不等式恒成立有解问题

合集下载

不等式恒成立与有解

不等式恒成立与有解

不等式恒成立与有解
不等式恒成立与有解问题涉及函数、不等式、方程、导数、数列等内容,是各交汇处的一个较为活跃的知识点,渗透着函数与方程、等价转换、分类讨论、数形结合、换元等思想方法,是中学数学的重要内容,也是高考的热门考点之一,由于此类问题综合性强,题中所涉及的未知数、参数数目多,处理时常常会陷入困境,令不少同学望而却步.倘若我们能掌握解决此类问题的一般策略和思想方法,那么对此类问题必会迎刃而解.
不等式恒成立与有解是有明显区别的,切不可混为一团.例如,若sinxsinx)max=l;若sinx(sinx)min=-1.不等式恒成立问题的描述中常出现“所有的”“一切”“都有”“恒成立”等全称量词,而不等式有解问题的描述中常出现“至少存在一个”“有些”等存在量词.解题时应细心思考,甄别差异,找准所要转化的等价问题,
重点:掌握不等式恒成立和有解问题的常见方法(如参数分离、数形结合、变换主元、构造函数等).
难点:不等式恒成立与有解问题的区别及等价转化,准确使用其成立的充要条件.
解决不等式恒成立与有解问题的基本策略是构作辅助
函数,利用函数的单调性、最值(或上、下界)、图象求解,其中涉及分类讨论、数形结合、参数分离、变换主元等数学思想方法.。

不等式有解_方程有解_不等式恒成立的区别与联系

不等式有解_方程有解_不等式恒成立的区别与联系

2 2 2x x- a+2
解:(1)函数(f x)的定义域为(1,+∞).f (′ x)=
2.
x-1
2 2 ①当 a+2 >1,即a>0时,f (x) 在 1,a+2 上单调递减,在
2
2
2 2 a+2 ,+∞ 上单调递增. 2
②当 a+2 ≤1,即a≤0时,(f x)在(1,+∞)上单调递增. 2
2 2 (2)由(1)知a≥1时,(f x)min=f
一、不等式有解问题
若不等式(f x)>k在区间D上能成立(有解)圳(f x)max>k; 若不等式(f x)<k在区间D上能成立(有解)圳(f x)min<k.
二、方程有解问题
若方程k=(f x)在区间D上有解圳k∈{y|y=(f x),x∈D}.
三、不等式恒成立问题
若不等式(f x)>k在区间D上恒成立圳(f x)min>k;
(f x)min
已知函数(f x)=lnx,g(x)= 1 ax2+bx 2
y=k 图1
(a≠0).若b=2,且h(x)=(f x)-g(x)存在单调递减区间,求a的取值
范围.
解:当b=2时,h(x)=(f x)-g(x)=lnx- 1 ax2-2x. 2
h(′ x)= 1 -ax-2=- ax2+2x-1 .
- ≤ - ≤ g(x1)=g(x2)成立,只需
m 16
<
1 2
m-2,即 m - 16
1 2
m-2<0.
- ≤ 为此令h(m)= m - 1 m-2,则h(m)在[2,+∞)上是增函数. 16 2

