有机电致发光发展历程及TADF材料的发展进展

合集下载

第9章有机电致发光显示

第9章有机电致发光显示

第9章有机电致发光显示
6
电子纸目前最主要的一种应用是电子书阅读器(E-Book Reader) ,这是一种以电子纸为核心部件的便携式电子设备,用于阅读电 子图书报刊。电子纸还可广泛用于广告牌、信用卡、会员卡、钟 表、电子标签、各种 指示器、医疗器械以及数码相框、手机等 便携式消费产品;此外,电子纸目前的市场定位虽不是要取代液 晶显示器,但随着高亮度、高分辨率和高响应速度全彩色电 子 纸技术的发展,其应用将很有可能会扩展到电脑显示器、电视机 等更庞大的应用领域。显然,巨大的商机正在推动着电子纸技术 更快速的发展,电子纸技术的发展 速度和应用范围也许比人们 原来预想的要快得多和宽得多。
第9章有机电致发光显示
7
电子纸的特性
◇反射型显示材料与更高的易读性
我们能够看到纸上的内容是因为它将环境光反射到我们的 眼睛里:白 色部分反射了大量的环境光;而黑色文字(油墨)则吸收了大量光线,使得 文字部分反射光相对非文字部分大量减少,因此在我们眼睛里就形成了“ 白底黑字”的感觉。纸张的特点是通过反射环境光来显示内容且光反射高 达65%,可获得较高的亮度、对比度和可视视角(接近180°)。
第9章有机电致发光显示
11
Gyricon的核心部分是一片看上去与普通纸张类似的透明胶 片,但是在胶片里面分布了高达百万计的直径在100微米左 右大小的带电小球。每个小球的一面 涂上了带负电黑色涂 料,另一面涂上带正电的白色涂料。这些小球被密封在透 明的充满润滑油的硅胶片中。在硅胶片的表面构造了类似 液晶TFT一样的电路,能够 按照需要在不同的位置施加正 电压或者负电压。这样内部泡在润滑油中的带电小球就会 在电场的作用下发生旋转,选择性的将黑色或者白色部分 翻转出来,在宏观上 形成需要显示的文字或者图案。

有机电致发光材料

有机电致发光材料

7. 可实现超薄的大面积平板显示;
8. 良好的机械加工性能,可做成柔性显示器。
OLED器件发光过程
1.载流子的注入:在外加电场作用下,电子和空穴分别从阴极和阳极 注入到夹在电极之间的有机功能薄膜层。 2.载流子的迁移:注入的电子和空穴分别从电子传输层空穴传输层向 发光层迁移。 3.载流子的复合:电子和空穴结合产生激子。 4.激子的迁移:激子在电场作用下迁移,将能量传递给光分子,并激 发电子从基态跃迁到激发态。 5.电致发光:激发态能量通过辐射失活,产生光子,释放能量。
OLED的特点
1. 全固态器件,自发光型,无真空腔,无液态成分,不怕震动,使用方 便; 2. 响应速度快(微秒量级),视角宽(大于160度),工作温度范围宽 (-40℃~80℃); 3. 有机电致发光材料可选范围广,容易得到全色显示;
4. 亮度,效率高;
5. 直流驱动电压低,能耗少,可与集成电路驱动相匹配; 6. 制作工艺简单,成本低;
金属阴极 DC 复合 电源 有机层
e
e
h
光发射
h
透明阳极 衬底
器件主要性能指标
载流子迁移率 :载流子迁移率是指载流子(空穴或电子)在单位电场作用下 在给电定材料中的平均漂移速度,是载流子在电场作用下运动速度的量度, 载流子的漂移速度与迁移率成正比关系。
量子效率:有机电致发光器件的量子效率可用外量子效率和内量子效率来评 价。 外量子效率是指发光器件输出的光子数与注入的电子数之比; 内量子效率则是产生于器件内部的光子数与注入的电子数之比。 能量效率与功率效率:有机电致发光器件的能量效率是指向器件外部辐射的 光功率与外加的电功率之比。 功率效率是指器件每单位面积输出的光通量与输入电功率之比。 器件寿命:器件寿命是指有机电致发光器件实际能够使用的时间长度,通常 以小时表示。

