4.2 比较线段的长短
2024年湘教版七年级数学上册 4.2 第2课时 线段的长短比较(课件)

生活实例
1. 如图,这是 A,B 两地之间的公路,在公路工程 改造计划时,为使 A,B 两地行程最短,应如何 设计线路?请在图中画出,并说明理由.
B. A.
两点之间,线段最短
知识点3: 线段的和、差、倍、分
在直线上画出线段 AB = a,再在 AB 的延长线 上画线段 BC = b,线段 AC 就是 a 与 b 的和,记作 AC = a + b. 如果在 AB 上画线段 BD = b,那么线段 AD 就是 a 与 b 的差,记作 AD = a - b .
第4章 图形的认识
4.2 线段、射线、直线
第 2 课时 线段的长短比较
教学目标
1. 会用度量法与叠合法来比较线段的长短. 2. 知道两点之间线段最短这一基本事实,并能简单运
用,感受数学与生活的联系. 3. 知道两点间的距离、线段的中点等概念,会按要求
画线段. 重点:掌握比较线段长短的方法,线段中点的概念及表
叠合法 实际 如何在线段 CD 上画出线段 AB,并且一端端
点重合,另一个端点要放在公共端点的同侧?
A
B
C(A)
BD
归纳总结 叠合法比较线段的大小:
AB C
A C A C
图形
线段AB 与CD的关系 记作
D B D
B D
AB 小于 CD
AB<CD
AB 等于 CD AB 大于 CD
AB = CD AB>CD
a
AC 分成相等的两条线段 AB 与 BC, A 这时 B 叫作 AC 的中点.
B
C
几何语言:因为 B 是线段 AC 的中点,
所以 AB = BC = 1 AC (或 AC = 2AB = 2BC ).
人教版数学七年级上册4.2第2课时比较线段的长短优秀教学案例

在课堂教学结束后,教师应组织学生进行反思与评价。首先,教师引导学生总结自己在课堂上学到的知识,反思学习过程中的收获和不足。其次,教师组织学生进行互相评价,让每个学生都能从同伴的评价中汲取经验,提高自己。最后,教师对学生的表现给予积极的评价,强调学生在课堂上的优点,对学生的不足给予指导性建议。通过反思与评价,帮助学生巩固知识,提高能力,培养正确的价值观。
三、教学策略
(一)情景创设
为了让学生更好地理解线段长度比较在实际生活中的应用,教师在本节课中应创设丰富多样的情景。例如,可以引入校园环境中的实例,如操场跑道的长度、篮球场的对角线长度等,让学生在实际情景中感受线段长度的比较。此外,还可以通过多媒体展示一些生活中的图片,如道路、桥梁、建筑物等,让学生观察并比较其中线段的长度。通过情景创设,激发学生的兴趣,引导学生主动参与课堂学习。
(三)小组合作
小组合作是本节课的重要教学策略。教师将学生分成若干小组,每个小组成员分工合作,共同完成线段长度比较的任务。在合作过程中,学生可以相互交流、讨论,共同探讨解决问题的方法。小组合作不仅有助于提高学生的合作能力,还能培养学生的团队精神和沟通能力。教师在此过程中要关注每个小组的进展,及时给予指导,确保小组合作的有效性。
d.度量法:利用尺子等工具,直接测量线段的长度,进行比较。
2.教师通过示例,展示如何运用这些方法比较线段长度,让学生理解并掌握这些方法。
(三)学生小组讨论
1.教师将学生分成若干小组,每个小组选择一个生活中的实例,如教室的课桌、窗户的边框等,运用所学方法比较线段长度。
2.小组成员相互讨论、交流,共同完成线段长度比较的任务。在此过程中,教师巡视各小组,给予指导和建议。
人教版数学七年级上册4.2第2课时比较线段的长短优秀教学案例
《4.2 第2课时 线段长短的比较与运算》教案、同步练习、导学案(3篇)

《第2课时线段长短的比较与运算》教案【教学目标】1.会画一条线段等于已知线段,会比较线段的长短;2.体验两点之间线段最短的性质,并能初步应用;(重点)3.知道两点之间的距离和线段中点的含义;(重点)4.在图形的基础上发展数学语言,体会研究几何的意义.【教学过程】一、情境导入比较两名同学的身高,可以有几种比较方法?向大家说说你的想法.二、合作探究探究点一:线段长度的比较和计算【类型一】比较线段的长短为比较两条线段AB与CD的大小,小明将点A与点C重合使两条线段在一条直线上,点B在CD的延长线上,则( )A.AB<CD B.AB>CDC.AB=CD D.以上都有可能解析:由点A与点C重合使两条线段在一条直线上,点B在CD的延长线上,得AB>CD,故选B.方法总结:比较线段长短时,叠合法是一种较为常用的方法.【类型二】根据线段的中点求线段的长如图,点C是线段AB上一点,点M是AC的中点,点N是BC的中点,如MC比NC长2cm,AC比BC长( )A.2cm B.4cm C.1cm D.6cm解析:点M是AC的中点,点N是BC的中点,∴AC=2MC,BC=2NC,∴AC -BC=(MC-NC)×2=4cm,即AC比BC长4cm,故选B.