抛物线1PPT课件

合集下载

抛物线的性质ppt课件

抛物线的性质ppt课件

x
p
2
P1
l
p
p
端点为
(
, p )
特别地, 当x1 x2 时, AB 2 p, 此时 AB 为抛物线的通径.
2
2
y
y
设P ( x0 , y0 ),
l
P
P1
F
P
O
l
则由抛物线的定义,
|PF| | P1 P | x0
p
2
设P ( x0 , y0 ),
P1
x
O
则由抛物线的定义,
p
y k ( x 1)
联立 2
得k 2 x 2 (2k 2 4) x k 2 0(k 0).
y 4x
4
4
x1 x2 2 2 . PQ PF QF x1 x2 2 4 2 8.

k
k 2 1. k tan [1,0) (0,1].
(1)若直线l的倾斜角为60, 求 AB 的值.
(2)若 AB 9, 求线段AB的中点M到准线的距离.
3
3
解 : (1) F ( ,0), l : y 3 ( x )
2
2
3

9
y 3( x ) 2
联立
2 得x 5 x 0. 设A( x1 , y1 ), B( x2 , y2 ).
F
B
p
AF AA' p AF cos AF (1 cos ) p AF
1 cos
p
BF p BF cos BF
1 cos
上-下+
为直线的倾斜角.

抛物线的简单几何性质ppt课件

抛物线的简单几何性质ppt课件

所以开口向左,焦点坐标为
1 2
,
0
,准线为
x
1 2
,对称轴为
x
轴,
即 D 正确,ABC 错误.
2.若抛物线 y2 4x 过焦点的弦被焦点分成长为 m 和 n 两部分,则 m 与 n 的关系式
为( C )
A. m n 4
B. mn 4
C. 1 1 1 mn
D. 1 1 2 mn
解析:令过焦点的弦为 x ky 1,与抛物线交点分别为 A、B,
下面介绍另一种方法——数形结合的方法
在图中,设 A x1, y1 , B x2, y2 .由抛物线的定义可知, AF 等于点 A 到准线的
距离 AA' .由 p
2, p 2
1 ,得 AA'
x1
BF
BB '
x2
p 2
x2 1 ,于是得 AB
p 2
x1
AF
1 .于是 AF x1 1 ,同理, BF =x1+x2 +p x1+x2 +2 .
4.已知抛物线 y2 8x 上一点 P 到准线的距离为 d1 ,到直线l : 4x 3y 12 0 的距离
D 为 d2 ,则 d1 d2 的最小值为( )
A.1
B.2
C.3
D.4
解析:由抛物线 y2 8x 知,焦点 F 2,0 ,准线方程为l : x 2 ,根据题意作图如下;
点 P 到直线 l : 4x 3y 12 0 的距离为 PA ,到准线l1 : x 2 的距离为 PB , 由抛物线的定义知: PB PF , 所以点 P 到直线 l : 4x 3y 12 0 和准线l1 : x 2 的距离之和为 PF PA ,

4.3.1抛物线的标准方程 课件(共14张PPT)

4.3.1抛物线的标准方程 课件(共14张PPT)

程为 x 3 .
2
2
活动 3 巩固练习,提升素养
例1 (2)已知抛物线的焦点坐标是 F(0,-2),求它 的标准方程.
解(2)因它的标准方程为为焦点在 y 轴的负半轴上, 并且 p 2,p 4 ,所以所求方程是
2
x2 8 y
课堂小结
y2 2 px p>0或y2 2 px p>0 x2 2 py p>0或x2 2 py p>0
试一试 第一步:在画板上画一条直线 l,使 l 与画板左侧的边
线平行; 第二步:再在直线 l 外画一个定点 F.取一个丁字尺靠
紧画板左侧外沿,丁字尺和直线垂直且相交于点 P,在丁 字尺的另一端取一点 Q, 将一条长度等于 PQ 的细绳,一 端固定在点 Q ,另一端固定在点 F;
调动思维,探究新知 在活初动中2,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
F p ,0 ,准线为 x p .
2
2
调动思维,探究新知 在活初动中2,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
设 M(x,y) 是抛物线上一点,则 M 到 F 的距离为
MF
x
p 2
2
y2
,M
到直线
l
的距离为
x
p 2
,所以
x p 2 y2 x p .
2
2
将上式两边平方,并化简得
y2 2 px p>0.
调动思维,探究新知 在活初动中2,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
抛物线的标准方程还有其他几种形 :y2 2 px, x2 2 py x2 2 py ,它们的焦点、准线方程以及图形如表中所示:

