辅助角公式63361

合集下载

三角辅助角公式

三角辅助角公式

三角辅助角公式
asinx+bcosx=√(a+b)sin[x+arctan(b/a)](a>0)。

1.辅助角公式是一种高等三角函数公式,其主要作用是将多个三角函数的和化成单个函数,以此来求解有关最值问题。

该公式已被写入中学课本,表达式为asinx+bcosx=√(a+b)sin[x+arctan(b/a)](a>0)。

在使用该公式时,无论用正弦还是余弦来表示asinx+bcosx,分母的位置永远是用来表示函数名称的系数。

2.三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。

三角函数将直角三角形的内角和它的两个边的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。

辅助角公式是什么要注意哪些地方

辅助角公式是什么要注意哪些地方

辅助角公式是什么要注意哪些地方
辅助角公式属于高等三角函数公式中的一个,在考试中使用的频率也是很高。

下面是由编辑为大家整理的“辅助角公式是什么要注意哪些地方”,仅供参考,欢迎大家阅读本文。

辅助角公式是什么
辅助角公式是一种高等三角函数公式,使用代数式表达为asinx+bcosx=√(a²+b²)sin[x+arctan(b/a)](a>0)。

辅助角公式的具体内容
该公式的主要作用是将多个三角函数的和化成单个函数,以此来求解有关最值问题。

拓展阅读:辅助角公式的记忆方法
很多人在利用辅助角公式时,经常忘记反正切到底是b/a还是a/b,导致做题出错。

其实有一个很方便的记忆技巧,就是不管用正弦还是余弦来表示asinx+bcosx,分母的位置永远是你用来表示函数名称的系数。

例如用正弦来表示asinx+bcosx,则反正切就是b/a(即正弦的系数a在分母)。

如果用余弦来表示,那反正切就要变成a/b(余弦的系数b在分母)。

函数辅助角公式

函数辅助角公式

函数辅助角公式好的,以下是为您生成的文章:函数中的辅助角公式,那可是解决很多数学难题的一把“神奇钥匙”!咱先来说说这辅助角公式到底是啥。

辅助角公式是 asinx + bcosx =√(a² + b²)sin(x + φ) ,其中φ 由tanφ = b/a 确定。

听起来有点复杂是不?别担心,咱们通过一些实际的例子就能搞明白。

就拿我之前教过的一个学生小明来说吧。

有一次课堂上,我给他们出了一道题:已知函数f(x) = 2sinx + 2√3cosx ,求其最大值。

小明一开始那是抓耳挠腮,完全没头绪。

我就引导他,咱们不是学了辅助角公式嘛,你试试看。

他试着把 a = 2 ,b = 2√3 代入辅助角公式,先算出√(2² + (2√3)²) = 4 ,然后再算tanφ = 2√3 / 2 = √3 ,得出φ = π/3 。

