七年级数学下册 第8章 二元一次方程组 8.3 实际问题与二元一次方程组(二)教案 新人教版

合集下载

七年级数学人教版下册课件8.3实际问题与二元一次方程组

七年级数学人教版下册课件8.3实际问题与二元一次方程组
题中有哪些等量关系?
30头大牛和15头小牛一天需用饲料675kg; (30+12)头大牛和(15+5)头小牛一天需用饲料940kg.
新知探究
30头大牛和15头小牛一天需用饲料675kg; (30+12)头大牛和(15+5)头小牛一天需用饲料940kg.
如何用二元一次方程组表示上面的两个等量关系? 可设每头大牛和小牛平均1天各需用的饲料为 x kg和 y kg. 30x 15y 675 , 42x 20 y 940 .
人教版-数学-七年级-下册
二元一次方程组
8.3 实际问题与二元一次方程组 课时1
知识回顾-课堂导入-新知探究-随堂练习-课堂小结-拓展提升
知识回顾
解二元一次方程组的方法有哪些? 代入消元法和加减消元法.
用代入消元法解二元一次方程组的步骤:
变形
代入
求解
回代
用加减消元法解二元一次方程组的步骤:
变形
加减
基本关系:路程=速度×时间;
同学们可以先独立分析问题中的数量关系,列出方程组,得出问题的解答,然后再互相交流.
(2)求 A、B 两工程队分别整治河道多少米.
A.24岁,14岁
B.26岁,14岁
拓展提升
A 工程队用的时间 A 工程队治理的米数
B 工程队用的时间 B 工程队治理的米数
拓展提升
(2)求 A、B 两工程队分别整治河道多少米.
A 工程队整治河道的米数为 12x=60, B 工程队整治河道的米数为 8y=120. 答:A 工程队整治河道 60 米,B 工程队整治河道 120 米.
未知量有每头大牛1天需用的饲料和每 头小牛1天需用的饲料.
新知探究
探究1 养牛场原有30头大牛和15头小牛,1天约用饲料675 kg; 一周后又购进12头大牛和5头小牛,这时1天约用饲料940 kg.饲 养员李大叔估计每头大牛1天约需饲料18~20 kg,每只小牛1天 约需饲料7~8 kg.你能通过计算检验他的估计吗?

人教版七年级下册数学知识点归纳:第八章二元一次方程组

人教版七年级下册数学知识点归纳:第八章二元一次方程组

人教版七年级下册数学知识点归纳第八章 二元一次方程组8.1 二元一次方程组1.二元一次方程:含有两个未知数的方程并且所含未知项的最高次数是1,这样的整式方程叫做二元一次方程。

2.方程组:有几个方程组成的一组方程叫做方程组。

如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。

二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。

二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。

8.2 消元——解二元一次方程组二元一次方程组有两种解法:一种是代入消元法,一种是加减消元法.1.代入消元法:把二元一次方程中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

2.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。

8.3 实际问题与二元一次方程组 实际应用:审题→设未知数→列方程组→解方程组→检验→作答。

关键:找等量关系常见的类型有:分配问题、追及问题、顺流逆流、药物配制、行程问题 顺流逆流公式: v v v =+顺静水 v v v =−逆静水8.4 三元一次方程组的解法三元一次方程组:方程组含有三个未知数,每个方程中含有未知数的项的次数都是1,并且一共有三个方程组,像这样的方程组叫做三元一次方程组。

解三元一次方程组的基本思路:通过“代入”或“加减”进行消元。

把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程。

8.3实际问题与二元一次方程组——探究2(课件)-2022—2023学年数学七年级下册(人教版)