方法总结:根据线段的中点表示出线段的长,再根据线段的和、差求未知线段的长度.【类型三】已知线段的比求线段的长如图,B、C两点把线段AD分成2∶3∶4的三部分,点E是线段AD的中点,EC=2cm,求:(1)AD的长;(2)AB∶BE.解析:(1)根据线段的比,可设出未知数,根据线段的和差,可得方程,根据解方程,可得x的值,根据x的值,可得AD的长度;(2)根据线段的和差,可得线段BE的长,根据比的意义,可得答案.解:(1)设AB=2x,则BC=3x,CD=4x,由线段的和差,得AD=AB+BC+CD=9x.由E为AD的中点,得ED=12AD=92x.由线段的和差得CE=DE-CD=92x-4x=x2=2.解得x=4.∴AD=9x=36(cm);(2)AB=2x=8(cm),BC=3x=12(cm).由线段的和差,得BE=BC-CE=12-2=10(cm).∴AB∶BE=8∶10=4∶5.方法总结:在遇到线段之间比的问题时,往往设出未知数,列方程解答.【类型四】当图形不确定时求线段的长如果线段AB=6,点C在直线AB上,BC=4,D是AC的中点,那么A、D两点间的距离是( )A.5 B.2.5 C.5或2.5 D.5或1解析:本题有两种情形:(1)当点C在线段AB上时,如图:AC=AB-BC,又∵AB=6,BC=4,∴AC=6-4=2,D是AC的中点,∴AD=1;(2)当点C在线段AB的延长线上时,如图:AC=AB+BC,又∵AB=6,BC=4,∴AC=6+4=10,D是AC的中点,∴AD =5.故选D.方法总结:解答本题关键是正确画图,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.探究点二:有关线段的基本事实如图,把弯曲的河道改直,能够缩短航程,这样做的根据是( )A.两点之间,直线最短B.两点确定一条线段C.两点确定一条直线D.两点之间,线段最短解析:把弯曲的河道改直缩短航程的根据是:两点之间,线段最短.故选D.方法总结:本题考查了线段的性质,熟记两点之间线段最短是解题的关键.三、板书设计1.线段的比较与性质(1)比较线段:度量法和叠合法.(2)两点之间线段最短.2.线段长度的计算(1)中点:把线段AB分成两条相等线段的点.(2)两点间的距离:两点间线段的长度.【教学反思】本节课通过比较两个人的高矮这一生活中的实例让学生进行思考,从而引出课题,极大地激发了学生的学习兴趣;并通过动手操作,亲身体验用叠合法比较线段的长短.教师要尝试让学生自主学习,优化课堂教学中的反馈与评价.通过评价,激发学生的求知欲,坚定学生学习的自信心.《第2课时线段长短的比较与运算》同步练习能力提升1.如图所示,要在直线PQ上找一点C,使PC=3CQ,则点C应在( )A.P,Q之间B.点P的左边C.点Q的右边D.P,Q之间或在点Q的右边2.如果线段AB=5 cm,BC=3 cm,那么A,C两点间的距离是( )A.8 cmB.2 cmC.4 cmD.不能确定3.C为线段AB的一个三等分点,D为线段AB的中点,若AB的长为6.6 cm,则CD的长为( )A.0.8 cmB.1.1 cmC.3.3 cmD.4.4 cm4.如图所示,C是线段AB的中点,D是CB上一点,下列说法中错误的是( )A.CD=AC-BDB.CD=BCC.CD=AB-BDD.CD=AD-BC5.下面给出的4条线段中,最长的是( )A.dB.cC.bD.a6.已知A,B是数轴上的两点,点A表示的数是-1,且线段AB的长度为6,则点B表示的数是.7.已知线段AB=7 cm,在线段AB所在的直线上画线段BC=1 cm,则线段AC= .8.如图所示,设A,B,C,D为4个居民小区,现要在四边形ABCD内建一个购物中心,试问把购物中心建在何处,才能使4个居民小区到购物中心的距离之和最小?请说明理由.9.如图所示,点C是线段AB上一点,点M是线段AC的中点,点N是线段BC的中点.(1)如果AB=20 cm,AM=6 cm,求NC的长;(2)如果MN=6 cm,求AB的长.10.在桌面上放了一个正方体的盒子,如图所示,一只蚂蚁在顶点A处,它要爬到顶点B处找食物,你能帮助蚂蚁设计一条最短的爬行路线吗?要是食物在顶点C处呢?★11.已知线段AB=12 cm,直线AB上有一点C,且BC=6 cm,M是线段AC的中点,求线段AM的长.创新应用★12.在同一条公路旁,住着5人,他们在同一家公司上班,如图,不妨设这5人的家分别住在点A,B,D,E,F所示的位置,公司在点C处,若AB=4 km,BC=2 km,CD=3 km,DE=3 km,EF=1 km,他们全部乘出租车上班,车费单位报销.