于是f(x) = 4sin(x + π/3) ,最大值就是 4 。

当他算出答案的那一刻,脸上那惊喜的表情,我到现在都还记得。

这辅助角公式在解决三角函数的化简、求值、求最值等问题时,那可真是大显身手。

比如说,对于形如 y = asinx + bcosx 的函数,通过辅助角公式就能将其化为一个单一的三角函数,从而方便我们研究它的性质。

再比如,在物理中,振动、波动的问题也经常会用到辅助角公式。

就像简谐运动的位移-时间方程,很多时候都需要用辅助角公式来进行化简和分析。

那怎么才能熟练掌握辅助角公式呢?多做题那是必不可少的。

但也不是盲目地做,得先理解透彻公式的原理和推导过程。

比如说,你得明白为啥要提出√(a² + b²) 这个系数,为啥φ 要用tanφ = b/a 来确定。

还有啊,平时得多观察式子的特点,一看到 asinx + bcosx 这种形式,就得马上想到辅助角公式。

就像条件反射一样,形成这种思维习惯。

总之,辅助角公式虽然看起来有点复杂,但只要用心去学,多练习,它就能成为我们解决数学和物理问题的得力助手。

精品辅助角公式及应用

精品辅助角公式及应用
不足之处与改进方向
在学习过程中,我发现自己在某些方面还存在不足,如对某些复杂问题的理解不够深入、解题速度不够 快等。为了改进这些不足,我将继续加强学习,多做练习题,提高自己的解题能力和思维水平。
对未来学习的建议
01
深入学习相关数学知识
为了更好地理解和应用辅助角公式,建议同学们深入学习相关的数学知
识,如三角函数的基本性质、三角恒等式等。
辅助角公式推导过程
推导思路
通过三角函数的基本性质和变换公式,逐步推导出辅助角公 式。
具体步骤
首先,根据三角函数的基本性质,将原函数表达式进行化简 ;然后,通过引入辅助角,将化简后的表达式进一步转化为 简单的三角函数形式;最后,根据已知条件求解辅助角,从 而得到原函数的解。
02
辅助角公式在三角函数中的应用
03
辅助角公式在解三角形中的应用
利用辅助角求三角形内角
辅助角公式
通过引入辅助角,将三角形的内 角和公式转化为与辅助角相关的 表达式,从而求解三角形内角。
应用场景
在已知三角形两边及夹角或已知三 角形三边长度的情况下,可以利用 辅助角公式求解三角形的内角。
求解步骤
首先根据已知条件选择合适的辅助 角,然后利用三角函数性质及三角 形内角和定理,构建方程并求解。
THANKS
感谢观看
求解三角函数值
已知三角函数值求角度
利用辅助角公式,可以将复杂的三角 函数表达式转化为简单的形式,从而 方便求解对应角度。
已知角度求三角函数值
通过辅助角公式,可以将角度转化为 与特殊角相关的表达式,进而求出对 应的三角函数值。
判断三角函数单调性
判断单调增区间
利用辅助角公式,可以确定三角函数在哪些区间内是单调增加的,从而方便进行 相关的数学分析和计算。

辅助角公式

辅助角公式

辅助角公式Revised on November 25, 2020推导对于f(x)=asinx+bcosx(a>0)型函数,我们可以如此变形,设点(a,b)为某一角φ(-π/2<φ<π/2)终边上的点,则,因此就是所求辅助角公式。

又因为,且-π/2<φ<π/2,所以,于是上述公式还可以写成该公式也可以用余弦来表示(针对b>0的情况),设点(b,a)为某一角θ(-π/2<θ<π/2)终边上的点,则,因此同理,,上式化成若正弦和余弦的系数都是负数,不妨写成f(x)=-asinx-bcosx,则再根据得记忆很多人在利用辅助角公式时,经常忘记反正切到底是b/a还是a/b,导致做题出错。

其实有一个很方便的记忆技巧,就是不管用正弦还是余弦来表示asinx+bcosx,的位置永远是你用来表示函数名称的系数。

例如用正弦来表示asinx+bcosx,则反正切就是b/a(即正弦的系数a在分母)。

如果用余弦来表示,那反正切就要变成a/b(余弦的系数b在分母)。

疑问为什么在推导辅助角公式的时候要令辅助角的取值范围为(-π/2,π/2)其实是在分类讨论a>0或b>0的时候,已经把辅助角的终边限定在一、四象限内了,此时辅助角的范围是(2kπ-π/2,2kπ+π/2)(k是整数)。

而根据三角函数的周期性可知加上2kπ后函数值不变,况且在(-π/2,π/2)内辅助角可以利用反正切表示,使得公式更加简洁明了。

提出者,原名李心兰,字竟芳,号秋纫,别号壬叔。

出身于读书世家,其先祖可上溯至南宋末年汴梁(今)人李伯翼。

生于1811年 1月22日,逝世于1882年12月9日,人,是中国近代着名的数学家、天文学家、力学家和,创立了二次的幂级数展开式。

[1](就是现在的)他研究各种,和对数函数的幂级数展开式,这是李善兰也是19 世纪中国数学界最重大的成就。

[1]在19世纪把西方近代知识翻译为中文的传播工作中﹐李善兰作出了重大贡献。

辅助角公式——精选推荐

辅助角公式——精选推荐

辅助⾓公式前⾔\require{AMScd} \begin{CD} f(x)=\sin x[正弦]\quad@>{a\cdot\sin x+b\cdot\cos x=\sqrt{a^2+b^2}\sin(x+\phi)[化⼀法]}>>\quad y=A\sin(\omega x+\phi)+k[正弦型] \end{CD}辅助⾓公式在三⾓变换中的⾓⾊太重要了。

三⾓变换中的许多变形都要由这个公式来完成最终的华丽转⾝,摇⾝⼀变为正弦型f(x)=A\sin(\omegax+\phi)+k或余弦型g(x)=A\cos(\omega x+\phi)+k,从⽽完成求周期,求值域、求单调性,求对称性,求奇偶性等等的解题要求。