8.3实际问题与二元一次方程组——探究2(课件)-2022—2023学年数学七年级下册(人教版)
解:设长方形的长为xcm,宽为ycm, 由题意得:
Ⅱ 2
y X-4
x 4 y 2,
Ⅰ 4
解得: 2( x 4) 4 y
x=8 y=2
答:原长方形长为8cm,宽为2cm。
某校现有校舍20000m2计划拆除部分旧校舍,改建新校舍,使校 舍总面积增加30%.若建造新校舍的面积为被拆除的旧校舍面积 的4倍,那么应该拆除多少旧校舍,建造多少新校舍?
解:设小长方形长为xcm,宽为ycm.
根据题意 ,得 x+3y=19
x=10
解得
7+3y=2y+x
y=3
1
小结
实际问题 设未知数、找等量关系、列方程(组)
数学问题
[方程(组)]
实际问题 的答案
双检验
解 方 程 ( 组 )
数学问题的解
为长方形AEFD和BCFE.设AE=xm,BE=ym,由题意得:
x+y=200 100x×4=3×100y
D
F

C

解这个方程组,得
x=120
A
E
x
B y
y=80
答:过长方形土地的长边上离一端约___1_2_0__m处,作这条边的
垂线,把这块地分为两个长方形土地.较大一块地种__甲__作物,
较小一块地种__乙__作物.
拓展提升
小明在拼图时发现8个一样大小的长方形恰好拼成一个大的 长方形,如图1所示.小红看见了,说:“我也来试一试.“结 果小红七拼八凑,拼成如图2那样的正方形,但中间留下了一个 洞,恰好是边长为2mm的小正方形,你能算出每个长方形的长和 宽是多少吗?
复习:
列方程组解应用题的基本步骤: 1、审题 2、设未知数 3、列方程组 4、解方程组 5、检验 6、作答

人教版数学七年级下册 8.3 实际问题和二元一次方程组2-提升版-销售、顺逆、相遇、追击、环路、其

人教版数学七年级下册  8.3 实际问题和二元一次方程组2-提升版-销售、顺逆、相遇、追击、环路、其

第8章第3节实际问题与二元一次方程组2
辅导科目
数学年级七年级教材版本人教版
讲义类型提升版(适用于考试得分率介于60%-80%之间的学员)
教学目的1.以含有多个未知数的实际问题为背景,让学生经历“分析数量关系,设未知数,列方程组,解方程组和检验结果”的过程,体会方程组是刻画现实世界中含有多个未知数问题的数学模型。

2. 使学生熟练掌握用方程组解决实际问题。

重、难点重点:销售问题、顺逆问题、相遇问题、追击问题、环路问题、工程问题难点:从实际问题中抽象出方程组
授课时长建议授课时长2小时
教学内容
【课程导入】
张强和李毅二人分别从相距20千米的A.B两地出发,相向而行,如果张强比李毅早出发30分钟,那么在李毅出发后2小时,他们相遇;如果他们同时出发,那么1小时后两人还相距11千米。

求张强、李毅每小时各走多少千米。

【新知讲解】
※知识点六:其它行程问题
常见的主要有过桥、错车、上下坡/变速问题。

1. 过桥问题
车辆或火车行驶的路程=桥梁(隧道)长度+车身长度
2. 错车问题
①相遇错车问题(相向而行)

结论:两车相向而行,路程为两车车长总和,速度为两列车的速度之和;
②追击错车问题(同向而行)

结论:两车同向而行,路程为两车车长总和,速度为两列车的速度之差;
※例题
1. 已知某一铁路桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整列火车完全在桥上的时间为40秒钟,求火车的长度和火车的速度。

2020——2021学年人教版数学七年级下册第八章二元一次方程组8.3实际问题与二元一次方程(二)

2020——2021学年人教版数学七年级下册第八章二元一次方程组8.3实际问题与二元一次方程(二)

实际问题与二元一次方程(二)一.二元一次方程组的应用--看图列式1.根据图中所给出的信息,求出每个篮球的价格是______元,每个羽毛球的价格是______元。

2.元旦快到了,吴老师打算购买气球装扮教室,气球的种类有笑脸和爱心两种,两种气球的价格不同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为多少?3.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为多少?4.在学校组织的游艺晚会上,掷飞标游艺区游戏区规则如下,如图掷到A区和B区的得分不同,A区为小圆内部分,B区为大圆内小圆外部分(掷中一次记一个点)现统计小华、小明和小芳掷中与得分情况,如图所示,依此方法计算小芳的得分为______分5.如图,长方形ABCD中有6个形状、大小相同的小长方形,根据图中所标尺寸,则图中阴影部分的面积之和为______cm2。