出租车收费标准是:起步价6元(3 km以内,包括3 km),超过3 km超出的部分每千米1.5元(不足1 km,以1 km计算),每辆车能容纳3人.(1)若他们分别乘出租车去上班,公司应支付车费多少元?(2)如果你是公司经理,你对他们有没有什么建议?参考答案能力提升1.D 注意本题中的条件是在直线PQ上找一点C,所以C可以在P,Q之间,也可以在点Q的右侧.2.D A,B,C三点位置不确定,可能共线,也可能不共线.3.B如图,AD=AB=3.3cm,AC=AB=2.2cm,所以CD=AD-AC=3.3-2.2=1.1(cm).4.B5.A6.-7或5 点B可能在点A的左侧,也有可能在点A的右侧.若点B在点A的左侧,则点B表示的数比点A表示的数小6,此时点B表示的数为-7;若点B在点A的右侧,则点B表示的数比点A表示的数大6,此时点B表示的数为5.7.8 cm或6 cm 分两种情况:①点C在线段AB内,②点C在线段AB的延长线上.8.解:连接AC,BD,交点P即为购物中心的位置.理由:根据公理“两点之间,线段最短”,要使购物中心到A,B,C,D的距离和最小,购物中心既要在AC上,又要在BD上.9.解:(1)因为M为AC的中点,所以MC=AM.又因为AM=6cm,所以AC=2×6=12(cm).因为AB=20cm,所以BC=AB-AC=20-12=8(cm).又因为N为BC的中点,所以NC=BC=4(cm).(2)因为M为AC的中点,所以MC=AM.因为N为BC的中点,所以CN=BN.所以AB=AC+BC=2(MC+CN)=2MN=2×6=12(cm).10.解:如图所示,是该正方体的侧面展开图.食物在B处时的最短路线为线段AB,食物在C处时的最短路线为线段AC.11.解:(1)当点C在线段AB上时,如图①,图①因为M是AC的中点,所以AM=AC.又因为AC=AB-BC,AB=12cm,BC=6cm,所以AM=(AB-BC)=×(12-6)=3(cm).(2)当点C在线段AB的延长线上时,如图②,图②因为M是AC的中点,所以AM=AC.又因为AC=AB+BC,AB=12cm,BC=6cm,所以AM=AC=(AB+BC)=×(12+6)=9(cm).故AM的长度为3cm或9cm.创新应用12.解:(1)在A处乘车的车费为6+(4+2-3)×1.5=10.5(元);在B处乘车的车费为6元;在D处乘车的车费为6元;在E处乘车的车费为6+(3+3-3)×1.5=10.5(元);在F处乘车的车费为6+(1+3+3-3)×1.5=12(元),合计45元.(2)A,B同乘一辆车,从A开出,D,E,F同乘一辆车,从F开出,合计22.5元.第四章几何图形初步4.2 直线、射线、线段《第1课时直线、射线、线段》导学案【学习目标】:1. 会用尺规画一条线段等于已知线段,会比较两条线段的长短.2. 理解线段等分点的意义.3. 能够运用线段的和、差、倍、分关系求线段的长度.4. 体会文字语言、符号语言和图形语言的相互转化.5. 了解两点间距离的意义,理解“两点之间,线段最短”的线段性质,并学会运用.【重点】:作一条线段等于已知线段,理解线段的和、差,掌握线段中点的概念,理解“两点之间,线段最短”的线段性质.【难点】:利用尺规作图作一条线段等于两条线段的和、差,利用线段的和、差、倍、分求线段的长度,“两点之间,线段最短”的实际运用.【课堂探究】一、要点探究探究点1:线段长短的比较合作探究:问题1 做手工时,在没有刻度尺的条件下,如何从较长的木棍上截下一段,使截下的木棒等于另一根短木棒的长?问题2 画在黑板上的线段是无法移动的,在只有圆规和无刻度的直尺的情况下,如何再画一条与它相等的线段?要点归纳:尺规作图:作一条线段(AB)等于已知线段(a)的作法:1.画射线AC;2.在射线AC上截取AB=a.问题3 若要比较两个同学的身高,有哪些办法?你能从比身高的方法中得到启示来比较两条线段的长短吗?试一试:比较线段AB,CD的长短.(1)度量法:分别测量线段AB、CD的长度,再进行比较:AB=_________;BC=_______,________>_______,所以_______>_______;(2)叠合法:将点A与点C重合,再进行比较:①若点 A 与点 C 重合,点 B 落在C,D之间,那么 AB_____CD.②若点 A 与点 C 重合,点 B 与点 D________,那么 AB = CD.③若点 A 与点 C 重合,点 B 落在 CD 的延长线上,那么 AB_________CD.探究点2:线段的和、差、倍、分画一画:在直线上画出线段AB=a,再在AB的延长线上画线段BC=b,线段AC就是与的和,记作AC= . 如果在AB上画线段BD=b,那么线段AD就是与的差,记作AD= .