3.3.1抛物线及其标准方程(PPT)课件(人教版)

3.3.1抛物线及其标准方程(PPT)课件(人教版)

1.抛物线 y=41x2 的准线方程是(
)
A.y=-1 B.y=-2
C.x=-1 D.x=-2
A 解析:因为 y=41x2⇔x2=4y,所以抛物线的准线方程是 y=
-1.
2.顶点在原点,焦点是 F(0,3)的抛物线标准方程是( ) A.y2=12x B.x2=12y C.y2=112x D.x2=112y
解: (1)由于点 M(-6,6)在第二象限, 所以过点 M 的抛物线开口向左或开口向上. 若抛物线开口向左,焦点在 x 轴上,设其方程为 y2=-2px(p>0). 将点 M(-6,6)代入,可得 36=-2p×(-6),所以 p=3. 所以抛物线的方程为 y2=-6x.
若抛物线开口向上,焦点在 y 轴上,设其方程为 x2=2py(p>0). 将点 M(-6,6)代入,可得 36=2p×6,所以 p=3, 所以抛物线的方程为 x2=6y. 综上所述,抛物线的标准方程为 y2=-6x 或 x2=6y.
3.已知动点 P(x,y)满足 (x-1)2+(y-2)2=|3x+45y-10|, 则点 P 的轨迹是( )
A.直线 B.圆 C.椭圆 D.抛物线 D 解析:由题意知,动点 P 到定点(1,2)和定直线 3x+4y-10 =0 的距离相等,又点(1,2)不在直线 3x+4y-10=0 上,所以点 P 的轨迹是抛物线.
1.已知抛物线 y2=4x 的焦点是 F,点 P 是抛物线上的动点, 又有点 A(3,4),则|PA|+|PF|的最小值为________.
2 5 解析:由题意可知点 A(3,4)在抛物线的外部. 因为|PA|+|PF|的最小值即为 A,F 两点间的距离,F(1,0), 所以|PA|+|PF|≥|AF|= 42+22=2 5, 即|PA|+|PF|的最小值为 2 5.

抛物线的定义及标准方程PPT课件-2024鲜版

抛物线的定义及标准方程PPT课件-2024鲜版
性质
抛物线具有对称性,其对称轴是 过焦点且垂直于准线的直线;抛 物线上任一点到焦点的距离等于 到准线的距离。
4
抛物线的焦点和准线
焦点
抛物线上所有点到焦点的距离相等的 点,用F表示。
准线
焦点和准线的位置关系
对于开口向上的抛物线,焦点在准线 的上方;对于开口向下的抛物线,焦 点在准线的下方。
抛物线上所有点到准线的距离相等的 直线,用l表示。
18
05
抛物线与相关曲线的联系与区别
2024/3/28
19
与直线的交点问题
抛物线与直线交点的 求解方法
交点在抛物线对称轴 上的特殊情况
2024/3/28
交点个数的判断及位 置关系
20
与圆的切线问题
抛物线与圆的切线求解方法
切线个数的判断及位置关系
切点在抛物线顶点处的特殊情况
2024/3/28
21
无限延伸
抛物线在两端无限延伸,且越来越 接近其对称轴。
12
抛物线的顶点、焦点和准线的性质
顶点
抛物线的顶点是抛物线上距离对 称轴最近的点,也是抛物线的最
高点或最低点。
焦点
抛物线的焦点位于对称轴上,且 距离顶点的距离等于焦距。所有 从焦点出发的光线经过抛物线反
射后平行于对称 轴且距离顶点等于焦距的直线。 所有从焦点出发的光线经过抛物
线反射后,都会与准线相交。
2024/3/28
13
抛物线的对称性和平移性质
对称性
抛物线关于其对称轴对称,即如果点P(x,y)在抛物线上,那么点P'(-x,y)也在抛物线上。
平移性质
抛物线可以通过平移变换得到新的抛物线。如果抛物线沿x轴平移a个单位,沿y轴平移b个单位,那么新的抛物线 的方程可以通过在原方程中替换x为x-a,y为y-b得到。这种平移变换不会改变抛物线的形状和开口方向,只会改 变其位置和顶点坐标。