二.二元一次方程组的应用--长方形周长面积问题1.如图,四个一样的长方形围成一个正方形,外面的大正方形周长是40、里面的小正方形周长是24,则小长方形的面积是多少?2.如图,四个一样的小长方形和一个大长方形围成一个正方形,正方形周长是32,则大长方形的面积是多少?3.四个一样的小长方形拼成一个大长方形、大长方形的周长是120,小长方形的面积是多少?4.如图,在长方形ABCD中,放入六个形状、大小相同的小长方形(即空白的长方形),若AB=16cm,EF=4cm,则一个小长方形的面积为多少?5.如图,长方形ABCD中放置9个形状大小都相同的小长方形,相关数据如图,则图中阴影部分面积为()三.二元一次方程组的应用--分段问题1.某旅游景点的门票价格如下表:某旅行社计划帶甲、乙两个旅行团共100多人计划去游览该景点,其中甲旅行团人数少于50人,乙旅行团人数有50多人但不足100人,如果两旅行团都以各自团体为单位单独购票,则一共支付7965元;如果两旅行团联合起来作为一个团体购票,则只管花费7210元.问两旅行团各有多少人?2.某市为了鼓励居民节约用水,决定实行两级收费制度,若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水22吨,交水费53元;4月份用水18吨,交水费36元.求每吨水的政府补贴优惠价m和市场价n分别是多少元?3.假如娄底市的出租车是这样收费的:起步价所包含的路程为0~1.5千米,超过1.5千米的部分按每千米另收费.小刘说:“我乘出租车从市政府到娄底汽车站走了4.5千米,付车费10.5元.”小李说:“我乘出租车从市政府到娄底汽车站走了6.5千米,付车费14.5元.”那么小张乘出租车从市政府到娄底南站(高铁站)走了5.5千米,应付车费______元4.为建设资源节约型、环境友好型社会,切实做好节能减排工作,我市决定对居民家庭用电实行“阶梯电价”.电力公司规定:居民家庭每月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度),实行“基本电价”;当居民家庭月用电量超过80千瓦时,超过部分实行“提高电价”小张家2017年2月份用电100千瓦时,上缴电费68元;3月份用电120千瓦时,上缴电费88元。

8-3-2 实际问题与二元一次方程组(2)(教学课件)七年级数学下册(人教版)

8-3-2 实际问题与二元一次方程组(2)(教学课件)七年级数学下册(人教版)
xm2
新校舍面积=被拆除旧校舍面积×4
校舍总面积=20000×(1+30%)
ym2
例1.某校现有校舍20000m2,计划拆除部分旧校舍,改建新校舍,使校舍总面
积增加30%.若建造新校舍的面积为被拆除的旧校舍面积的4倍,那么应该拆
除多少旧校舍,建造多少新校舍?(单位为m2)
解:设拆除旧校舍为xm2,新建校舍为ym2,
例3.甲、乙两人同时加工一批零件,前3小时两人共加工126件,后5小时中
甲先花了1小时修理工具,之后甲每小时比以前多加工10件,乙由于体力消
耗较大,每小时比原来少加工1件,结果在后5小时内,甲比乙多加工了15
总产量的大小与种植面积、单位面积的产量
有关.
据统计资料,甲、乙两种作物的单位面积产量的比是1:2,现要把
一块长200m、宽100m的长方形土地上种植这两种作物,怎样把这块地分为
两个长方形,使甲、乙两种作物的总产量的比是3:4?
3.①要表示种植面积需假设哪些量?②要表
示单位面积产量呢?
①可假设这两块地的长分别为xm、ym,
DEFC和ABFE,设CF、BF的长分别为xm、ym,甲种作物每平方米产量为a,
则乙种作物每平方米产量为2a.根据题意可得,方程组
x y 100
x y 100
化简,得

100 xa :(100 y 2a) 3 : 4
2x 3 y
x 60
解这个方程组,得
1.能够根据具体的数量关系,列出二元一次方程组解决简单的实际问题;
(重点)
2.学会利用二元一次方程组解决几何图形等问题.(重点、难点)
用二元一次方程组解决实际问题的步骤:
数量关系