2024届新高考一轮总复习人教版 第三章 重难突破系列(一) 利用导数解决不等式恒成立、有解 课件

2024届新高考一轮总复习人教版 第三章 重难突破系列(一) 利用导数解决不等式恒成立、有解 课件

[对点练] 1.已知曲线 f(x)=bex+x 在 x=0 处的切线方程为 ax-y+1=0. (1)求 a,b 的值; (2)当 x2>x1>0 时,f(x1)-f(x2)<(x1-x2)(mx1+mx2+1)恒成立,求实数 m 的取值范围.
解:(1)由 f(x)=bex+x 得,f′(x)=bex+1, 由题意得在 x=0 处的切线斜率为 f′(0)=b+1=a, 即 b+1=a,又 f(0)=b,可得-b+1=0,解得 b=1,a=2.
(2)由 f(1)≥0,得 a≥e-1 1>0,则 f(x)≥0 障碍点:不能把a+a 1看做整体,分离出来
对任意的 x>0 恒成立可转化为a+a 1≥2xx-ex 1对任意的 x>0 恒成立.················6 分
2x-1 设函数 F(x)= xex (x>0), ··································································7 分
于是a+a 1≥1e,解得 a≥e-1 1.故实数 a 的取值范围[e-1 1,+∞). ··················12 分
【点拨】 利用分离参数法确定不等式 f(x,λ)≥0(x∈D,λ 为参数)恒成立问题中参 数范围的步骤:
(1)将参数与变量分离,化为 f1(λ)≥f2(x)或 f1(λ)≤f2(x)的形式; (2)求 f2(x)在 x∈D 时的最大值或最小值; (3)解不等式 f1(λ)≥f2(x)max 或 f1(λ)≤f2(x)min,得到 λ 的取值范围.
(2)由(1)知,f(x)=ex+x,所以 f(x1)-f(x2)<(x1-x2)(mx1+mx2+1), 即为 f(x1)-mx21-x1<f(x2)-mx22-x2, 由 x2>x1>0 知,上式等价于函数 φ(x)=f(x)-mx2-x=ex-mx2 在(0,+∞)为增函数, φ′(x)=ex-2mx≥0,即 2m≤exx, 令 h(x)=exx(x>0),h′(x)=ex(xx-2 1), 当 0<x<1 时,h′(x)<0 时,h(x)单调递减; 当 x>1 时,h′(x)>0,h(x)单调递增,h(x)min=h(1)=e, 则 2m≤e,即 m≤2e,所以实数 m 的范围为(-∞ 若不等式 2x ln x≥-x2+ax-3 在区间(0,e]上恒成立,求实数 a 的取值范围. 解:不等式 2x ln x≥-x2+ax-3 在区间(0,e]上恒成立等价于 2ln x≥-x+a-3x, 令 g(x)=2ln x+x-a+3x,x∈(0,e],则 g′(x)=2x+1-x32=x2+x22x-3=(x+3x)(2x-1), 则在区间(0,1)上,g′(x)<0,函数 g(x)为减函数; 在区间(1,e]上,g′(x)>0,函数 g(x)为增函数. 由题意知 g(x)min=g(1)=1-a+3≥0,得 a≤4,所以实数 a 的取值范围是(-∞,4].

23.夏桂芳. 新高考强化了导数应用——不等式恒成立与有解问题辨析

23.夏桂芳. 新高考强化了导数应用——不等式恒成立与有解问题辨析
min
① 2 2 ( x -1 ) = , x x
= f ( 1 ) = -1.
9 , 2
1] x2 , 又∵ 对于( 0 , 内的任意实数 x1 , 恒有 f ( x1 ) ≥ g( x2 ) 成立, 即 f min( x) ≥ g man( x) , x∈( 0 , 1) , ∴ 1 ≥g( x) 点评
2
增函数, 1 2) , 所以对任意 x1 ∈ ( 0 , 有 f ( x1 ) ≥ f ( 1 ) = - , 2 1, 2] , 又已知存在 x2 ∈[ 使 f ( x1 ) ≥ g ( x2 ) , 所以 - 1 x2 ∈ [ 1 , 2] , ≥ g ( x2 ) , 2 1 , 2
17 +∞ ) . 即实数 b 取值范围是[ , 8 点评 2) , 关 键 是 对“若 对 任 意 x1 ∈ ( 0 , 存在 x2 ∈ [ 1 , 2] , 使 f ( x1 ) ≥ g ( x2 ) ” 这句话的理解, 学生在这
72 檷殟 檷檷檷檷檷殟
( 2011 年第 4 期·高中版)
· 九头鸟茶楼 ·
等知识点的交汇处出现, 一直是中学数学的一个重点. 在新课程 高 考 试 题 中, 不等式恒成立与有解的问 题, 经常与参数的范围联系在一起, 成为新高考的一个 亮点 . “恒成立与有解问题 ” 考场实践证明, 考生容易把 弄 使之成为高考中的一个难点 . 本文通过对“恒成立与 混, 的辨析, 看看导数在新高考中应用的强化 . 有解问题 ” 考题 ln x - ( 2010 年山东理数 22 题) 已知函数 f ( x ) = 1 3 x + -1 , g ( x ) = x2 -2 bx +4 , 2) , 若对任意 x1 ∈ ( 0 , 4 4x 分析 g( x) , 给出了两个函数 f ( x ) 、 其中一个函数