电致发光及其研究进展

电致发光及其研究进展

4)发光色度 由于人眼对不同颜色的感觉不同,所以不能测量颜色, 仅能判断颜色相等的程度。为了客观地描述和测量颜色, 1931年国际照明委员会(CI E)建立了标准色度系统,推荐 了标准照明物和标准观察者。通过测量物体颜色的三刺激 值(X,Y,Z)或色品坐标(x,y,z)来确定颜色。通常,用 色度计来测量颜色。 5)发光寿命 寿命定义为亮度降低到初始亮度的50%时所需的时间。 应用市场要求OLED在连续操作下的使用寿命达到10000
二、电致发光的发光机理
电致发光的发光机理是被加速的过热电子碰撞、激发 发光中心,使发光中心被激发到高能态而发光。
电致发光包括四个基本过程:
(1)载流子从绝缘层和发光层界面处的局域态穿过进 入发光层; (2)载流子在发光层的高电场中加速成为过热电子; (3)过热电子碰撞、激发发光中心; (4)载流子再次被束缚到定域态。
四、有机电致发光的优点及性能参数
1.有机电致发光的优点
有机电致发光比起发展较早的无机电致发光而言, 具有材料选择范围宽、可实现由蓝光区到红光区的全彩 色显示、驱动电压低、发光亮度和发光效率高、视野角 度宽、响应速度快、制作过程相对简单、成本低,并可 实现柔性显示等诸多优点。在制造上,由于采用有机材 料,可以通过有机合成方法获得,与无机材料相比较, 不仅不耗费自然资源,而且还可以通过合成,得到新的 更好性能的有机材料,使OLED的性能不断地向前发展。
一、电致发光的简介
1.发光
光辐射可以分为平衡辐射和非平衡辐射两大类,即 热辐射和发光。任何物体只要具有一定的温度,则该物 体必定具有与此温度下处于热平衡状态的热辐射。非平 衡辐射是指在某种外界作用的激发下,体系偏离原来的 平衡态,如果物体在向平衡态回复的过程中,其多余的 能量以光辐射方式发射,则称为发光。因此发光是一种 叠加在热辐射背景上的非平衡辐射,其持续时间要超过 光的振动周期。

有机电致发光材料..

有机电致发光材料..

4. 亮度,效率高;
5. 直流驱动电压低,能耗少,可与集成电路驱动相匹配; 6. 制作工艺简单,成本低;
7. 可实现超薄的大面积平板显示;
8. 良好的机械加工性能,可做成柔性显示器。
聚合物电致发光二极管(PLED)
PLED,即第二种有机发光材料为高分子聚合物,也称为高分子发光 二极管(PLED),由英国剑桥大学的杰里米伯勒德及其同事首先发现。聚 合物大多由小的有机分子以链状方式结合在一起,以旋涂法形成高分子 有机发光二极管。 作为一种发光显示材料,聚合物发光二极管(PLED)材料具有很强的 应用潜力,因为它是一种自发光的材料,并且还具有制作相对容易的优点。 因此在制作有机发光二极管器件(OLEDs)时,PLED材料是一种很好的基 本材料,因为与小分子OLED材料20 ~25的发光效率相比,PLED材料的 发光效率则为30~40。
驱动电压30V, 但是器件的量子效率很低,小于1% 特点: (1)单层器件;(2)驱动电压高; (3)器件效率低
3). 1987年美国Kodak 公司的邓青云等采用了夹层式的多层器件结构,开创 了有机电致发光的新的时代。
创新点:(1)多功能有机层的结构; (2)超薄的有机层厚度
75nm 60nm驱动Fra bibliotek压小于10V最大外量子效率1%
最大亮度大于1000cd/m2
4).1990年,Burroughs等人将共轭聚合物聚对苯基乙烯(PPV)制作了高 分子发光二极管,简化了制备工艺,开辟了发光器件的又一个新领域, 即聚合物薄膜电致发光器件。
有机电致发光二极管(OLED)
近十多年里,OLED作为一种新型显示技术已经取得了长足的发展, 就器件的发光亮度、发光效率和寿命而言,OLED器件已经基本达到了 实用的要求。

