辅助角公式98440

合集下载

辅助角公式是什么要注意哪些地方

辅助角公式是什么要注意哪些地方

辅助角公式是什么要注意哪些地方
辅助角公式属于高等三角函数公式中的一个,在考试中使用的频率也是很高。

下面是由编辑为大家整理的“辅助角公式是什么要注意哪些地方”,仅供参考,欢迎大家阅读本文。

辅助角公式是什么
辅助角公式是一种高等三角函数公式,使用代数式表达为asinx+bcosx=√(a²+b²)sin[x+arctan(b/a)](a>0)。

辅助角公式的具体内容
该公式的主要作用是将多个三角函数的和化成单个函数,以此来求解有关最值问题。

拓展阅读:辅助角公式的记忆方法
很多人在利用辅助角公式时,经常忘记反正切到底是b/a还是a/b,导致做题出错。

其实有一个很方便的记忆技巧,就是不管用正弦还是余弦来表示asinx+bcosx,分母的位置永远是你用来表示函数名称的系数。

例如用正弦来表示asinx+bcosx,则反正切就是b/a(即正弦的系数a在分母)。

如果用余弦来表示,那反正切就要变成a/b(余弦的系数b在分母)。

三角函数复习之辅助角公式讲义

三角函数复习之辅助角公式讲义

三角函数复习之辅助角公式讲义辅助角公式是指在三角函数的计算中,使用一些特定角度的三角函数值来计算其他角度的三角函数值的公式。

这些特定角度被称为辅助角。

在三角函数的求解和计算中,辅助角公式是非常实用的工具。

下面是一些常用的辅助角公式。

1.正弦函数的辅助角公式:sin(A+B) = sinAcosB + cosAsinBsin(A-B) = sinAcosB - cosAsinB这两个公式可以通过将A+B或A-B展开并运用三角函数的和差角公式得到。

这两个公式可用于计算任意两个角度的正弦函数值。

2.余弦函数的辅助角公式:cos(A+B) = cosAcosB - sinAsinBcos(A-B) = cosAcosB + sinAsinB这两个公式可以通过将A+B或A-B展开并运用三角函数的和差角公式得到。

这两个公式可用于计算任意两个角度的余弦函数值。

3.正切函数的辅助角公式:tan(A+B) = (tanA + tanB) / (1 - tanAtanB)tan(A-B) = (tanA - tanB) / (1 + tanAtanB)这两个公式可以通过将A+B或A-B展开并运用三角函数的和差角公式以及两个角度的正切函数值来推导得到。

这两个公式可用于计算任意两个角度的正切函数值。

4.余切函数的辅助角公式:cot(A+B) = (cotAcotB - 1) / (cotA + cotB)cot(A-B) = (cotAcotB + 1) / (cotA - cotB)这两个公式可以通过将A+B或A-B展开并运用三角函数的和差角公式以及两个角度的余切函数值来推导得到。