高中数学不等式恒成立与有解问题

高中数学不等式恒成立与有解问题

高中数学不等式恒成立与有解问题不等式恒成立与有解问题一直是中学数学的重要内容. 它是函数、数列、不等式等内容交汇处的一个较为活跃的知识点,随着中学数学引进导数,它为我们更广泛、更深入地研究函数、不等式提供了强有力的工具. 在近几年的高考试题中,涉及不等式恒成立与有解的问题,有时在同一套试题中甚至有几道这方面的题目。

其中,特别是一些含自然对数和指数函数的不等式恒成立与有解问题,将新增内容与传统知识有机融合,用初等方法难以处理,而利用导数来解,思路明确,过程简捷流畅,淡化繁难的技巧,它不仅考查函数、不等式等有关的传统知识和方法,而且还考查极限、导数等新增内容的掌握和灵活运用. 它常与思想方法紧密结合,体现能力立意的原则,带有时代特征,突出了高考试题与时俱进的改革方向. 因此,越来越受到高考命题者的青睐. 下面通过一些典型实例作一剖析.1.不等式恒成立与有解的区别不等式恒成立和有解是有明显区别的,以下充要条件应细心思考,甄别差异,恰当使用,等价转化,切不可混为一团.(1)不等式f(x)<k 在x ∈I 时恒成立•k•x f ,)(max <⇔x ∈I. 或f(x)的上界小于或等于k ;(2)不等式f(x)<k 在x ∈I 时有解•k•x f ,)(min <⇔x ∈I. 或f(x)的下界小于k ;(3)不等式f(x)>k 在x ∈I 时恒成立•k•x f ,)(min >⇔x ∈I. 或f(x)的下界大于或等于k ;(4)不等式f(x)>k 在x ∈I 时有解•k•x f ,)(max >⇔x ∈I. 或f(x)的上界大于k ;解决不等式恒成立和有解解问题的基本策略常常是构作辅助函数,利用函数的单调性、最值(或上、下界)、图象求解;基本方法包括:分类讨论,数形结合,参数分离,变换主元等等.例1 已知两函数f(x)=8x 2+16x-k ,g(x)=2x 3+5x 2+4x ,其中k 为实数.(1)对任意x ∈[-3,3],都有f (x)≤g(x)成立,求k 的取值范围;(2)存在x ∈[-3,3],使f (x)≤g(x)成立,求k 的取值范围;(3)对任意x 1x 2∈[-3,3],都有f (x 1)≤g(x 2),求k 的取值范围.解析 (1)设h(x)=g(x)-f(x)=2x 2-3x 2-12x+k ,问题转化为x ∈[-3,3]时,h(x)≥0恒成立,故h m in (x)≥0.令h′ (x)=6x 2-6x-12=0,得x= -1或2.由h(-1)=7+k ,h(2)=-20+k ,h(-3)=k-45,h(3)=k-9,故h m in (x)=-45+k ,由k-45≥0,得k≥45.(2)据题意:存在x ∈[-3,3],使f (x)≤g(x)成立,即为:h(x)=g(x)-f(x)≥0在x ∈[-3,3]有解,故h m ax (x)≥0,由(1)知h m ax (x )=k+7,于是得k≥-7.(3)它与(1)问虽然都是不等式恒成立问题,但却有很大的区别,对任意x 1x 2∈[-3,3],都有f (x 1)≤g(x 2)成立,不等式的左右两端函数的自变量不同,x 1,x 2的取值在[-3,3]上具有任意性,因而要使原不等式恒成立的充要条件是:]3,3[,)()(min max ••x •x g x f -∈≤,由g′(x)=6x 2+10x+4=0,得x=-32或-1,易得21)3()(min -=-=g x g ,又f(x)=8(x+1)2-8-k ,]3,3[•x -∈. 故.120)3()(max k f x f -==令120-k≤-21,得k≥141.点评 本题的三个小题,表面形式非常相似,究其本质却大相径庭,应认真审题,深入思考,多加训练,准确使用其成立的充要条件2.不等式有解问题例3 设x=3是函数f(x)=(x 2+ax+b)e x -3,x ∈R 的一个极值点.(1)求a 与b 的关系(用a 表示b ),并求f(x)的的单调区间;(2)设a>0,g(x)=x e a ⎪⎭⎫ ⎝⎛+4252,若存在S 1,S 2∈[0,4],使得|f(S 1)-g(S 2)|<1成立,求a 的取值范围.解析 (1)x e a b x a x x f --+-+-='32])2([)(,由)3(f '=0得b=-2a-3. 故f(x)=(x 2+ax-2a-3)x e -3. 因为)(x f '=-[x 2+(a-2)x-3a-3] x e -3=-(x-3)(x+a+1) x e -3. 由)(x f '=0得:x 1=3,x 2==-a-1. 由于x=3是f(x)的极值点,故x 1≠x 2,即a≠-4.