观察与思考:在一张纸上画一条线段,折叠纸片,使线段的端点重合,折痕与线段的交点处于线段的什么位置?要点归纳:如图,点 M 把线段 AB 分成相等的两条线段AM 与 BM,点 M 叫做线段 AB 的中点.几何语言:∵ M 是线段 AB 的中点∴ AM = MB = AB,或 AB = AM = MB例1 若AB = 6cm,点C是线段AB的中点,点D是线段CB的中点,求:线段AD的长是多少?例2 如图,B、C是线段AD上两点,且AB:BC:CD=3:2:5,E、F分别是AB、CD的中点,且EF=24,求线段AB、BC、CD的长.变式训练:如图,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长方法总结:求线段的长度时,当题目中涉及到线段长度的比例或倍分关系时,通常可以设未知数,运用方程思想求解.例3 A,B,C三点在同一直线上,线段AB=5cm,BC=4cm,那么A,C两点的距离是()A.1cm B.9cm C.1cm或9cm D.以上答案都不对变式训练:已知A,B,C三点共线,线段AB=25cm,BC=16cm,点E,F分别是线段AB,BC的中点,则线段EF的长为()A.21cm或4cm B.20.5cm C.4.5cm D.20.5cm或4.5cm方法总结:无图时求线段的长,应注意分类讨论,一般分以下两种情况:①点在某一线段上;②点在该线段的延长线.针对训练1.如图,点B ,C 在线段AD 上则AB +BC =____;AD -CD =___;BC = ___ -___= ___ - ___.第1题图 第2题图 第3题图2.如图,点C 是线段AB 的中点,若AB =8cm ,则AC = cm.3.如图,下列说法,不能判断点C 是线段AB 的中点的是 ( )A. AC =CBB. AB =2ACC. AC +CB =ABD. CB =21AB 4. 如图,已知线段a ,b ,画一条线段AB ,使AB =2a -b .5.如图,线段AB =4cm ,BC =6cm ,若点D 为线段AB 的中点,点E 为线段BC 的中点,求线段DE 的长.探究点3:有关线段的基本事实议一议:如图:从A 地到B 地有四条道路,除它们外能否再修一条从A 地到B 地的最短路?如果能,请你联系以前所学的知识,在图上画出最短路线.想一想:1.如图,这是A,B两地之间的公路,在公路工程改造计划时,为使A,B 两地行程最短,应如何设计线路?请在图中画出,并说明理由.2. 把原来弯曲的河道改直,A,B两地间的河道长度有什么变化?第1题图第2题图要点归纳:1.两点的所有连线中,_____最短.简称:两点之间,_____最短.2.连接两点间的线段的_______,叫做这两点的距离.针对训练1.如图,AB+BC AC,AC+BC AB,AB+AC BC(填“>”“<”或“=”). 其中蕴含的数学道理是 .2.在一条笔直的公路两侧,分别有A,B两个村庄,如图,现在要在公路l 上建一个汽车站C,使汽车站到A,B两村庄的距离之和最小,请在图中画出汽车站的位置.二、课堂小结1. 基本作图:作一条线段等于已知线段.2. 比较两条线段大小 (长短) 的方法:度量法;叠合法.3. 线段的中点.因为点M 是线段AB 的中点,所以AM =BM =21AB . (反过来说也是成立的) 4. 两点之间的所有连线中,线段最短;两点之间线段的长度 ,叫做这两点之间的距离.【当堂检测】1. 下列说法正确的是 ( )A. 两点间距离的定义是指两点之间的线段B. 两点之间的距离是指两点之间的直线C. 两点之间的距离是指连接两点之间线段的长度D. 两点之间的距离是两点之间的直线的长度2. 如图,AC =DB ,则图中另外两条相等的线段为_____________.第2题图 第3题图3.已知线段AB = 6 cm ,延长AB 到C ,使BC =2AB ,若D 为AB 的中点,则线段DC 的长为_____________.4.点A ,B ,C 在同一条数轴上,其中点A ,B 表示的数分别是-3,1,若BC=5,则AC=_________.5. 如图:AB =4cm ,BC =3cm ,如果点O 是线段AC 的中点.求线段OB 的长度.6.已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6,求CM和AD的长.。
4.2 比较线段的长短

教学课件
第四章 基本平面图形
§4.2 比较线段的长短
学习目标:
1、知道比较线段长短的方法。 2、会比较线段的长短。 3、会用尺规画出线段的和差。 4、知道线段中点的定义,会用 几何符号表示线段的中点。
(1)过一点A可以画几条直线? (2)过两点A、B可以画几条直线? (3)如果你想将一根细木条固定在墙上,至 少需要几个钉子?