这两个公式可用于计算任意两个角度的余切函数值。

辅助角公式在实际问题中有广泛的应用。

例如,在求解三角函数方程或证明三角恒等式时,辅助角公式可以帮助简化计算。

此外,辅助角公式还可以用于求解三角函数的特殊值,如求解sin15°、cos75°等。

精品辅助角公式及应用

精品辅助角公式及应用
不足之处与改进方向
在学习过程中,我发现自己在某些方面还存在不足,如对某些复杂问题的理解不够深入、解题速度不够 快等。为了改进这些不足,我将继续加强学习,多做练习题,提高自己的解题能力和思维水平。
对未来学习的建议
01
深入学习相关数学知识
为了更好地理解和应用辅助角公式,建议同学们深入学习相关的数学知
识,如三角函数的基本性质、三角恒等式等。
辅助角公式推导过程
推导思路
通过三角函数的基本性质和变换公式,逐步推导出辅助角公 式。
具体步骤
首先,根据三角函数的基本性质,将原函数表达式进行化简 ;然后,通过引入辅助角,将化简后的表达式进一步转化为 简单的三角函数形式;最后,根据已知条件求解辅助角,从 而得到原函数的解。
02
辅助角公式在三角函数中的应用
03
辅助角公式在解三角形中的应用
利用辅助角求三角形内角
辅助角公式
通过引入辅助角,将三角形的内 角和公式转化为与辅助角相关的 表达式,从而求解三角形内角。
应用场景
在已知三角形两边及夹角或已知三 角形三边长度的情况下,可以利用 辅助角公式求解三角形的内角。
求解步骤
首先根据已知条件选择合适的辅助 角,然后利用三角函数性质及三角 形内角和定理,构建方程并求解。
THANKS
感谢观看
求解三角函数值
已知三角函数值求角度
利用辅助角公式,可以将复杂的三角 函数表达式转化为简单的形式,从而 方便求解对应角度。
已知角度求三角函数值
通过辅助角公式,可以将角度转化为 与特殊角相关的表达式,进而求出对 应的三角函数值。
判断三角函数单调性
判断单调增区间
利用辅助角公式,可以确定三角函数在哪些区间内是单调增加的,从而方便进行 相关的数学分析和计算。

辅助角公式

辅助角公式

辅助角公式Revised on November 25, 2020推导对于f(x)=asinx+bcosx(a>0)型函数,我们可以如此变形,设点(a,b)为某一角φ(-π/2<φ<π/2)终边上的点,则,因此就是所求辅助角公式。

又因为,且-π/2<φ<π/2,所以,于是上述公式还可以写成该公式也可以用余弦来表示(针对b>0的情况),设点(b,a)为某一角θ(-π/2<θ<π/2)终边上的点,则,因此同理,,上式化成若正弦和余弦的系数都是负数,不妨写成f(x)=-asinx-bcosx,则再根据得记忆很多人在利用辅助角公式时,经常忘记反正切到底是b/a还是a/b,导致做题出错。

其实有一个很方便的记忆技巧,就是不管用正弦还是余弦来表示asinx+bcosx,的位置永远是你用来表示函数名称的系数。

例如用正弦来表示asinx+bcosx,则反正切就是b/a(即正弦的系数a在分母)。

如果用余弦来表示,那反正切就要变成a/b(余弦的系数b在分母)。

疑问为什么在推导辅助角公式的时候要令辅助角的取值范围为(-π/2,π/2)其实是在分类讨论a>0或b>0的时候,已经把辅助角的终边限定在一、四象限内了,此时辅助角的范围是(2kπ-π/2,2kπ+π/2)(k是整数)。

而根据三角函数的周期性可知加上2kπ后函数值不变,况且在(-π/2,π/2)内辅助角可以利用反正切表示,使得公式更加简洁明了。

提出者,原名李心兰,字竟芳,号秋纫,别号壬叔。

出身于读书世家,其先祖可上溯至南宋末年汴梁(今)人李伯翼。

生于1811年 1月22日,逝世于1882年12月9日,人,是中国近代着名的数学家、天文学家、力学家和,创立了二次的幂级数展开式。

[1](就是现在的)他研究各种,和对数函数的幂级数展开式,这是李善兰也是19 世纪中国数学界最重大的成就。

[1]在19世纪把西方近代知识翻译为中文的传播工作中﹐李善兰作出了重大贡献。

辅助角公式

辅助角公式

辅助角公式集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)推导对于f(x)=asinx+bcosx(a>0)型函数,我们可以如此变形,设点(a,b)为某一角φ(-π/2<φ<π/2)终边上的点,则,因此就是所求辅助角公式。

又因为,且-π/2<φ<π/2,所以,于是上述公式还可以写成该公式也可以用余弦来表示(针对b>0的情况),设点(b,a)为某一角θ(-π/2<θ<π/2)终边上的点,则,因此同理,,上式化成若正弦和余弦的系数都是负数,不妨写成f(x)=-asinx-bcosx,则再根据得记忆很多人在利用辅助角公式时,经常忘记反正切到底是b/a还是a/b,导致做题出错。