第七节 抛物线 课件(共48张PPT)

第七节 抛物线 课件(共48张PPT)

(4)|A1F|+|B1F|=2p. (5)以弦AB为直径的圆与准线相切.
题组一 小题自测 1.(人A选修2-1·习题改编)过点P(-2,3)的抛物线 的标准方程是( ) A.y2=-92x或x2=43y B.y2=92x或x2=43y C.y2=92x或x2=-43y D.y2=-92x或x2=-43y
考点2 抛物线的标准方程与几何性质
角度 求抛物线方程
[例2] (1)抛物线y2=2px(p>0)的焦点为F,O为坐标
原点,M为抛物线上一点,且|MF|=4|OF|,△MFO的面
积为4 3,则抛物线的方程为( )
A.y2=6x
B.y2=8x
C.y2=16x
D.y2=152π
(2)设抛物线C:y2=2px(p>0)的焦点为F,点M在C 上,|MF|=5.若以MF为直径的圆过点(0,2),则C的方 程为( )
1.(2020·全国卷Ⅰ)已知A为抛物线C:y2=2px(p>0)
上一点,点A到C的焦点的距离为12,到y轴的距离为9,
则p=( )
A.2
B.3
C.6 D.9
解析:法一 因为点A到y轴的距离为9,所以可设
点A(9,yA),
所以y2A=18p.又点A到焦点p2,0的距离为12,
所以 9-p22+y2A=12,所以9-p22+18p=122,
A.y2=4x或y2=8x B.y2=2x或y2=8x C.y2=4x或y2=16x D.y2=2x或y2=16x 解析:(1)设M(x,y),因为|OF|=p2,|MF|=4|OF|, 所以|MF|=2p, 由抛物线定义知x+p2=2p,所以x=32p, 所以y=± 3p.
又△MFO的面积为4 3,

抛物线的定义课件

抛物线的定义课件

工程技术中的应用
抛物线型弹道
在军事和民用领域,抛物线型弹 道是一种常见的弹道形式。通过 计算和调整弹丸的初速度和发射 角度,可以实现精确打击和有效
射程。
抛物ห้องสมุดไป่ตู้型天线
在通信和广播领域,抛物线型天 线是一种常见的天线形式。它具 有定向性好、增益高等优点,被 广泛应用于卫星通信、微波通信
等领域。
抛物线型喷嘴
对称性表现
抛物线关于其对称轴对称,即对于任意一点P(x,y)在抛物线上,其关于对称轴的 对称点P'也在抛物线上。
顶点位置
1 2
顶点坐标
对于一般的抛物线y=ax^2+bx+c,其顶点坐标 为(-b/2a, (4ac-b^2)/4a)。对于标准形式的抛物 线y=ax^2(a≠0),其顶点为原点(0,0)。
02
抛物线图像特点
开口方向与宽度
开口方向
抛物线开口方向由二次项系数a决定。当a>0时,抛物线开口向上;当a<0时, 抛物线开口向下。
宽度
抛物线的宽度与二次项系数的绝对值|a|有关。|a|越大,抛物线越窄;|a|越小, 抛物线越宽。
对称性
对称轴
对于一般的抛物线y=ax^2+bx+c,其对称轴为x=-b/2a。对于标准形式的抛物 线y=ax^2(a≠0),其对称轴为y轴。
根据题目条件,设定一个 包含待定系数的抛物线方 程。
代入已知条件
将题目中给出的已知条件 代入设定的抛物线方程, 解出待定系数。
求解问题
利用解出的待定系数,进 一步求解与抛物线相关的 问题。
数形结合法
绘制图形
根据题目条件,绘制出抛 物线的图形,标注出关键 点和线。

