两种辅助角公式
三角辅助角公式

三角辅助角公式
asinx+bcosx=√(a+b)sin[x+arctan(b/a)](a>0)。
1.辅助角公式是一种高等三角函数公式,其主要作用是将多个三角函数的和化成单个函数,以此来求解有关最值问题。
该公式已被写入中学课本,表达式为asinx+bcosx=√(a+b)sin[x+arctan(b/a)](a>0)。
在使用该公式时,无论用正弦还是余弦来表示asinx+bcosx,分母的位置永远是用来表示函数名称的系数。
2.三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。
三角函数将直角三角形的内角和它的两个边的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。
三角函数中辅助角公式的应用1951-修订编选

三角函数中辅助角公式的应用1951-修订编选本文主要介绍三角函数的辅助角公式。
在三角函数的各个发展阶段,三角函数的应用范围不断扩大,对三角问题的研究和探索也取得了长足的进步。
但是,在运用时,仍然存在一些困难,比如某些特殊场合对解法是十分严格的,难以准确计算。
但对于使用辅助角公式解题往往会有一些较复杂的结论,这一点往往不能通过简单的证明。
本文给出了一些在特殊情况下可能会采用的辅助角公式,可以方便地用于求取。
下面一一介绍相关条件:(1).辅助角公式式:△ T为一个独立的函数 g (x, y) r+2 k+3-4 l n,其中: f (x, y)为连续函数; h为辅助参数;β t= k (k|θ>0);λ为绝对值系数。
1)△T1,T2 k+3-4 l n是三角函数 f (x, y)的辅助参数α和β的乘积,可以求出α;(3) t是三角函数 f (x, y)的辅助参数β的乘积。
a, b=1+3=2+3=2, c, d是角的乘积, d<α时 r=0, d> m时 r=1。
f (x, y)= r+2 k+3 l n 是一个独立函数, f (x, y)与 t有交点, f (x, y)与 t有乘点,求取函数 f (x, y)与 t关系式即可。
(2).△ T为一个独立函数, f (x, y)+ t=2+3,其中:u是连续函数。
a, b是乘积常数,α为辅助参数;c是绝对值系数。
1、a为三角函数 f (x, y)的系数,它的值大于0,叫做 f是角的乘积。
a< a, d> a,它的值大于0,叫做角的乘积。
a=0, a=0, a=1,可以求出 a和 e (x, y)的值,也可以求出 e和 a的值。
u为一个独立函数, u与 u有交点, u与 u之间有角的乘积, u> t即可求出 b和 c。
其中 e表示在该函数 f (x, y)中对应的角数点。
2、△ T为一个独立函数, f (x, y)和 t有交点时取 b^2+ c,其值与 a的取值范围一致即可。
辅助角公式及应用

6
6
(2)
3 sin 1 cos
2
2
sin cos 5 cos sin 5
6
6
(3)
3 sin 1 cos
2
2
sin cos 5 cos sin 5
6
6
(4)
3 2
sin
1 2
cos
sin cos cos sin
6
6
辅助角公式的推导及简单应用
导学达标
引例 例1:求证:
分析:其证法是从右往左展开证明,也可以从左往右
个角 ,它的终边经过点P.设
的终边
y
• P(a,b)
r
OP=r,r= a2 b,2由三角函数 的定义知
O 图1
x
sin b b
r a2 b2
所以 asin x bcos x
a2 b2 cos sin x a2 b2 sin cos x
cos a a
r a2 b2
a2 b2 sin(x ) (其中,tan b)
两个应用:
⒈利用辅助角公式将三角函数化成正弦型,然后用正弦型函数的性质 解决函数问题 ⒉三角函数解决几何问题中利用辅助角公式求最值问题
sin
6
sin
5
6
sin cos cos sin
6
6
sin cos 5 cos sin 5
6
6
sin
5
6
sin
6
sin cos 5 cos sin 5
6
6
sin cos cos sin
6
6
3 sin 1 cos
2
2
3 sin 1 cos
两角和与差的正余弦公式应用辅助角公式