线段与 距离
• 思考: ①能否说 “线段就是距离” ? ② 田径赛中的200m跑,是指跑道的起点到终点的
距离是200米吗? 这样理解对吗? 为什么?
答:不能说线段是距离.线段是图形,距离是长度,它是一
个数量,且有长度单位。
田径赛中的200m跑,起点到终点的距离是200
米,是不对的。
因为田径赛中的200米不是起点到终点的线 段的长,而是曲线跑道的长。
∴CN= 1 BC= 1 ×4=2cm.
2
2
随堂练习:
1、下面的线段中那条线段最长?那条线段 F
2、已知:直线l上有A、B、C三点,且线段AB=8cm, 线段BC=5cm,求线段AC的长. (分情况)
解:
(1)如图:
l
A
BC
AC=AB+BC =8+5=13cm
(2)如图:
l
AC B
记作AB<CD
A
B (2)如果点B在线段CD的延
C
D 长线上, 记作AB>CD
A
B (3)如果点B与点D重合,
C
D
记作AB=CD
归纳:比较AB、CD的长短的方法
度量法:用刻度尺去度量它们的长度进行比较,此
种方法可称之为“度量法”。从“数值”的角度 叠比合较法:把它们放在同一条直线上比较,此种方法 可称之为“叠合法”。从“形”的角度比较.
七年级数学上册教学课件《比较线段的长短》

两种情况:①点在某一线段上;②点在该线段的延长线.
巩固练习
变式训练
4.2 比较线段的长短
已知A,B,C三点共线,线段AB=25cm,BC=16cm,点E,
F分别是线段AB,BC的中点,则线段EF的长为( D )
A.21cm或4cm
B.20.5cm
4.2 比较线段的长短
做手工时,在没有刻度尺的条件下,若想从较 长的木棍上截下一段,使截下的木棒等于另一根短 木棒的长,我们常采用以上办法.
探究新知
4.2 比较线段的长短
思考 画在黑板上的线段是无法移动的,在只有圆规和无刻
度的直尺的情况下,请大家想想办法,如何再画一条与它
相等的线段?
小提示:在可打开角度 的最大范围内,圆规可 截取任意长度,相当于 可以移动的“小木棍”.
变式训练
3.如图,线段AB = 4 cm,BC = 6 cm,若点D为线段AB的 中点,点E为线段 BC 的中点,求线段 DE 的长.
A DB
E
C
巩固练习
变式训练
4.2 比较线段的长短
A DB
E
C
解:因为D 是线段AB的中点,
所以
AD
=DB
=
1 2
AB
=
1 2
×4
= 2 (cm).
因为E是线段BC的中点,
画一画
在直线上画出线段 AB=a ,再在 AB 的延长线上画线段 BC=b,线段AC 就是 a 与 b 的和,记作 AC= a+b .
如果在AB上画线段 BD=b,那么线段 AD 就是 a 与 b 的
差,记作AD= a-b .
a+b
4.2 比较线段的长短(七年级数学课件)

商店
学校
新知探究
如图,从A地到B地有四条道路,除它们外能否 再修一条从A地到B地的最短道路?如果能,请你在 图上画出最短路线.
A•
•
B
发现:两点之间的所有连线中,线段最短
新知探究
归纳总结
上述发现可以总结为: 两点之间,线段最短
我们把两点之间线段的长度,叫做这 两点之间的距离.
新知探究
例1 如图所示,直线MN表示一条铁路,铁路两旁各 有一点A和B,表示两个工厂.要在铁路上建一货站, 使它到两厂距离之和最短,这个货站应建在何处?
01 2 3 4 5 6 7 8
新知探究
议一议
下图中哪棵树高?哪支铅笔长?窗框相邻的两条边 哪条边长?你是怎么比较的?与同伴进行交流.
01 2 3 4 5 6 7 8
新知探究 思考:怎样比较两条线段的长短??
a
A
B
b
C
D
(1) 度量法
用刻度尺量出它们的长度,再进行比较.新知探究
例4 如图,B,C两点把线段AD分成2∶3∶4的三 部分,点E是线段AD的中点,EC=2cm,求:
(1)AD的长; (2)AB∶BE.
解:(1)设AB=2x,则BC=3x,CD=4x,
由线段的和差,得AD=AB+BC+CD=9x.
由E为AD的中点,得ED= 1 AD= 9 x.
2
2
由线段的和差得,CE=DE-CD=
课堂小测
3.已知线段 AB=6 cm,延长 AB 到C,使BC=2AB,若 D为AB 的中点,则线段DC 的长为__1_5__c_m__.
ADB
C
4.点A,B,C在同一条数轴上,其中点A,B表示的数分别是 -3,1,若BC=5,则AC=___9_或__1___.