其实有一个很方便的记忆技巧,就是不管用正弦还是余弦来表示asinx+bcosx,的位置永远是你用来表示函数名称的系数。

例如用正弦来表示asinx+bcosx,则反正切就是b/a(即正弦的系数a在分母)。

如果用余弦来表示,那反正切就要变成a/b(余弦的系数b 在分母)。

疑问为什么在推导辅助角公式的时候要令辅助角的取值范围为(-π/2,π/2)?其实是在分类讨论a>0或b>0的时候,已经把辅助角的终边限定在一、四象限内了,此时辅助角的范围是(2kπ-π/2,2kπ+π/2)(k是整数)。

而根据三角函数的周期性可知加上2kπ后函数值不变,况且在(-π/2,π/2)内辅助角可以利用反正切表示,使得公式更加简洁明了。

提出者,原名李心兰,字竟芳,号秋纫,别号壬叔。

出身于读书世家,其先祖可上溯至南宋末年汴梁(今)人李伯翼。

生于1811年 1月22日,逝世于1882年12月9日,人,是中国近代着名的数学家、天文学家、力学家和,创立了二次的幂级数展开式。

[1](就是现在的)他研究各种,和对数函数的幂级数展开式,这是李善兰也是19 世纪中国数学界最重大的成就。

辅助角公式——精选推荐

辅助角公式——精选推荐

辅助⾓公式前⾔\require{AMScd} \begin{CD} f(x)=\sin x[正弦]\quad@>{a\cdot\sin x+b\cdot\cos x=\sqrt{a^2+b^2}\sin(x+\phi)[化⼀法]}>>\quad y=A\sin(\omega x+\phi)+k[正弦型] \end{CD}辅助⾓公式在三⾓变换中的⾓⾊太重要了。

三⾓变换中的许多变形都要由这个公式来完成最终的华丽转⾝,摇⾝⼀变为正弦型f(x)=A\sin(\omegax+\phi)+k或余弦型g(x)=A\cos(\omega x+\phi)+k,从⽽完成求周期,求值域、求单调性,求对称性,求奇偶性等等的解题要求。

辅助⾓公式变形前的模样:3\sin x+4\cos x;\sin x+\cos x;\cfrac{\sqrt{3}}{2}sin\theta\pm\cfrac{1}{2}cos\theta;\sqrt{3}sin\theta\pm cos\theta;抽象后的模样:a\sin\theta+b\cos\theta,其中系数a,b\in R;⼀般情形下a\neq 0,b\neq 0,常⽤变形依据:\sin\alpha\cdot\cos\beta+\cos\alpha\cdot\sin\beta=\sin(\alpha+\beta)[此处是逆向使⽤公式;化为正弦型,不容易出错]\cos\alpha\cdot\cos\beta+\sin\alpha\cdot\sin\beta=\cos(\alpha-\beta)[此处是逆向使⽤公式;化为余弦型,很容易出错]具体变形过程:a\sin\theta+b\cos\theta=\sqrt{a^2+b^2}\left(\cfrac{a}{\sqrt{a^2+b^2}}\sin\theta+\cfrac{b}{\sqrt{a^2+b^2}}\cos\theta\right)=\sqrt{a^2+b^2}(\cos\phi\cdot \sin\theta+\sin\phi\cdot \cos\theta)=\sqrt{a^2+b^2}\sin(\theta+\phi)备注:其中辅助⾓\phi满⾜条件tan\phi=\cfrac{b}{a},由于有辅助⾓\phi的参与,使得原来的两种三⾓函数\sin\theta和\cos\theta的线性表⽰就可以转化为⼀种三⾓函数[正弦或者余弦],所以这个公式好多⼈就随⼝称之为辅助⾓公式,也有⼈称为化⼀公式。

