熟的阶段,随着数控技术和计算机技术的不断发展,机械制造的精度已经得到了极大的提高。

比如,五轴加工技术、精密8轴加工技术、激光加工技术、超精密加工技术等新型技术的应用,使精度、精度稳定性、生产效率大幅提升,从而保证了整个制造业的精度和质量稳定性,同时也是推动现代制造工业发展的重要因素。

在传统的机床加工中,由于操作工具和机床的局限性,产品精度和稳定性不可避免会出现一定的误差,而新型的数控技术的应用则有效避免了这一问题的发生。

精密加工技术的应用,也将机械制造业生产的精度提高到了一个更高水平。

研发和推广新型的精密加工设备,推动精密加工技术的进一步发展,是对于现代科技进步的巨大贡献。

二、精密加工技术的应用领域1. 电子行业:电子元器件的制造需要高精度的制造工艺,以确保产品的稳定性和精度。

在电子元器件的制造过程中,精密加工技术的应用非常广泛。

例如,数字化的芯片设计和制造、光纤通信模块制造、微卡及微型芯片加工、半导体制造等,均需要精密加工技术的支持。

2. 机械行业:机械制造业中的数控精密加工技术,主要应用于制造高精度机床、航空航天器件、汽车零部件、铁路轨道、医疗设备等方面。

机械制造业的发展水平越高,精密加工技术的应用越发广泛。

3. 生物医护行业:在生物医护领域,精密仪器设备、人工晶体和医用金属制品等精密制品的加工和制造都依赖于高精度加工技术。

例如,人工耳蜗、磁共振成像、植入体、外科手术刀等都需要精密加工技术的支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精密加工技术的发展及应用班级:拓展3班姓名:***学号:************精密加工技术的发展及应用摘要:精密加工技术是为适应现代高技术需要而发展起来的先进制造技术,是其它高新技术实施的基础。

它综合应用了机械技术发展的新成果以及现代电子、传感技术、光学和计算机等高新技术,是高科技领域中的基础技术,在国防科学技术现代化和国民经济建设中发挥着至关重要的作用,同时作为现代高科技的基础技术和重要组成部分,推动着半导体技术、光电技术、材料科学等多门技术的交叉发展进步。

1、精密机械加工简介加工精度达到 1微米的机械加工方法。

精密机械加工是在严格控制的环境条件下,使用精密机床和精密量具和量仪来实现的。

加工精度达到和超过 0.1微米称超精密机械加工。

在航空航天工业中,精密机械加工主要用于加工飞行器控制设备中的精密机械零件,如液压和气动伺服机构中的精密配合件、陀螺仪的框架、壳体,气浮、液浮轴承组件和浮子等。

飞行器精密零件的结构复杂、刚度小、要求精度很高,而且难加工材料所占的比重较大。

精密机械加工的工艺效果是:①零件的几何形状和相互位置精度达到微米或角秒级;②零件的界限或特征尺寸公差在微米以下;③零件表面微观不平度(表面不平度平均高度差)小于0.1 微米;④互配件能满足配合力的要求;⑤部分零件还能满足精确的力学或其他物理特性要求,如浮子陀螺仪扭杆的扭转刚度、挠性元件的刚度系数等。

精密机械加工主要有精车、精镗、精铣、精磨和研磨等工艺。

①精车和精镗:飞行器大多数精密的轻合金(铝或镁合金等)零件多采用这种方法加工。

一般用天然单晶金刚石刀具,刀刃圆弧半径小于0.1微米。

在高精度车床上加工可获得1微米的精度和平均高度差小于0.2微米的表面不平度,坐标精度可达±2微米。

②精铣:用于加工形状复杂的铝或铍合金结构件。

依靠机床的导轨和主轴的精度来获得较高的相互位置精度。

使用经仔细研磨的金刚石刀头进行高速铣切可获得精确的镜面。

③精磨:用于加工轴或孔类零件。

这类零件多数采用淬硬钢,有很高的硬度。

大多数高精度磨床主轴采用静压或动压液体轴承,以保证高稳定度。

磨削的极限精度除受机床主轴和床身刚度的影响外,还与砂轮的选择和平衡、工件中心孔的加工精度等因素有关。

精磨可获得 1微米的尺寸精度和0.5微米的不圆度。

④研磨:利用配合件互研的原理对被加工表面上不规则的凸起部位进行选择加工。

磨粒直径、切削力和切削热均可精确控制,因而是精密加工技术中获得最高精度的加工方法。

飞行器的精密伺服部件中的液压或气动配合件、动压陀螺马达的轴承零件都采用这种方法加工,以达到0.1甚至0.01微米的精度和0.005微米的微观不平度。

2 国内精密加工技术发展现状2.1 精密成型加工的发展现状与应用精密铸造成形、精密模压成形、塑性加工、薄板精密成形技术在工业发达国家受到高度重视,并投入大量资金优先发展。