七年级数学下册(人教版)8.3.2实际问题与二元一次方程组(第二课时)说课稿

-保持字体大小和行间距适中,便于学生阅读。
-在讲解过程中适时擦除非重点内容,避免信息过载。
(二)教学反思
1.可能的问题与挑战:
-部分学生对实际问题转化为方程组的步骤理解不深。
-在解方程组时,学生可能会对代入法和加减法的运用感到困惑。
-学生在合作学习中的参与度和互动性可能不均衡。
2.应对策略:
-通过具体例题和互动讨论,加深学生对问题转化过程的理解。
1.课堂练习:布置一些具有代表性的题目,让学生独立完成,检验学生对知识的掌握程度。
2.小组讨论:设计一些实际问题,让学生分组讨论,共同解决,培养学生的团队协作能力。
3.数学游戏:设计一个与二元一次方程组相关的数学游戏,让学生在游戏中巩固知识,提高学生的学习兴趣。
(四)总结反馈
在总结反馈阶段,我将采取以下措施引导学生自我评价,并提供有效的反馈和建议:
2.提出问题:引导学生思考如何列出方程组来解决这个问题,从而引出本节课的主题——实际问题与二元一次方程组。
3.激发兴趣:通过提问和鼓励学生发表见解,激发学生对解决实际问题的兴趣和好奇心。
(二)新知讲授
在新知讲授阶段,我将按以下步骤逐步呈现知识点,引导学生深入理解:
1.分析问题:带领学生分析导入情境中的问题,引导学生发现数量关系,列出相应的二元一次方程组。
(二)学习障碍
在学习本节课之前,学生应具备以下前置知识或技能:
1.掌握一元一次方程的解法。
2.理解方程组的初步概念。
3.能够进行基本的代数运算。
可能存在的学习障碍包括:
1.对实际问题转化为数学模型的过程理解不深,难以建立正确的方程组。
2.在解方程组时,对于代入法和加减法的运用不够熟练,容易出错。
3.部分学生对数学语言的理解和运用能力较弱,导致在实际问题中难以准确把握数量关系。

人教版七年级数学下册精品课件 第八章 8.3 第1课时 利用二元一次方程组解决实际问题


40 y
370
解得
x 25,
y15.
答:甲种票25张,乙种票15张.
2020/6/11
3.课本中介绍我国古代数学名著《孙子算经》上有这 样的一道题:今有鸡兔同笼,上有三十五头,下有 九十四足,问鸡兔各多少只?
解:设鸡有x只,兔有y只. 则2x xy4y3594
解得
x 23,
y12.
答:鸡有23只,兔有12只.
2020/6/11
剧情发展:随着养牛场规模逐渐扩大,李大叔需聘 请饲养员协助管理现有的42头大牛和20头小牛,已 知甲种饲养员每人可负责8头大牛和4头小牛,乙种 饲养员每人可负责5头大牛和2头小牛,请问李大叔 应聘请甲乙两种饲养员各多少人?
解:设李大叔应聘请甲种饲养员x人,乙种饲养员 y人,则:
根据题意,可列方程组:
x 60
y 80
10
x
y
15.
60 40
解方程组,得
x 300
y400
所以,小明家到学校的距离为700m.
2020/6/11
方法二(间接设元法) 解:设小华下坡路所花时间为xmin,
上坡路所花时间为ymin.
平路 坡路 距离 距离
上学 60(10 x) 80x
放学 60(15 y) 40 y
2020/6/11
02 横着画,把宽分成两段,则长不变
D
200m
C 解:过点E作EF⊥AD,交
BC于点F.
x
甲种作物 200x 100m
设DE=xm,AE=ym.
E y
F
乙种作物 200y
根据题意列方程组为
x+y=100
A
Hale Waihona Puke B200x:400y=3:4

人教七年级数学下册-实际问题与二元一次方程组(附习题)