辅助角公式及应用课件

辅助角公式及应用课件

利用代数方法推导
总结词
通过代数方法,我们可以将三角函数问 题转化为代数问题,从而推导出辅助角 公式。
VS
详细描述
利用代数方法,我们可以将三角函数问题 转化为代数问题。通过设置方程并求解, 我们可以得到辅助角公式的一般形式。这 种方法需要一定的代数基础和技巧,但适 用范围较广,可以处理各种复杂的三角函 数问题。
等。
在三角函数求值中的应用
辅助角公式可以用于求解某些特定类型的三角函数值,例如求正弦、余弦或正切值 。
通过使用辅助角公式,可以将复杂的三角函数问题转化为更易于解决的形式,从而 快速准确地找到答案。
辅助角公式还可以用于求解一些特殊角度的三角函数值,例如30度、45度或60度等 。
在三角函数图像变换中的应用
辅助角公式及应用课 件
汇报人:
202X-01-04
目录
CONTENTS
• 辅助角公式简介 • 辅助角公式的推导 • 辅助角公式的应用 • 辅助角公式的注意事项 • 辅助角公式的扩展 • 习题与解答
01
辅助角公式简介
辅助角公式的定义
辅助角公式是三角函数中用于将一个复杂的三角函数式转化 为易于处理的形式的公式。它通过引入一个辅助角,将原函 数表示为简单三角函数的组合。
辅助角公式可以用于对三角函 数图像进行平移、伸缩或翻转 等变换操作。
通过使用辅助角公式,可以将 图像变换问题转化为数学表达 式,从而更方便地进行图像处 理和操作。
辅助角公式还可以用于研究三 角函数图像的性质和特点,例 如周期性、对称性或极值点等 。
04
辅助角公式的注意 事项
公式的适用范围
适用角度范围
公式的误差分析
近似误差
辅助角公式在应用过程中会产生近似误差,主要来源于将复杂的 三角函数转化为简单的三角函数。

《辅助角公式》 讲义

《辅助角公式》 讲义

《辅助角公式》讲义一、引入在三角函数的学习中,我们常常会遇到形如\(a\sin x +b\cos x\)这样的式子。

为了更方便地对其进行分析和处理,我们引入了一个非常重要的公式——辅助角公式。

二、什么是辅助角公式辅助角公式的一般形式为:\(a\sin x + b\cos x =\sqrt{a^2 +b^2} \sin(x +\varphi)\),其中\(\varphi\)满足\(\tan\varphi=\frac{b}{a}\)。

这个公式的作用在于将两个不同的三角函数\(\sin x\)和\(\cos x\)合并成一个单一的三角函数\(\sin(x +\varphi)\),从而简化计算和分析。