北师大版数学七年级上册4.2《比较线段的长短》说课稿

北师大版数学七年级上册4.2《比较线段的长短》说课稿一. 教材分析《比较线段的长短》是北师大版数学七年级上册第4章《几何图形》中的一个重要内容。
本节内容是在学生已经掌握了线段的性质和特点的基础上进行学习的,目的是让学生了解和掌握线段的大小比较方法,培养学生的空间想象能力和抽象思维能力。
教材通过生活中的实例引入线段的大小比较,使学生感受到数学与生活的紧密联系。
教材采用由浅入深、循序渐进的方式,引导学生通过观察、操作、思考、交流等活动,探索并掌握线段的大小比较方法。
教材还注重培养学生的几何直观能力,使学生在解决实际问题时能够灵活运用。
二. 学情分析七年级的学生已经具备了一定的空间想象能力和抽象思维能力,他们对线段的性质和特点有一定的了解。
但是,学生在解决实际问题时,往往不能灵活运用所学知识。
因此,在教学过程中,我将以学生为主体,关注学生的个体差异,引导他们通过观察、操作、思考、交流等活动,探索并掌握线段的大小比较方法。
三. 说教学目标1.知识与技能目标:使学生了解和掌握线段的大小比较方法,能运用线段的大小比较方法解决实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和抽象思维能力。
3.情感态度与价值观目标:让学生感受数学与生活的紧密联系,增强学生对数学的兴趣和信心。
四. 说教学重难点1.教学重点:线段的大小比较方法。
2.教学难点:如何引导学生探索并掌握线段的大小比较方法。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、引导发现法等。
2.教学手段:多媒体课件、几何画板、实物模型等。
六. 说教学过程1.导入新课:通过生活中的实例引入线段的大小比较,激发学生的学习兴趣。
2.自主学习:学生通过观察、操作、思考,探索线段的大小比较方法。
3.合作交流:学生分组讨论,分享各自的方法,互相学习,共同进步。
4.引导发现:教师引导学生发现线段的大小比较方法,并加以解释和阐述。
4.2比较线段的长短

第四章基本平面图形第二节比较线段的长短课型:新授课教学目标:1.借助于具体情景中了解“两点之间线段最短”的性质;能借助于尺、规等工具比较两条线段的大小;能用圆规作一条线段等于已知线段.(重点)⒉通过思考想象、合作交流、动手操作等数学探究过程,掌握线段中点的概念,了解线段大小比较的方法策略,学习开始使用几何工具操作方法,发展几何图形意识和探究意识.(难点)⒊在解决问题的过程中体验动手操作、合作交流、探究解决的学习过程,激发学生解决问题的积极性和主动性.教学方法:师生互动与生生互动相结合.教具:3根长度不等的小木棒、圆规、直尺、多媒体课件.教学过程:一、情境导入,适时点题情境1:师:如图从A村到B村,有三条路径可选择,你愿意选第几条路径?说出你的理由.A B生:走第二条路.因为这是直路,感觉它最近.师:虽说条条大路通罗马,但我们都希望走条近路.那上图告诉我们什么样的路最近呢?生:直路比较近.师:很好,我们把这一性质称为线段的基本性质:两点之间的所有连线中,线段最短.简单地记为:两点之间,线段最短.(学生快速读一遍,理解其意思.)从而引入两点之间的距离的概念:两点之间线段的(长度),叫做两点之间的距离.因此两点的距离是非负数.设计意图:利用生活中可以感知的的情境,极大地激发学生的学习兴趣,使学生感受生活中所蕴含的数学道理.情境:2:师:大家认识下面的两位名人吗?生:姚明和潘长江.师:那么,我们现在来比较一下他们的身高.学生七嘴八舌,发表见解:姚明更高一些 .师:那要是让潘长江老师站到三楼上,姚明站在地面上呢?生:这样就没有可比性.(学生对这一提问很感兴趣.在此基础上,教师适时提出,如果我们用线段来表示人的身高,又如何比较线段的长短呢?从而引入课题.)设计意图:利用名人,把现实生活中的问题转化为数学中的探索问题,激发学生的学习兴趣,在具体问题中设问,在解答问题中形成认知冲突,激发学生的解决问题的热情.二、问题探究探究1:如何比较线段的长短师:把事先准备的小木棒给学生,让学生通过动手来讨论出方法.生1:我是这样做的,用直尺量出两条木棒的长度,再进行比较.a=8cm, b=6cm ,所以a>b.生2:(边说边演示)我不用量长度就可以比较,木棒的一端对齐,另外一端在外面的就长. 师:很好,我们来总结一下方法.生:用度量的方法比较线段的大小.生:用重合法来比较大小.设计意图:经过师生交流并归纳出比较线段大小的方法,教师再用多媒体演示比较过程,学生动手操作更能加深学生的体会.探究2 利用尺规做一条线段等于已知线段师:我们接着来探索下一个问题,利用圆规完成作图.生:跟着老师一起画图,熟悉作图过程.