当a<-4时,x 1<x 2,故f(x)在(]3,•∞-上为减函数,在[3,-a-1]上为增函数,在[)+∞--,1•a 上为减函数.当a>-4时,x 1>x 2,故f(x)在(]1,--∞-a •上为减函数,在[-a-1,3]上为增函数,在[)+∞,3•上为减函数.(2)由题意,存在S 1,S 2∈[0,4],使得|f(S 1)-g(S 2)|<1成立,即不等式|f(S 1)-g(S 2)|<1在S 1,S 2∈[0,4]上有解.于是问题转化为|f(S 1)-g(S 2)|m in <1,由于两个不同自变量取值的任意性,因此首先要求出f(S 1)和g(S 2)在[0,4]上值域.因为a>0,则-a-1<0,由(1)知:f(x)在[0,3]递增;在[3,4]递减. 故f(x)在[0,4]上的值域为[min{f(0),f(4)},f(3)]=[-(2a+3)e 3,a+6],而g(x)=x e a ⎪⎭⎫ ⎝⎛+4252在[0,4]上显然为增函数,其值域⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++422425,425e a •a . 因为4252+a -(a+6)=⎪⎭⎫ ⎝⎛-21a 2≥0, 故4252+a ≥(a+6).|f(S 1)-g(S 2)|m in =4252+a -(a+6)从而解230,01)6(4252<<⎪⎩⎪⎨⎧><+-+a ••••a a a 得. 故a 的取值范围为⎪⎭⎫ ⎝⎛23,0••. 假若问题变成:“对任意的S 1,S 2∈[0,4],使得|f(S 1)-g(S 2)|<1都成立,求a 的取值范围.”则可将其转化为|f(S 1)-g(S 2)|m ax <1点评 函数、不等式、导数既是研究的对象,又是决问题的工具. 本题从函数的极值概念入手,借助导数求函数的单调区间,进而求出函数 闭区间上的值域,再处理不等式有解问题. 这里传统知识与现代方法交互作用,交相辉映,对考生灵活运用知识解决问题的能力是一个极好的考查.3.不等式恒成立问题例2 设函数f(x)=(x+1)ln(x+1),若对所有x≥0,都有f(x)≥ax 成立,求实数a 的取值范围.解析 构作辅助函数g(x)=f(x)-ax=(x+1)ln(x+1)-ax ,原问题变为g(x)≥0对所有的 x≥0恒成立,注意到g(0)=0,故问题转化为g(x)≥g(0)在x≥0时恒成立,即函数g(x)在[)∞+••,0为增函数.于是可通过求导判断g(x)的单调性,再求出使g(x)≥g(0)成立的条件.g′(x)=l n(x+1)+1-a ,由g′(x)=0,得x=e1-a -1. 当x>e 1-a -1时,g′(x)>0,g(x)为增函数.当-1<x<e 1-a -1时,g′(x)<0,g(x)为减函数.那么对所有的x≥0,都有g(x)≥g(0),其充要条件是e 1-a -1≤0,故得a 的取值范围是(]1,••∞-.假若我们没有注意到g(0)=0,那么在解g(x)≥0对所有的x≥0恒成立时,也可转化为)0(0)(min ≥≥x x g ,再以导数为工具,稍作讨论即可得解.值得一提的是,本题还有考生采用参数分离法求解:由f(x)=(x+1)ln(x+1)≥ax 对所有的x≥0恒成立可得:(1)当x=0时,a ∈R . (2)当x>0时,.)1ln()1(x x x a ++≤设g(x)=xx x )1ln()1(++,问题转化为求g(x)在开区间(0,+∞)上最小值或下界,2)1ln()(x x x x g +-=',试图通过g′(x)=0直接解得稳定点,困难重重!退一步令h(x)=x-ln(x+1),因为0,111)(>+-='•x •x x h ,故)(x h '>0,则h(x)在(0,+∞)单调递增,即h(x)>h(0)=0,从而)(x g '>0,于是g(x)在(0,+∞)单调递增,故g(x)无最小值,此时,由于g(0)无意义,g(x)的下界一时也确定不了,但运用极限知识可得:)(lim )(0x g x g x →>,然而求此极限却又超出所学知识范围,于是大部分考生被此难关扫落下马,无果而终. 事实上采用洛比达法则可得:1]1)1[ln(lim )1ln()1(lim )(lim 000=++=++=→→→x xx x x g x x x ,故x>0时,g(x)>1,因而a≤1.综合(1)(2),得a 的取值范围是:(]1,••∞-. 点评 采用参数分离法求解本题,最大的难点在于求分离后所得函数的下界.它需要考生拥有扎实的综合素质和过硬的极限、导数知识,并能灵活地运用这些工具来研究函数的性态,包括函数的单调性,极值(最值)或上下界.突出考查了函数与方程思想、有限与无限的思想.。