探究新知
知识点 和差倍分问题
养牛场原有 30 头大牛和 15 头小牛,1 天约用 饲料 675 kg;一周后又购进 12 头大牛和 5 头小牛, 这时 1 天约用饲料 940 kg.饲养员李大叔估计每只 大牛 1 天约需饲料 18~20 kg,每只小牛 1 天约需 饲料 7 ~8 kg. 你能否通过计算检验他的估计吗?
是否正确的良好习惯.
情景导入
上节课我们学习了运用方程组 解决一些实际问题,这节课我们继 续学习建立二元一次方程组的数学 模型解应用题.
探究新知
知识点 几何图形问题
据统计资料,甲、乙两种作物的单位面积产量 的比是 1:2.现要把一块长 200 m、宽 100 m 的长 方形土地,分为两块小长方形土地,分别种植这两 种作物.怎样划分这块土地,使甲、乙两种作物的 总产量的比是 3:4?
解:设这间会议室共有座位 x 排,该校七年级 有 y 名学生,根据题意,得
12x+11=y 解得: x=12
14x-13=y
y=155
答:这间会议室共有座位 12 排,该校七年级有 155 名学生.
基础巩固
随堂演练
1.现用 190 张铁皮做盒子,每张铁皮可制 8 个 盒身或 22 个盒底,而一个盒身与两个盒底配成一个
综合运用
4.有大小两种货车,2 辆大货车与 3 辆小货车 一次可以运货 15.5 吨,5 辆大货车与 6 辆小货车 一次可以运货 35 吨. 求 3 辆大货车与 5 辆小货车 一次可以运货多少吨?
解:设大车一次可以运货 x 吨,小车一次可以运货
y 吨. 由题意,得 2x 3 y 15.5,①
问题1 要求“这批产品的销售款比原料费与运 输费的和多多少元?”我们必须知道什么?

8-3 二元一次方程组与实际问题-2022 -2023学年七年级数学下册同步教学课件(人教版)


5.从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时走
3 km,平路每小时走 4 km,下坡每小时走 5 km,那么从甲地到
乙地需 54 min,从乙地到甲地需 42 min.甲地到乙地全程是多少?
解:设从甲地 到乙地的上坡路为x km,平路为y km.
x
3
由题意,得 x

因此,我们必须知道产品的数量和原料的数量.
产品x吨
原料y吨
公路运费(元)
1.5×20x
1.5×10y 1.5(20x+10y)
铁路运费(元)
1.2×110x
价值(元)
8 000x
合计
1.2×120y 1.2(110x+120y)
1 000y
知识点3 行程问题
解:设产品xt,原料yt.
1.5
×
20
200x:400y=3:4
A
解得 x=60
y=40
将这块土地分为长200m,宽60m和长200m,宽40m的
两个小长方形分别种植甲、乙两种作物.
B
知识点3 行程问题
探究2
如图,长青化工厂与 A,B 两地有公路、铁路
相连.这家工厂从A地购买一批每吨 1 000元的原料运回
工厂,制成每吨 8 000 元的产品运到 B 地.公路运价
A
E
x=120
解得 y=80
将这块土地分为长120m,宽100m和长100m,宽80m的
两个小长方形分别种植甲、乙两种作物.
B
知识点2 几何问题
2.横着画,把宽分成两段,则长不变
D
解:设DE=xm,AE=ym.
根据题意列方程组为
x+y=100
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.3 再探实际问题与二元一次方程(2)
教学目标1、经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型;
2、能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;
3、学会开放性地寻求设计方案,培养分析
教学难点用方程组刻画和解决实际问题的过程。

知识重点经历和体验用方程组解决实际问题的过程。

教学过程(师生活动)设计理念
创设情境
前面我们初步体验了用方程组解决实际问题的全过程,其实生产、
生活中还有许多问题也能用方程组解决.
(出示问题)据以往的统计资料,甲、乙两种作物的单位面积产量的
比是1:1 :5,现要在一块长200 m,宽100 m的长方形土地上种植这
两种作物,怎样把这块地分为两个长方形,使甲、乙两种作物的总产量
的比是3:4(结果取整数)?
以学生身边的
实际问题展开
学习,突出数学
与现实的联系,
培养学生用数
学的意识。