教师边演示边叙述作图步骤. ①先画一条射线AB②用圆规量出已知线段的长度a .③在射线AB 上点A 以为圆心,截取AC=a .所以线段AC 就是所求的线段.设计意图:让学生自己在动手操作中去真正的感受用尺、规作图,学会使用几何作图语言,并开始有作图痕迹意识,即让别人看清楚你的作图方法知识的应用:已知线段a ,求作:线段c ,使c=2a.目的:让学生进一步熟悉尺规作图的步骤.从而引入线段中点的定义.探究3 线段的中点如图:点M 把线段AB 分成相等的两条线段AM 与BM ,点M 就叫线段AB 的中点.这时 AM=BM = 12AB 或AB =2AM =2BM设计意图:让学生动手操作更能加深学生的体会,并顺利引出线段中点的定义,练习有助于巩固方法.这样的设计能让学生体会方法的获得过程,同时可以巩固对表示方法的掌握.三、典例探究在直线 l 上顺次取三点 A 、B 、C ,且 AB =8 cm ,BC =6 cm ,线段 AC 的中点为 D ,求线段 BD 的长.先让学生读题并画出相应的图形,然后小组讨论给出答案,教师最后给出示范.解:∵D 是 AC 的中点,AB =8 cm ,BC =6 cm ,∴AD=12AC=12(AB+AC) =12(8+6) =7(cm )∴BD=AB-AD=8-7=1(cm)答:BD的长为1cm.四、师生归纳,小结教师请学生说出这节课自己的收获.学生在教师的引导下畅言所学所获所感.两点之间、 最短.两点之间的距离是指 .比较两天线段的大小的方法有 和 ,它们各自用的工具和具体做法是 .用尺、规画一条线段等于已知线段的步骤是 .设计意图:师生交流、归纳小结的目的是让学生学习表述自己的收获,培养及时归纳知识的习惯和提炼归纳的能力.五、小试牛刀、 自我检测1.如图:这是A 、B 两地之间的公路,在公路工程改造计划时,为使A 、B 两地行程最短,应如何设计线路?在图中画出.你的理由是_______________________________. 2.如果线段 AB =5 cm ,点 C 在直线 AB 上,且 BC =4 cm ,那么 A 、C 两点间距离是( )A .1 cmB .9 cmC .1 cm 或 9 cmD .以上答案都不对3.如图,下列说法 ,不能判断点C 是线段AB 的中点的是( )A. AC=CBB. AB =2ACC. AC+CB =ABD. CB =12AB 4.如图 AB =6cm ,点C 是AB 的中点,点D 是CB 的中点,则AD =____cm.设计意图:进一步巩固所学知识.六、拓展延伸已知:如图所示,B、C两点把线段AD分成2∶4∶3三部分,M是AD的中点,CD=6,求线段MC的长.板书设计:4.2 比较线段的长短一线段的性质:两点之间,线段最短. 三比较线段的长短:1.度量法,2重叠法二两点之间的距离:连接两点的线段的长度. 四线段的中点教学反思:本节课学生能正确理解两点之间的距离和线段的中点的概念;能用直尺和圆规作一条线段等于已知线段;能用直尺、圆规等工具比较两条线段的长短.在理解两点之间的距离的过程中,我用比较具体的事物事实等为依据来让学生直观的认识,学生接受起来就比较容易、轻松.让学生截取不同的长度,这样学生会很乐意动手操作,不知不觉中学生就学会了用直尺去作线段了.在比较线段长短时,一头重合,让学生动手去实际比较一下他们手中的木棒的长短,在让学生总结如何去比较线段的长度,这样学生就可以得到自己的东西.不足之处:在设计试题的时候没能具体研究试题的难度,造成试题的难度稍大,给学生信心造成了影响.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、M是线段AB上的一点,其中不
能判定点M是线段AB中点的是
( A) A、AM+BM=AB
B、AM=BM
C、AB=2BM
D、AM=BM=
1 2
AB
4、 ①线段AB=6厘米,点C在线段
AB上,且BC=3厘米,则线段AC的长
为( A )
A、3厘米
B、9厘米
C、3厘米或9厘米 D、无法确定
②线段AB=6厘米,点C在直线AB上,
问题8:现在有一条线段AB ,你能不能 在线段AB上找出一点M使线段AM等 于线段BM呢? 点M把线段AB分成相等的两条线段 AM和BM,猜一猜,点M叫做
_________________ 则你能得到哪些关系式?
两种方法比较线段AM, BM的大小?
结论: AM=BM
线段的中点: 如果线段上的一个点把这条线段分成
当CE < CD时, AB< CD
A
B
C
E
D
●
(A) C
●
D (B) 所以,AB=CD
●
C (A)
●
DB 所以,AB>CD
问题5:现在有一条线段(有多 长你自己定)你能不能用圆规 和直尺画一条线段等于它呢?
例题学习
例:已知线段a,用直尺与圆规画一条
线段等于已知线段a.