举例说明:利用两角和与差的正余 弦公式和辅助角公式,可以化简复 杂的三角函数式,进而求出最值。
添加标题
添加标题
添加标题
添加标题
结合应用举例:求三角函数的最值、 化简三角函数式等。
结合应用举例:在物理、工程等领域 中,可以利用两角和与差的正余弦公 式与辅助角公式的结合应用,解决一 些实际问题。
感谢您的观看
汇报人:XX
公式推导:通过两角和与差的正余弦公式推导出辅助角公式 角度范围:确定两角和与差的正余弦公式和辅助角公式的适用角度范围 实例解析:结合具体实例,展示如何应用两角和与差的正余弦公式与辅助角公式解决实际问题 注意事项:强调在应用过程中需要注意的事项,如公式的适用条件、计算精度等
两角和与差的正余弦公式与辅助角 公式的结合应用,可以解决一些三 角函数问题。
注意事项:使用公 式时需要注意角度 的范围和特殊情况 的处理
公式形式:sin(x+y)=sinxcosy+cosxsiny,sin(x-y)=sinxcosy-cosxsiny 应用场景:解决三角函数问题,如求角度、求长度等
辅助角公式:将两角和与差的正弦公式中的x和y视为辅助角,可以简化计算过程
证明方法:利用三角函数的加法定理进行证明
三角函数图像的变换 求解最值问题 解决周期和对称性问题处理切线问题
公式形式:asinx+bcosx=sqrt(a^2+b^2)sin(x+φ),其中φ为辅助角 应用举例:求函数y=sinx+cosx的值域 应用举例:求函数y=sin2x+cos2x的最小正周期 应用举例:求函数y=sin(x+π/4)+cos(x-π/4)的最大值
两角和与差的正余 弦公式与辅助角公 式的结合应用
辅助角公式

⑷
例 2、已知函数 f ( x ) 3 sin( x ) 3 cos( x ) 6 6
(1)化简 f ( x ) 并求出其最小正周期;
x [ 0 , ] f ( x ) (2)若 ,求 的值域。
在平面直角坐标系中, 以a为横坐标,b为纵坐 标描一点 P(a,b)如图1 所示,则总有一个角 , 它的终边经过点P.设 OP=r,r= a2 b2 , 由三角函数的定义知
y
P(a,b)
xOLeabharlann b b cos a a sin 2 2 r 2 2 a b r a b
sin cos cos sin
3、二倍角的正、余弦公式
cos 2 cos sin
2 2
2 cos 1
2
1 2sin
2
sin 2 2sin cos
降幂公式
1 3 sin x sin x cos x 3 2 2 1 3
2 6 (3) sin x cos x 4 4 4 4
2 1 3 sin x cos x 2 2 4 2 4
2 7 sin x 2 12
cos
a a b
2 2
a a b cos
2 2
sin
b a b
2 2
b a b sin
2 2
a sin x b cos x
a b cos sin x a b sin cos x
辅助角公式

辅助角公式集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)推导对于f(x)=asinx+bcosx(a>0)型函数,我们可以如此变形,设点(a,b)为某一角φ(-π/2<φ<π/2)终边上的点,则,因此就是所求辅助角公式。
又因为,且-π/2<φ<π/2,所以,于是上述公式还可以写成该公式也可以用余弦来表示(针对b>0的情况),设点(b,a)为某一角θ(-π/2<θ<π/2)终边上的点,则,因此同理,,上式化成若正弦和余弦的系数都是负数,不妨写成f(x)=-asinx-bcosx,则再根据得记忆很多人在利用辅助角公式时,经常忘记反正切到底是b/a还是a/b,导致做题出错。
其实有一个很方便的记忆技巧,就是不管用正弦还是余弦来表示asinx+bcosx,的位置永远是你用来表示函数名称的系数。
例如用正弦来表示asinx+bcosx,则反正切就是b/a(即正弦的系数a在分母)。
如果用余弦来表示,那反正切就要变成a/b(余弦的系数b 在分母)。
疑问为什么在推导辅助角公式的时候要令辅助角的取值范围为(-π/2,π/2)?其实是在分类讨论a>0或b>0的时候,已经把辅助角的终边限定在一、四象限内了,此时辅助角的范围是(2kπ-π/2,2kπ+π/2)(k是整数)。
而根据三角函数的周期性可知加上2kπ后函数值不变,况且在(-π/2,π/2)内辅助角可以利用反正切表示,使得公式更加简洁明了。
提出者,原名李心兰,字竟芳,号秋纫,别号壬叔。
出身于读书世家,其先祖可上溯至南宋末年汴梁(今)人李伯翼。
生于1811年 1月22日,逝世于1882年12月9日,人,是中国近代着名的数学家、天文学家、力学家和,创立了二次的幂级数展开式。
[1](就是现在的)他研究各种,和对数函数的幂级数展开式,这是李善兰也是19 世纪中国数学界最重大的成就。
辅助角公式——精选推荐