70年代美国空军主持制订“锻造工艺现代化计划”,目的是使锻造这一重要工艺实现现代化,更多地使用CAD/CAM,使新锻件的制造周期减少75%。

1992年,美国国防部提出了“军用关键技术清单”,其中包含了等压成型工艺、数控计算机控制旋压、塑变和剪切成形机械、超塑成型/扩散连接工艺、液压延伸成型工艺等精密塑性成型工艺。

国外近年来还发展了以航空航天产品为应用对象的“大型模锻件的锻造及叶片精锻工艺”、“快速凝固粉末层压工艺”、“大型复杂结构件强力旋压成型工艺”、“难变形材料超塑成形工艺”、“先进材料(如金属基复合材料、陶瓷基复合材料等)成形工艺”等。

我国的超塑成形技术在航天航空及机械行业也有应用,如航天工业中的卫星部件、导弹和火箭气瓶等,采用超塑成形法制造侦察卫星的钦合金回收舱。

与此同时,还基本上掌握了锌、铜、铝、钦合金的超塑成形工艺,最小成形厚度可达0.3mm,形状也较复杂。

此外,国外已广泛应用精密模压成形技术制造武器。

常用的精密模压成形技术,如闭塞式锻造、采用分流原理的精密成形及等温成形等国外已用于军工生产。

目前,精密模压技术在我国应用还较少,精度也较差,国外精度为±0.05—0.10mm,我国为±0.1—0.25mm。

2.2 孔加工技术的发展现状及应用近年来,汽车、模具零部件、金属加工大都采用以CNC机床为中心的生产形态,进行孔加工时,也大都采用加工中心、CNC电加工机床等先进设备,高速、高精度钻削加工已提上议事日程。

无论哪个领域的孔加工,实现高精度和高速化都是取得用户订单的重要竞争手段。

近年来,随着高速铣削的出现,以铣削刀具为中心的切削加工正在进入高速高精度化的加工时期。

在孔加工作业中,目前仍大量使用高速钢麻花钻,但各企业之间在孔加工精度和加工效率方面已逐渐拉开了差距。

高速切削钻头的材料以陶瓷涂层硬质合金为主,如MAZAK公司和森精机制作所在加工铸铁时,即采用了陶瓷涂层钻头。

在加工铝合金等有色材料时,可采用金刚石涂层硬质合金钻头、DLC涂层硬质合金钻头或带金刚石烧结体刀齿的钻头。

高速高精度孔加工除采用CNC切削方式对孔进行精密加工外,还可采用镗削和铰削等方式对孔进行高精度加工。

随着加工中心主轴的高速化,已可采用镗削工具对孔进行高速精密加工。

随着IT相关产业的发展,近年来,光学和电子工业所用装置的零部件产品的需求急速增长,这种增长刺激了微细形状及高精度加工技术的迅速发展。

其中,微细孔加工技术的开发应用尤其引人注目。

微细孔加工早已在印刷电路板等加工中加以应用,包括钢材在内的多种被加工材料,均可用钻头进行小直径加工。

目前,小直径孔加工中,利用钻头切削的直径最小可至φ50μm左右。

小于φ50μm的孔则多采用电加工来完成。

为了抑制毛刺的产生,许多研究者提出可采用超声波振动切削的方式。

目前,正在探索一种应用范围广而且工艺合理的超声波振动切削模式,其中包括研究机床的适应特性等内容。

随着这些问题的顺利解决,今后可望更好地实现直径更小的微小深孔加工,加工精度会更高2.3 特种热处理的发展现状与应用特种热处理工艺是国防工业系统关键制造技术之一。

真空热处理以其特有的无污梁、无氧化、工件变形小和适用范围广等优点,广泛用于航空航天结构件处理,如齿轮结构件表面渗碳或渗氮,导弹和航天器各种合金或钢件的去应力、增强或增韧处理等。

典型结构如:仪表零件、传动结构、燃料贮箱、发动机壳体等;美国热处理炉约有50%以上为真空热处理炉。

真空热处理炉已广泛采用了计算机控制,目前已发展到真空化学热处理和真空气淬热处理,包括高压真空气淬、高流率真空气淬和高压高流率真空气淬技术等。

另外,激光热处理技术在国外已广泛用于航空、航天、电子、仪表等领域,如各种复杂表面件、微型构件、需局部强化处理构件、微型电子器件、大规模集成电路的生产和修补、精密光学元件、精密测量元件等。