不等式有解与恒成立问题

不等式有解与恒成立问题

不等式恒成立与能成立问题学号 姓名不等式恒成立指不等式对指定其间上的任意值都成立;不等式能成立指不等式在指定其间上至少有一个解(或称有解)。

下面从三个例子针对这两类问题的解决策略作比较说明。

例1.(1)若不等式()350x a -+<在[]1,1x ∈-内恒成立,求实数a 的取值范围。

(2).若不等式()350x a -+<在[]1,1x ∈-内能成立,求实数a 的取值范围。

例2.(1)若不等式22310x x m ++-≥在[]0,1x ∈内恒成立,求实数m的取值范围. (2)若不等式22310x x m ++-≥在[]0,1x ∈有解,求实数m的取值范围.例3.(1)若不等式245462x x a x -+≤+-在[]3,5x ∈内恒成立,求实数a的取值范围. (2)若不等式245462x x a x -+≤+-在[]3,5x ∈内有解,求实数a的取值范围。

总结:1.不等式恒成立与能成立(有解)解法策略比较:2.恒成立的参数范围是有解的参数范围的子集。

3. 不等式恒成立与能成立(有解)问题都是转化为最值解决。

作业:1.已知关于x 的不等式2350x a +-<。

(1)若此不等式对[]1,5x ∈上恒成立,求实数a的取值范围。

(2)若此不等式对[]1,5x ∈上能成立,求实数a的取值范围。

2.已知关于x 的不等式20x a +>。

(1)若此不等式对[]1,2x ∈上恒成立,求实数a的取值范围。

(2)若此不等式对[]1,2x ∈上能成立,求实数a的取值范围。

3. 已知关于x 的不等式2+2310x x a -+>。

(1)若此不等式对[]0,1x ∈上恒成立,求实数a的取值范围。

(2)若此不等式在[]0,1x ∈上有解,求实数a的取值范围。

4. 若不等式4213a x x +≤+-在[]0,1x ∈内有解,求实数a的取值范围。

不等式恒成立与有解问题解法综述

不等式恒成立与有解问题解法综述
重庆
不等式恒 成立 与有解 的问题 重 点 内容


所 以 k+ 3≤ 1
点 评


2

上 述 3 个小题


表 面 上 非常相 似 但 本 质却

完全 不 同 同时 与前 面所 给 的充 要 条件 的形

曾拥 军
式也不
样 故需要 构造辅助 函数


^ (
z
)