辅助⾓公式前⾔\require{AMScd} \begin{CD} f(x)=\sin x[正弦]\quad@>{a\cdot\sin x+b\cdot\cos x=\sqrt{a^2+b^2}\sin(x+\phi)[化⼀法]}>>\quad y=A\sin(\omega x+\phi)+k[正弦型] \end{CD}辅助⾓公式在三⾓变换中的⾓⾊太重要了。
三⾓变换中的许多变形都要由这个公式来完成最终的华丽转⾝,摇⾝⼀变为正弦型f(x)=A\sin(\omegax+\phi)+k或余弦型g(x)=A\cos(\omega x+\phi)+k,从⽽完成求周期,求值域、求单调性,求对称性,求奇偶性等等的解题要求。
辅助⾓公式变形前的模样:3\sin x+4\cos x;\sin x+\cos x;\cfrac{\sqrt{3}}{2}sin\theta\pm\cfrac{1}{2}cos\theta;\sqrt{3}sin\theta\pm cos\theta;抽象后的模样:a\sin\theta+b\cos\theta,其中系数a,b\in R;⼀般情形下a\neq 0,b\neq 0,常⽤变形依据:\sin\alpha\cdot\cos\beta+\cos\alpha\cdot\sin\beta=\sin(\alpha+\beta)[此处是逆向使⽤公式;化为正弦型,不容易出错]\cos\alpha\cdot\cos\beta+\sin\alpha\cdot\sin\beta=\cos(\alpha-\beta)[此处是逆向使⽤公式;化为余弦型,很容易出错]具体变形过程:a\sin\theta+b\cos\theta=\sqrt{a^2+b^2}\left(\cfrac{a}{\sqrt{a^2+b^2}}\sin\theta+\cfrac{b}{\sqrt{a^2+b^2}}\cos\theta\right)=\sqrt{a^2+b^2}(\cos\phi\cdot \sin\theta+\sin\phi\cdot \cos\theta)=\sqrt{a^2+b^2}\sin(\theta+\phi)备注:其中辅助⾓\phi满⾜条件tan\phi=\cfrac{b}{a},由于有辅助⾓\phi的参与,使得原来的两种三⾓函数\sin\theta和\cos\theta的线性表⽰就可以转化为⼀种三⾓函数[正弦或者余弦],所以这个公式好多⼈就随⼝称之为辅助⾓公式,也有⼈称为化⼀公式。
辅助角公式例题

辅助角公式例题
特殊三角形辅助角公式
1、什么是特殊三角形辅助角公式?
特殊三角形辅助角公式是由前苏联高等教育学者贝尔科夫提出的,用以解决特殊三角形中辅助角的问题,该公式可以有效地减少三角形中辅助角的计算步骤,极大地节省计算角度的时间。
2、特殊三角形辅助角公式的形式
特殊三角形辅助角公式是:sin(α+β)=sinαcosβ+cosαsinβ,γ为α加β所代表的辅助角.
3、应用特殊三角形辅助角公式解决问题的步骤
(1)找出全等三角形中的任意一个角的值。
(2)根据全等三角形的边的长度,找出另外一个角的值。
(3)将所求的角的值代入特殊三角形辅助角公式,计算出所求的辅助角的值。
4、应用实例
实例:一个直角三角形的两直角边长分别为3m和4m,求该三角形的斜边对应的锐角角度。
解:由直角三角形的两直角边长,可以求出斜边c为5m,a=3,b=4 带入特殊三角形辅助角公式可得:sinγ=sin45°/cos45°=1/1=1,
由此,该三角形的锐角角度为γ=45°.。