三、辅助角公式的推导为了推导辅助角公式,我们可以利用三角函数的和角公式:\(\sin(\alpha +\beta) =\sin\alpha\cos\beta +\cos\alpha\sin\beta\)令\(a\sin x + b\cos x = R\sin(x +\varphi)\)则\(R\sin(x +\varphi) = R(\sin x\cos\varphi +\cosx\sin\varphi) = R\cos\varphi\sin x + R\sin\varphi\cos x\)所以\(R\cos\varphi = a\),\(R\sin\varphi = b\)两边平方相加可得:\(R^2(\cos^2\varphi +\sin^2\varphi) =a^2 + b^2\)因为\(\cos^2\varphi +\sin^2\varphi = 1\),所以\(R =\sqrt{a^2 + b^2}\)则\(\tan\varphi =\frac{\sin\varphi}{\cos\varphi} =\frac{b}{a}\)这样就得到了辅助角公式:\(a\sin x + b\cos x =\sqrt{a^2 +b^2} \sin(x +\varphi)\),其中\(\varphi\)满足\(\tan\varphi=\frac{b}{a}\)四、辅助角公式的应用(一)化简三角函数表达式例 1:化简\(\sqrt{3}\sin x +\cos x\)首先,\(R =\sqrt{(\sqrt{3})^2 + 1^2} = 2\)\(\tan\varphi =\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\),所以\(\varphi =\frac{\pi}{6}\)则\(\sqrt{3}\sin x +\cos x = 2\sin(x +\frac{\pi}{6})\)例 2:化简\(5\sin x 12\cos x\)\(R =\sqrt{5^2 +(-12)^2} = 13\)arctan\frac{12}{5}\)则\(5\sin x 12\cos x = 13\sin(x \arctan\frac{12}{5})\)(二)求三角函数的最值例 3:求函数\(y = 2\sin x + 2\sqrt{3}\cos x\)的最大值和最小值先将其化为辅助角公式的形式:\(R =\sqrt{2^2 +(2\sqrt{3})^2} = 4\)\(\tan\varphi =\sqrt{3}\),所以\(\varphi =\frac{\pi}{3}\)则\(y = 4\sin(x +\frac{\pi}{3})\)因为\(\sin(x +\frac{\pi}{3})\)的最大值为\(1\),最小值为\(-1\)所以\(y\)的最大值为\(4\),最小值为\(-4\)(三)求解三角函数方程例 4:求解方程\(3\sin x + 4\cos x = 2\)将左边化为辅助角公式:\(R =\sqrt{3^2 + 4^2} = 5\)arctan\frac{4}{3}\)则\(3\sin x + 4\cos x = 5\sin(x +\arctan\frac{4}{3})\)原方程变为\(5\sin(x +\arctan\frac{4}{3})= 2\)\(\sin(x +\arctan\frac{4}{3})=\frac{2}{5}\)则\(x +\arctan\frac{4}{3} = k\pi +(-1)^k\arcsin\frac{2}{5}\),\(k\in Z\)\(x = k\pi +(-1)^k\arcsin\frac{2}{5} \arctan\frac{4}{3}\),\(k\in Z\)五、使用辅助角公式的注意事项(一)正确确定辅助角\(\varphi\)要根据\(\tan\varphi =\frac{b}{a}\)来确定\(\varphi\)的值,同时要注意\(\varphi\)所在的象限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
a2 b2 b
a2 b2
b
cos x
a2 b2
a2 b2 sin x cos cos x sin
a2 b2 sin x a2 b2 cos x
其中辅助角 由
cos
sin
a a2 b2
b
a2 b2
确定,即辅助角 的终边经过点 (a, b)
练习 把下列各式化为一个角的三角函数形式
(1) 2 sin cos
(2) 3 sin 1 cos
2
2
(3)cos
x
cos
x
3
例:已知函数f(x)=asinx+bcosx的图象经过点(3 ,0) 和( ,1)。
2 (1)求实数a和b的值;
(2)当x为何值时,f(x)取得最大值?
已知函数y= sin(x+ )+ cos x。
C C
S S
引例 把下列各式化为一个角的三角函数形式
(1) 3 sin 1 cos
2
2
(2)sin cos
(3)a sin x b cos x
化 a sin x b cos x 为一个角的三角函数形式
asin x bcos x
a2
b2
a
sin x
a2 b2
两角和与差的三角函数
我们的目标 掌握“合一变形”的技巧及其应

1、两角和、差角的余弦公式
cos( ) cos cos sin sin
cos( ) cos cos sin sin
2、两角和、差角的正弦公式
sin( ) sin cos cos sin
sin( ) sin cos cos sin
6 (1)求函数的最小正周期;
(2)当0 x 时,求函数的最大值与最小值;
(3)求函数的对称轴.
练习:已知函数y sinx 3cosx。
(1)求f(x)的周期;
(2)若- x ,求f(x)的最大值与最小值;
2
2
(3)求f(x)的单调递增区间。
相关文档
最新文档