辅助⾓公式变形前的模样:3\sin x+4\cos x;\sin x+\cos x;\cfrac{\sqrt{3}}{2}sin\theta\pm\cfrac{1}{2}cos\theta;\sqrt{3}sin\theta\pm cos\theta;抽象后的模样:a\sin\theta+b\cos\theta,其中系数a,b\in R;⼀般情形下a\neq 0,b\neq 0,常⽤变形依据:\sin\alpha\cdot\cos\beta+\cos\alpha\cdot\sin\beta=\sin(\alpha+\beta)[此处是逆向使⽤公式;化为正弦型,不容易出错]\cos\alpha\cdot\cos\beta+\sin\alpha\cdot\sin\beta=\cos(\alpha-\beta)[此处是逆向使⽤公式;化为余弦型,很容易出错]具体变形过程:a\sin\theta+b\cos\theta=\sqrt{a^2+b^2}\left(\cfrac{a}{\sqrt{a^2+b^2}}\sin\theta+\cfrac{b}{\sqrt{a^2+b^2}}\cos\theta\right)=\sqrt{a^2+b^2}(\cos\phi\cdot \sin\theta+\sin\phi\cdot \cos\theta)=\sqrt{a^2+b^2}\sin(\theta+\phi)备注:其中辅助⾓\phi满⾜条件tan\phi=\cfrac{b}{a},由于有辅助⾓\phi的参与,使得原来的两种三⾓函数\sin\theta和\cos\theta的线性表⽰就可以转化为⼀种三⾓函数[正弦或者余弦],所以这个公式好多⼈就随⼝称之为辅助⾓公式,也有⼈称为化⼀公式。

《辅助角公式》 讲义

《辅助角公式》 讲义

《辅助角公式》讲义一、引入在三角函数的学习中,我们常常会遇到形如\(a\sin x +b\cos x\)这样的式子。

为了更方便地对其进行分析和处理,我们引入了一个非常重要的公式——辅助角公式。

二、什么是辅助角公式辅助角公式的一般形式为:\(a\sin x + b\cos x =\sqrt{a^2 +b^2} \sin(x +\varphi)\),其中\(\varphi\)满足\(\tan\varphi=\frac{b}{a}\)。

这个公式的作用在于将两个不同的三角函数\(\sin x\)和\(\cos x\)合并成一个单一的三角函数\(\sin(x +\varphi)\),从而简化计算和分析。

三、辅助角公式的推导为了推导辅助角公式,我们可以利用三角函数的和角公式:\(\sin(\alpha +\beta) =\sin\alpha\cos\beta +\cos\alpha\sin\beta\)令\(a\sin x + b\cos x = R\sin(x +\varphi)\)则\(R\sin(x +\varphi) = R(\sin x\cos\varphi +\cosx\sin\varphi) = R\cos\varphi\sin x + R\sin\varphi\cos x\)所以\(R\cos\varphi = a\),\(R\sin\varphi = b\)两边平方相加可得:\(R^2(\cos^2\varphi +\sin^2\varphi) =a^2 + b^2\)因为\(\cos^2\varphi +\sin^2\varphi = 1\),所以\(R =\sqrt{a^2 + b^2}\)则\(\tan\varphi =\frac{\sin\varphi}{\cos\varphi} =\frac{b}{a}\)这样就得到了辅助角公式:\(a\sin x + b\cos x =\sqrt{a^2 +b^2} \sin(x +\varphi)\),其中\(\varphi\)满足\(\tan\varphi=\frac{b}{a}\)四、辅助角公式的应用(一)化简三角函数表达式例 1:化简\(\sqrt{3}\sin x +\cos x\)首先,\(R =\sqrt{(\sqrt{3})^2 + 1^2} = 2\)\(\tan\varphi =\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\),所以\(\varphi =\frac{\pi}{6}\)则\(\sqrt{3}\sin x +\cos x = 2\sin(x +\frac{\pi}{6})\)例 2:化简\(5\sin x 12\cos x\)\(R =\sqrt{5^2 +(-12)^2} = 13\)arctan\frac{12}{5}\)则\(5\sin x 12\cos x = 13\sin(x \arctan\frac{12}{5})\)(二)求三角函数的最值例 3:求函数\(y = 2\sin x + 2\sqrt{3}\cos x\)的最大值和最小值先将其化为辅助角公式的形式:\(R =\sqrt{2^2 +(2\sqrt{3})^2} = 4\)\(\tan\varphi =\sqrt{3}\),所以\(\varphi =\frac{\pi}{3}\)则\(y = 4\sin(x +\frac{\pi}{3})\)因为\(\sin(x +\frac{\pi}{3})\)的最大值为\(1\),最小值为\(-1\)所以\(y\)的最大值为\(4\),最小值为\(-4\)(三)求解三角函数方程例 4:求解方程\(3\sin x + 4\cos x = 2\)将左边化为辅助角公式:\(R =\sqrt{3^2 + 4^2} = 5\)arctan\frac{4}{3}\)则\(3\sin x + 4\cos x = 5\sin(x +\arctan\frac{4}{3})\)原方程变为\(5\sin(x +\arctan\frac{4}{3})= 2\)\(\sin(x +\arctan\frac{4}{3})=\frac{2}{5}\)则\(x +\arctan\frac{4}{3} = k\pi +(-1)^k\arcsin\frac{2}{5}\),\(k\in Z\)\(x = k\pi +(-1)^k\arcsin\frac{2}{5} \arctan\frac{4}{3}\),\(k\in Z\)五、使用辅助角公式的注意事项(一)正确确定辅助角\(\varphi\)要根据\(\tan\varphi =\frac{b}{a}\)来确定\(\varphi\)的值,同时要注意\(\varphi\)所在的象限。