画法:
a
(1)任意画一条射线AC
两条相等的线段,那么这个点就叫做这条 线段的中点.
这(时或AAMB==2ABMM==2B12MA)B.
判断:
l 若AM=BM,则M为线段AB的中点。
M
A
B
线段中点的条件:
1、在已知线段上。
2、把已知线段分成两条相等线段的点
归纳总结
线段的长短比较
度量法
先分别量出各线段的 长度,再比较长短.
将线段重叠在一起,
北师大数学七年级上册
第四章 基本平面图形
§ 4.2比较线段的长短
学习目标
1.掌握线段比较大小的方法. 2.正确用圆规、直尺作一条线段等 于已知线段. 3. 通过实例体验两点之间线段最 短的性质,理解两点之间的距离 的概念.
自我学习
情景1:教师不小心把课本掉在教室门 口,请个同学帮我捡一下,并解释你 为什么选择这条路线? 情景2:书P110,如图从A地到C地,有 四条路径可选择你愿意选第几条路径? 说出你的理由。 情景3:书P110,要比较两条线段长短, 你有几种方法?
且BC=3厘米,则线段AC的长为( )
A、C 3厘米
B、9厘米
C、3厘米或9厘米 D、无法确定
3、两点之间的所有连线中,线 段 最短 , 两点之间线段的长度 , 叫做这两点之间的距离.
4、 如图,点M把线段AB分成相等 的两条线段AM和BM,则点M叫 做线段AB的 中点 ,这时AM= ___B_M____12___AB。
问题4:我们可不可以把一个人的身 高看作一条线段呢?那么又怎样来 比较两条线段的长短呢?
生活中的长短的比较
怎样比较两个同学的高矮?
叠合法
度量法
用“重合法”比较两根筷子的长 短
②②
③③ ①
①
①
已知两线段AB与CD。怎样用重合法比 较线段AB与CD的长短?
① 用圆规量出已知线段AB的长度; ② 在射线CD上, 以C为圆心, 截取CE = AB .
如答图所示, 连接AC, BD, 它们的交点是H, 点H就是 修建水池的位置, 这一点 到A, B, C, D四点的距离 之和最小.
3、 A、B、C三点在同一条直线上, 且线段AB=4, AC=6, 则线段BC的 长度为__2_或__1_0____.
4、如图是一个四边形,在各边上任取一点, 并顺次连接它们,想一想你得到的图形周长 与原四边形周长哪一个大?为什么?
___7___cm. (2)如果M是AB的中点,那么MD= ____2__cm.
达标检测
1、A、B两点间的距离是指( D )
A.过A、B两点间的直线; B.连结A、B两点间的线段; C.直线AB的长; D.连结A、B两点间的线段长度
2、下列四个语句中正确的是( C )
A.如果AP=BP,那么点P是AB的中点 B.两点间的距离就是两点间的线段 C.两点之间,线段最短 D.比较线段的长短只能用度量法
温故知新
问题1: ①直线的特点、表示方法? ②线段的特点、表示方法? ③射线的特点、表示方法?
学习新课
问题2:小明到小英家有三条路可走, 如图,你认为走那条路最近?
小明
小英
1、线段公理:两点之间的所有连线中, 线段最短。
2、两点之间线段的长度, 叫做这两 点之间的距离。
问题3:你想知道你和你对桌谁高吗? 你想知道你的数学书有多长吗?你 会用什么方法呢?
重叠法 使一个端点重合,再 进行比较.
你来试试
1.如图所示,C、D在直线AB上,则下 列关系错误的是( C ) A、AB-AC=BD+CD B、AB-CB=AD-CD C、AC+CD=AB-CB D、AD-AC=BC-BD
· · ··
AC
DB
3.已知直线l上顺次三个点A、B、 C,已知AB=10cm, BC=4cm。 (1)如果D是AC的中点,那么AD=
拓展提升
1、线段AB=6cm,延长线段 AB到C,使BC=3厘米,则AC 是BC的 3 倍。
2、如图,平面上有A、B、C、D 4个 村庄,为解决当地缺水问题,政府准 备修建一个蓄水池,不考虑其他因素, 请你画出确定蓄水池P的位置,使它 与4个村庄的距离之和最小。
D A
B
C
2、如图,平面上有A、B、C、D 4个村庄, 为解决当地缺水问题,政府准备修建一个 蓄水池,不考虑其他因素,请你画出确定 蓄水池P的位置,使它与4个村庄的距离之 和最小。
(2)用圆规量取已知线段a的长度
(3)在射线AC上截取AB=a 线段AB就是所求的线段
你பைடு நூலகம்试试
问题6:你能作出已知线段的两 倍长的线段吗?试一试。
问题7:你会设计吗? 如图:这是A、B两地之间的公路, 在公路工程改造计划时,为使A、B 两地行程最短,应如何设计线路?在
图中画出。你的理由是
_______________________
如果是一个五边形呢?六边形呢?
AB+AC>BC
C A B