再 准确使用
其成立 的充要 条件解决 直是 中学 数 学 的
重庆维普
通法研 究
g
(z )恒

成立

对任意

)
O

x
E
[


1

1
] 都有

^ (z )

0
恒成

f

故 队(z ) ]


易知 [^ (z

愚≤ 2

]


^ (
1)



2

所 以 愚

2
)

( 2 )令 ^ (z )

厂( z )

-
g
(x )




它与 函数 数列


不 等式都有关 系

特别是

z
2
0
设 函 数 ,( z )
)≥
a x

1


(矿
一 一

函数不等式有解与恒成立问题

函数不等式有解与恒成立问题

课程:函数不等式的恒成立与有解问题讨论含参数方程解的问题的主要方法方程 f x a的解可以看成两个函数y f x , y a 的交点横坐标(1)已知一元二次方程两解的具体分布情况可用一元二次方程根的分布求解(2)方程 f x a在x D 上解的个数即两个函数y f x ,y a在x D 上的交点个数利用参变量分离加数形结合解决。

(3)方程 f x g x (其中y f x , y g x 是两个不同类型的函数)也可通过研究两个函数y f x , y g x 的交点来解决。

不等式恒成立问题不等式 f x g x 反映的是两个函数y f x , y g x 图像的位置关系(1)函数思想f x 0在x D 上恒成立,即 f x min x D 0f x 0在x D上恒成立,即 f x max xD 0(2)参变量分离f x a在x D上恒成立,即 f x min x D af x a在x D上恒成立,即 f x max x D a(3)数形结合f xg x 在x D 上恒成立,即在x D 上y f x 的图像始终在y g x 图像上方。

二、例题分析例1、(1)若关于x的方程9x a 4 3x4 0有实数解,求实数a的取值范围。

(2)若关于x的方程k 9x k 3x 16 k 5 0在x 0,2 上有实数解,求实数k的取值范围。

练习1、若关于x的方程4x k 2x k 3 0只有一个实数解,求实数k的取值范围(有两解、无解、有解)例2、实数a取何值时,方程lg x 1 lg 3 x lg 1 ax 有一解、两解、无解?练习2、当a满足什么条件时,方程lg x2 20x lg 8x 6a 3 0 有唯一解例3、已知关于x的不等式k 4x 2x 1 6k 0 (1)若不等式的解集为x 1 x log23 ,求实数k 的值2)若不等式的解集为x 1 x log23 的子集,求实数k的取值范围3)若不等式对任意x x1 x log23 恒成立,求实数k的取值范围练习3、(1)已知二次函数 f x ax2x a R, a 0 ,如果x 0,1 时,恒有 f x 1,求实数 a 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式恒成立、有解问题
1.已知()22f x x x a =++对任意x R ∈()0f x >恒成立,试求实数a 的取值范围;
★提炼:最高次项系数含有参数时要注意讨论其为0的时候
2.已知()223f x ax x =-+(2()2f x x ax =-+)
(1)1,3,2
x ⎡⎤∃∈⎢⎥⎣⎦()0f x ≥,试求实数a 的取值范围; (2)1,3,2
x ⎡⎤∃∈⎢⎥⎣⎦()0f x <,试求实数a 的取值范围;
★提炼:
(1)不管当0>a 还是0<a 时,],[0)(βα∈>x x f 在有解⇔()0f α>或()0f β>
(2)也可以用该命题的否定转化为恒成立的问题求解(如上一题)
(3)也可以分离参数用数形结合求解
(4)若在区间D 上存在实数x 使不等式()A x f >成立,则等价于在区间D 上()max f x A >;
若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上的()min f x B <.
3.设函数2()1f x x =-,对任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭,24()(1)4()x f m f x f x f m m ⎛⎫-≤-+
⎪⎝⎭
恒成立,则实数m 的取值范围是
变型题1:对于R x ∈,不等式031222>++-x a x 恒成立,则实数a 的取值范围是
变型题2:已知函数x
a x f 21)(+-
=。