探索分析研究策略
以上问题有哪些解法?
学生自主探索,合作交流,整理思路:
(1)先确定有两种方法分割长方形;再分别求出两个小长方形的面
积;最后计算分割线的位置.
(2)先求两个小长方形的面积比,再计算分割线的位置.
(3)设未知数,列方程组求解.
……
学生经讨论后发现列方程组求解较为方便.
多角度分析问
题,多策略解决
问题,提高思维
的发散性。

合作交流解决问题
引导学生回顾列方程解决实际问题的基本思路
(1)设未知数
(2)找相等关系
(3)列方程组
(4)检验并作答
如图,一种种植方案为:甲、乙两种作物的种植区域分别为长方
形A EFD和BCFE.设AE=xm,BE=ym,根据问题中涉及长度、产量的数量
关系,列方程组



=

=
+
4
3
100
5.1:
100
200

y
x
y
x
解这个方程组得



⎪⎪


=
=
17
2
94
17
15
105
y
x
过长方形土地的长边上离一端约106 m处,把这块地分
比较分析,加深
对方程组的认
识。

画图,数形结
合,辅助学生分
析。

进一步渗透模
为两个长方形.较大一块地种甲作物,较小一块地种乙作物.你还能设计别的种植方案吗?
用类似的方法,可沿平行于线段AB的方向分割长
方形.
教师巡视、指导,师生共同讲评.型化的思想。

引发学生思考,寻求解决途径。

拓展探究综合应用
学生在手工实践课中,遇到这样一个问题:要用20张白卡纸制作
包装纸盒,每张白卡纸可以做盒身2个,或者做盒底盖3个,如果1
个盒身和2个盒底盖可以做成一个包装纸盒,那么能否将这些白卡纸分
成两部分,一部分做盒身,一部分做盒底盖,使做成的盒身和盒底盖正
好配套?请你设计一种分法.
按以下步骤展开问题的讨论:
(l)学生独立思考,构建数学模型.
(2)小组讨论达成共识.
(3)学生板书讲解.
(4)对方程组的解进行探究和讨论,从而得到实际问题的结果.
(5)针对以上结论,你能再提出几个探索性问题吗?
以学生学
习生活中遇到

问题展开讨论,
巩固用二元一

方程组解决实
际问题的一般
过程,并不断提
高分析问题的
能力.安排开放
题,以利于培养
学生探索精神
和创新意识.
小结与作业
小结提高
提问:通过本节课的讨论,你对用方程解决实际的方法又有何新的认识?
学生思考后回答、整理.
布置作业1、必做题:教科书习题8.3第1(2)、4题。

2、选做题:教科书习题8.3第7题。

3、备选题:
(1)解方程组



=
-
=
+
15
2
3
6
3
5
y
x
y
x
(2)小颖在拼图时,发现8个一样大小的矩形(如图1所示),恰好可
以拼成一个大的矩形.
小彬看见了,说:“我来试一试.”结果小彬七拼八凑,拼成如图2
那样的正方形.咳,怎么中间还留下一个洞,恰好是边长2 mm的小正
方形!
你能帮他们解开其中的奥秘吗?
提示学生先动手实践,再分析讨论.
分层次布1作
业.其中“必
做题”面向全体
学生,巩固知
识、
方法,加深理解
厂选做题”面向
部分学有余力
的学生,给他们

定的时间和空
间,相互合作,
自主探究,增强
实践能力.备选
通供教师参考.
本课教育评注(课堂设计理念,实际教学效果及改进设想)本课所提供的例题、练习题、作业题突出体现以下特点:
1、活动性.学生在图形分割、手工操作、拼图游戏中展开数学问题的讨论,更具趣味性,学生在玩中学、做中学,在增强能力的同时,收获快乐.
2、探索性.问题解决的策略不易获得,问题中的数量关系不易发现,问题中的未知数不
易设定,这为学生开展探究活动提供了机会.
3、开放性.解决问题的策略、方法、问题的结论的开放性设计,意在增强学生的创新意识和培养勇于挑战、克服困难的能力.
如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档