高中抛物线通用课件

高中抛物线通用课件

02 抛物线的焦点和准线是相互垂直的,且距离为 $|p|$。
抛物线的开口方向与大小
抛物线的开口方向由焦点的位置 决定,焦点在 $x$ 轴正半轴上 时,开口向右;焦点在 $x$ 轴
负半轴上时,开口向左。
抛物线的开口大小由焦距 $p$ 的绝对值决定,$|p|$ 值越大, 开口越大;$|p|$ 值越小,开口
04
抛物线的作图与计算
抛物线的作图方法
直接作图法
通过抛物线的定义,利用 直尺、圆规等工具直接画 出抛物线。
参数法
引入参数方程,通过参数 的变化来绘制抛物线。
坐标法
利用抛物线的标准方程, 通过坐标变换和函数图像 绘制抛物线。
抛物线的计算方法
标准方程法
利用抛物线的标准方程, 求出焦点、准线等几何量 。
越小。
当 $p = 0$ 时,抛物线退化为 一条直线,即 $y = 0$。
03
抛物线的应用
抛物线在几何图形中的应用
抛物线与椭圆、双曲线的比较
通过比较抛物线与椭圆、双曲线的定义和性质,理解抛 物线的几何特性。
抛物线与直线的位置关系
研究抛物线与直线相交、平行和垂直的条件,以及这些 条件下的几何意义。
抛物线在实际问题中的应用
01
抛物线与物理学
理解抛物线在物理学中的应用,如斜抛运动、光 线的反射和折射等。
02
抛物线与经济学的关系
探讨抛物线在经济学中的运用,如需求曲线、成 本曲线等。
抛物线与其他数学知识的综合应用
抛物线与三角函数
结合三角函数的知识,研究抛物线的周期性和对 称性。
抛物线与导数
利用导数研究抛物线的极值点和切线斜率,解决 实际问题中的最优化问题。
当 $p > 0$ 时,抛物线开口向右;当 $p < 0$ 时 02 ,抛物线开口向左。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
23
作业
P73 A组 :1,2(必做)
补充:求经过点p(4,-2)的抛物线 的标准方程。
2020/6/10
.
24
P66思考:
二次函数 yax2(a0) 的图像为什么
是抛物线?
yax2(a0)x21y 1 2 p aa
当a>0时与当a<0时,结论都为:
焦 点 ( 0, 1)准 线 y=-1
·
p 2
,0
x
·F
(xp)2y2 xp
2
2
化简得 y2 = 2px(p>0)
2020/6/10
.
11
方程的推导 (设|KF| = p)
y
y
y
H
M
H
M
H
M
Ko F
x K oF
x Ko F
x
L
(1)
L
(2)
L
(3)
y
2=
2p(x-
P 2
)
y
2=
2p(x+
P 2
)
y 2= 2px
2020/6/10
.
O
x
(2)当焦点在x轴的负半轴上时,
把A(-3,2)代入y2 = -2px,
2
得p=
∴抛物线的3标准方程为x2
=
9
2
2020/6/10
.
4
y或y2 = x 。
3 22
小结
1、理解抛物线的定义,四种标准方程类型.
2、会求不同类型抛物线的焦点坐标、准 线方程 3、会求抛物线标准方程
2020/6/10
一、四种形式标准方程的共同特征
y2 2px y2 2px x2 2py x2 2py
p0 p0 p0 p0
1、二次项系数都化成了___1____
2、四种形式的方程一次项的系数都含2p
3、四种抛物线都过__O__点 ,且焦点与准
2020线/6/10 分别位于此点的两. 侧
15
寻找:区别与联系
二、四种形式标准方程的区别
.
13
3.四种抛物线的标准方程对比
图形 标准方程 焦点坐标 准线方程
y2 2px
p0
p 2
, 0
x p 2
y2 2px
p0
p ,0 2
x p 2
x2 2py 0 , p
p0 2
y p 2
2020/6/10
x2 2py 0 , p
p0 2 .
p y
2 14
寻找:区别与联系
4a
4a
2020/6/10
.
25
2020/6/10
y y=ax2
y=ax2+c y=ax2+bx+c
o
x
.
26
例3:一种卫星接收天线的轴截面如下图所示。卫星波 束呈近似平行状态射入轴截面为抛物线的接收天线, 经反射聚集到焦点处。已知接收天线的径口(直径) 为4.8m,深度为0.5m。建立适当的坐标系,求抛物线 的标准方程和焦点坐标。
y2 2px y2 2px x2 2py x2 2py
p0 p0 p0 p0
1、一次项(X或Y)定焦点
2、一次项系数符号定开口方向.
正号朝正向,负号朝负向。
2020/6/10
.
16
例1 已知抛物线的标准方程是y2 = 6x,
求它的焦点坐标和准线方程;
解: ∵2P=6,∴P=3
3 所以抛物线的焦点坐标是( 2
解题感悟:
求抛物线标准方程的步骤:
(1)确定抛物线的形式. (2)求p值 (3)写抛物线方程
注意:焦点或开口方向不定,则要注意分类讨论
结束
2020/6/10
.
21
巩固提高:
求过点A(-3,2)的抛物线的标准方程。
解:(1)当抛物线的焦点在y轴 的正半轴上时,把A(-3,2)
.y A
代入x2 =2py,得p= 9 4
y
A
o
.F x
B
2020/6/10
.
27
练习2
根据下列条件写出各自的抛物线的标准方程
(1)焦点是 F(3,0)
y 2 = 12x
(2)焦点到准线的距离为2 y 2 = 4x , y 2 =- 4x , x 2 = 4y , x 2 = -4y
2020/6/10
.
28
挑战教材:
想一想?定义中当直线l经过定点F,则点M
准线的距离故p>0
么位置?
M
H
· K
·F
N
l
2020/6/10
.
9
建轴
y yM H
·· OK
y
NO
OF
l K
x
F
2020/6/10
.
N10
1.标准方程的推导: y
设︱KF︱= p
l
则F(
p 2
,0),l:x = -
p 2
设动点M的坐标为(x,y),
x
H p 2
由|MF|=|MH|可知,
Ko
M(x,y)
是一次项系数的 ,0)
1 4
准线方程是x= 3
是一0/6/10
.
17
练习1
求下列抛物线的焦点坐标和准线方程
(1)y 2 = -20 x 焦点F ( -5 , 0 ) 准线:x =5
(2) y = 6 x 2
焦点F ( 0
,
1 24
)
准线:y
=