(1)解关于x 的不等式0)(>x f 。

(2)若02)(≥+x x f 在(0,+∞)上恒成立,求a 的取值范围。

★提炼:(1)解决恒成立问题通常可以利用分离变量转化,其中分离的可能是关于参数的代数式。

分离过的变量的代数式通常有对号函数式、二次函数式、反比例函数式、分子分母分别为一次和二次代数式等。

(2) 将参数与变量分离,即化为()()g f x λ≥(或()()g f x λ≤)恒成立的形式;
(3) 求()f x 在x D ∈上的最大(或最小)值;
(4) 解不等式()max ()g f x λ≥(或()()min g f x λ≤) ,得λ的取值范围。

(5)分离参数的前提有一是好分离二是分离过后的代数式要好求最值,求最值的方法常见的有(参考求最值的常用方法)
4.若对于任意1a ≤,不等式2(4)420x a x a +-+->恒成立,求实数x 的取值范围
★提炼:主参换位法,主要是在告知参数范围的情形下使用,而且一般是参数为一次式
5.若不等式kx x ≥+|1|对一切R x ∈恒成立,求实数k 的取值范围.
变型题:若11||2
x a x -+≥对一切0x >恒成立,则a 的取值范围是
★提炼:数形结合,能够将代数式分解为两部分,并能将两部分的函数图像在同一坐标系中画出来。

6.已知两函数2()816,f x x x k =+-32()254g x x x x =++,其中k 为实数。

(1)对任意[]3,3x ∈-,都有()()f x g x ≤成立,求k 的取值范围.
(2)存在[]3,3x ∈-,使()()f x g x ≤成立,求k 的取值范围.
(3)对任意[]123,3x x ∈-、,都有12()()f x g x ≤,求k 的取值范围.
(4)对任意[]13,3x ∈-,[]23,3x ∃∈-使12()()f x g x ≤,求k 的取值范围.
(5)对任意[]13,3x ∈-,[]23,3x ∃∈-使12()()f x g x ≥,求k 的取值范围.
(6) []13,3x ∃∈-,[]23,3x ∃∈-使12()()f x g x ≥,求k 的取值范围。

变型题1:(2010山东理数)(22)(本小题满分14分) 已知函数1()ln 1a f x x ax x -=-+
-()a R ∈. (Ⅰ)当12
a ≤时,讨论()f x 的单调性; (Ⅱ)设2()24g x x bx =-+ 当14
a =时,若对任意1(0,2)x ∈,存在[]21,2x ∈,使 12()()f x g x ≥,求实数
b 取值范围.
★提炼:函数不等式恒成立与有解的解题思路主要有构造函数用单调性、 分离参数用单调性、基本不等式、一个函数的最(大)小值(小)大于另一个函数的最(小)大值、一个函数的最(大)小值(小)大于另一个函数的最(大)小值、等。

8.已知函数1ln )1()(2+++=ax x a x f
(I )讨论函数)(x f 的单调性;
(II )设1-<a .如果对任意),0(,21+∞∈x x ,1212|()()|4||f x f x x x -≥-,求a 的取值范围
变型题:已知函数3
()f x x ax b =++,对于12,x
x ⎛∈ ⎝⎭ (12x x ≠)时总有
1212|()()|||f x f x x x -<-成立,求实数a 的范围.
★提炼: 由导数的几何意义知道,函数()y f x =图像上任意两点1122(,),(,)P x y Q x y )连线的斜率2121
y y k x x -=- (12x x ≠)的取值范围,就是曲线上任一点切线的斜率(如果有的话)的范围,利用这个结论,可以解决形如1212|()()|||f x f x x x -≥-或1212|()()|||f x f x m x x -≥-(0m >)型的不等式恒成立问题。

相关文档
最新文档