2.4 数控电火花加工新工艺的应用a.标准化夹具数控电火花加工为保证极高的重复定位精度且不降低加工效率,采用快速装夹的标准化夹具。

标准化夹具,是一种快速精密定位的工艺方法,它的使用大大减少了数控电火花加工过程中的装夹定位时间,有效地提升了企业的竞争力。

目前有瑞士的EROWA和瑞典的3R装置可实现快速精密定位。

b.混粉加工方法在放电加工液内混入粉末添加剂,以高速获得光泽面的加工方法称之为混粉加工。

该方法主要应用于复杂模具型腔,尤其是不便于进行抛光作业的复杂曲面的精密加工。

可降低零件表面粗糙度值,省去手工抛光工序,提高零件的使用性能(如寿命、耐磨性、耐腐蚀性、脱模性等)。

混粉加工技术的发展,使精密型腔模具镜面加工成为现实。

c.摇动加工方法电火花加工复杂型腔时,可根据被加工部位的摇动图形、摇动量的形状及精度的要求,选用电极不断摇动的方法,获得侧面与底面更均匀的表面粗糙度,更容易控制加工尺寸,实现小间隙放电条件下的稳定加工。

d.多轴联动加工方法近年来,随着模具工业和IT技术的发展,多轴联动电火花加工技术取得了长足的进步。

模具企业采用多轴联动的方法来提高加工性能,如清角部位在加工可行的情况下采用X、Y、Z三轴联动的方法,即斜向加工,避免了因加工部位面积小而发生放电不稳定的现象。

模具潜伏式胶口的加工通过对电极斜度装夹定位的设计,也可进行斜向多轴联动加工。

采用多轴回转系统与多种直线运动协调组合成多种复合运动方式,可适应不同种类工件的加工要求,扩大数控电火花加工的加工范围,提高其在精密加工方面的比较优势和技术效益。

3、世界发展状况世界上的超精密加工强国以欧美和日本为先,但两者的研究重点并不一样。

欧美出于对能源或空间开发的重视,特别是美国,几十年来不断投入巨额经费,对大型紫外线、x射线探测望远镜的大口径反射镜的加工进行研究。

如美国太空署(NASA)推动的太空开发计划,以制作1m以上反射镜为目标,目的是探测x射线等短波(O.1~30nm)。

由于X射线能量密度高,必须使反射镜表面粗糙度达到埃级来提高反射率。

此类反射镜的材料为质量轻且热传导性良好的碳化硅,但碳化硅硬度很高,须使用超精密研磨加工等方法。

日本对超精密加工技术的研究相对美、英来说起步较晚,却是当今世界上超精密加工技术发展最快的国家。

日本超精密加工的应用对象大部分是民用产品,包括办公自动化设备、视像设备、精密测量仪器、医疗器械和人造器官等。

日本在声、光、图像、办公设备中的小型、超小型电子和光学零件的超精密加工技术方面,具有优势,甚至超过了美国。

日本超精密加我国精密和超精密加工发展策略我国精密和超精密加工经过数十年的努力,日趋成熟。

不论是精密机床、金刚石工具,还是精密加工工艺已形成了一整套完整的精密制造技术系统,为推动机械制造向更高层次发展奠定了基础。

正在向纳米级精度或毫微米精度迈进,其前景十分令人鼓舞。

随着科学技术的飞速发展和市场竞争日益激烈?越来越多的制造业开始将大量的人力、财力和物力投入先进的制造技术和先进的制造模式的研究和实施策略之中。

4、精密加工技术研究与开发趋势(1)精密加工技术努力开发加工单位极小的精密加工方法,必须在加工原理的本身就使其误差分散在1 nm以下的水平。

目前加工单位比较小的加工方法主要有弹性破坏加工、化工加工、离子束加工、等离子加工等。

目前的金刚石切削和金刚石砂轮精密磨削从其加工原理上看,其加工单位就很大。

(2)开发精密的机械机构不论是加工装置还是测量装置,都需要精密的机械机构,包括导轨、进给机构及轴承等,超精密空气静压导轨是目前最好的导轨,其直线度可达0.1~0.2µm/250mm,通过补偿技术还可以进一步提高直线度,但是它没有液压静压导轨的刚性大。

同时,由于空气静压导轨的气膜厚度只有10µm左右,所以在使用过程中,要注意防尘。

另外,在导轨的设计中,还可以用多根导轨并联来均化气膜的误差。

用高弹性合金、红宝石制造的滚动导轨,系统误差在0.5µm左右,随机误差不超过0.1µm,确保产品的可靠性。

相关文档
最新文档