1 24
2020/6/10
12
2.抛物线的标准方程
把方程 y2 = 2px(p>0) 叫做抛物线的标准方程
ly
. O
x
K
F
其中
焦点
F(
p 2
,0),准线方程l:x = -
p 2
而p 的几何意义是: 焦点到准线的距离
一条抛物线,由于它在坐标平面内的 焦点位置不同,方程也不同,所以抛 物线的标准方程还有其它形式.
2020/6/10
2、抛物线上任一点的性质:|MF|=|MH|
2020/6/10
.
6
二、抛物线的标准方程
求曲线方 程的基本 步骤是怎
样的?
2020/6/10
1、建系、设点
2、动M(x,y)点所满足的条件
3、写出x,y所满足的关系式
4、化 简
.
7
准备工作:参数p的引入 实验二
2020/6/10
.
8
设 |KF| = p ,它表示焦交点点到N想位一于想KF的什
l
l M
M
·F

是双曲线
l M
H
.
0<e 2020/6/10 <1
e>1
.
e=1?实验F5 一
一、抛物线定义
平面内与一个定点F和一条定直线l(l不 经过点F)的距离相等的点的轨迹叫做抛物线
其中 定点F叫做抛物线的焦点
定直线 l 叫做抛物线的准线
l
M
H· ·F
定义告诉我们:
1、判断抛物线的一种方法
抛物线及其标准方程 欢迎指导
抛物线的生活实例 投篮运动
2020/6/10
.
2
赵州桥 2020/6/10
.
3
喷泉
2020/6/10
.
4
复习提问:
若动点M满足到一个定点F的距离和它到一条定直线l 的距离的比是常数e.(直线 l 不经过点F)
(1)当0<e <1时,点M的轨迹是什么? 是椭圆
(2)当e>1时,点M的轨迹是什么?
.
18
例2 已知抛物线的焦点坐标是F(0,-2)
求它的标准方程。
解: 因为焦点在y的负半轴上,所以设所
求的标准方程为x2= -2py
由题意得 P 2
2
,即p=4
∴所求的标准方程为x2= -8y
2020/6/10
.
19
变式
已知抛物线的准线方程是x 的标准方程。
=-
1 4
,求它
2020/6/10
.
20
相关文档
最新文档