三角函数 辅助角公式

三角函数 辅助角公式

三角函数辅助角公式三角函数是数学中的一类重要函数,它们与三角形的角度和边长之间存在密切的关系。

辅助角公式是在三角函数中常用的一组公式,可以帮助我们简化计算和推导过程。

本文将以辅助角公式为主题,介绍其定义、性质和应用。

一、辅助角的定义辅助角是指与给定角度的终边相同的角度,但终边位于不同的象限。

例如,对于一个角度为θ的角,它的辅助角可以表示为θ+2kπ或θ+(2k+1)π,其中k为整数。

在三角函数中,我们通常关注的是角度的正弦、余弦和正切值,它们与辅助角之间有着重要的关系。

二、辅助角公式的性质1. 余弦的辅助角公式:cos(θ+π)=-cosθ,cos(θ+2π)=cosθ余弦的辅助角公式告诉我们,将一个角度加上π或2π后,余弦值的符号会改变,但绝对值保持不变。

2. 正弦的辅助角公式:sin(θ+π)=-sinθ,sin(θ+2π)=sinθ正弦的辅助角公式与余弦类似,加上π或2π后,正弦值的符号会改变,绝对值保持不变。

3. 正切的辅助角公式:tan(θ+π)=tanθ,tan(θ+2π)=tanθ正切的辅助角公式告诉我们,加上π或2π后,正切值保持不变。

三、辅助角公式的应用辅助角公式在解决三角函数的计算和证明中起着重要的作用。

下面以几个具体例子来说明其应用。

1. 证明正弦的周期性根据正弦的辅助角公式sin(θ+2π)=sinθ,我们可以证明正弦函数是周期性的。

即正弦值在每增加2π的整数倍时,其值会重复。

2. 计算角度的正弦、余弦和正切值对于给定的角度θ,我们可以使用辅助角公式将角度转化为辅助角,然后利用已知的三角函数值计算出θ的正弦、余弦和正切值。

3. 简化三角函数表达式在计算复杂的三角函数表达式时,辅助角公式可以帮助我们简化计算过程。

通过将角度转化为辅助角,我们可以利用已知的三角函数值来替代未知的三角函数值,从而简化计算。

四、总结辅助角公式是三角函数中的重要工具,它们可以帮助我们简化计算和推导过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C C
S S
引例 把下列各式化为一个角的三角函数形式
(1) 3 sin 1 cos Nhomakorabea2
2
(2)sin cos
(3)a sin x b cos x
化 a sin x b cos x 为一个角的三角函数形式
asin x bcos x
a2
b2
a
sin x
a2 b2
a

cos sin
a2 b2 b
a2 b2
b
cos x
a2 b2
a2 b2 sin x cos cos x sin
a2 b2 sin x a2 b2 cos x
其中辅助角 由
cos
sin
a a2 b2
b
a2 b2
确定,即辅助角 的终边经过点 (a, b)
练习 把下列各式化为一个角的三角函数形式
(1) 2 sin cos
(2) 3 sin 1 cos
2
2
(3)cos
x
cos
x
3
例:已知函数f(x)=asinx+bcosx的图象经过点(3 ,0) 和( ,1)。
2 (1)求实数a和b的值;
(2)当x为何值时,f(x)取得最大值?
已知函数y= sin(x+ )+ cos x。
两角和与差的三角函数
我们的目标 掌握“合一变形”的技巧及其应

1、两角和、差角的余弦公式
cos( ) cos cos sin sin
cos( ) cos cos sin sin
2、两角和、差角的正弦公式
sin( ) sin cos cos sin
sin( ) sin cos cos sin
6 (1)求函数的最小正周期;
(2)当0 x 时,求函数的最大值与最小值;
(3)求函数的对称轴.
练习:已知函数y sinx 3cosx。
(1)求f(x)的周期;
(2)若- x ,求f(x)的最大值与最小值;
2
2
(3)求f(x)的单调递增区间。
相关文档
最新文档