有机电致发光材料研究现状

有机电致发光材料研究现状

<有机化学进展>结课论文题目:有机电致发光材料的研究现状院系:专业:班级:学号:姓名:有机电致发光材料的研究现状摘要:本文对有机电致发光显示器件的发展历史,器件结构、工作特征、发光器件(OLED)的优点、发展现状和趋势等都做了简要的概括。

详细介绍了有机发光材料的研究状况,包括小分子发光材料、高分子(聚合物)发光材料,以及新材料的开发。

最后总结了国外OLED技术的发展状况。

关键词:小分子有机电致发光有机高分子聚合物电致发光Research and developmentof organic electroluminescent materials Abstract Organic light-emitting diodes (OLEDs), having excellent properties of low driving voltage and brightemission, have been extensively studied due to their possible applications for flat panel color displays.At the same time, or-ganic electroluminescent materials have been made with an outstanding progress.And thestatus of organic electrolumi-nescent materials(including evaporated molecules and polymers)were reported in this paper.Key words OLED, organic luminescent materials, evaporated molecules and polymers有机电致发光显示(organic electroluminesence Display)技术被誉为具有梦幻般显示特征的平面显示技术,因其发光机理与发光二极管(LED)相似,所以又称之为OLED(organic light emitting diode)。

红光热活性型延迟荧光材料的研究进展

红光热活性型延迟荧光材料的研究进展

红光热活性型延迟荧光材料的研究进展发布时间:2022-07-28T00:47:42.504Z 来源:《中国科技信息》2022年第6期作者:刘亦凡[导读] 有机电致发光二极管(OLED)具有众多优点,最新一代的OLED材料为热活性型延迟荧光(TADF)材料,克服了传统荧光材料效率不高的缺点,刘亦凡身份证号:******************摘要:有机电致发光二极管(OLED)具有众多优点,最新一代的OLED材料为热活性型延迟荧光(TADF)材料,克服了传统荧光材料效率不高的缺点,具有巨大的应用前景。

红光TADF材料由于发光波长较长,有着非辐射衰减较大的缺点,因此设计高效高色纯度的红光TADF材料是OLED的重要研究方向之一。

本文介绍了TADF的机理,并综述了红光TADF材料的研究进展。

关键词:红光TADF有机电致发光二极管(Organic Light-Emitting Diode,OLED) 由于其独特的灵活性、较宽的工作温度、优良的对比度、高效率和低功耗[1]等特性,正在掀起新一代平板显示技术的革命。

该领域的研究最早可追溯到20世纪60年代,Pope 等人发现了蒽单晶的电致发光现象[2]。

到了20世纪80年代,邓青云等人通过真空蒸镀法制成了发光二极管器件,获得了社会的广泛关注。

第一代OLED主要是基于荧光材料。

从理论层面来看,荧光材料的电子从三重态激发能级到基态能级的辐射跃迁受到了阻禁,无法转化为光辐射,而在电激发下,三重态激子占比3/4,也就是说第一代OLED的理论极限内量子效率(IQE)仅有25%[3],外量子效率最高为5%。

理论效率低下严重阻碍了基于荧光材料的OLED的发展。

第二代OLED则是基于磷光材料,其IQE可达到100%[4],但是由于磷光材料包含贵金属,仍然很难商业化应用。

最新一代的OLED材料则采用热活性型延迟荧光( thermally activated delayed fluorescence,TADF) 材料,这种材料所制成的OLED器件理论IQE同样可以达到100%,并且不使用贵金属,具有巨大的发展潜力。

有机电致发光材料与器件

有机电致发光材料与器件

有机电致发光材料与器件有机电致发光器件发展及展望综述有机电致发光器件发展及展望综述中文摘要有机电致发光器件(organic light-emitting device, OLED)目前已成为平板信息显示领域的一个研究热点。

OLED具有平板化、自发光、色彩丰富、响应快、视野宽及易于实现超薄轻便等优点,被认为是未来最有可能替代液晶显示器和等离子显示器的一种新技术,同时可以用做照明和背光源。

但是,其制作成本高、良品率低等不足有待解决。

OLED显示技术与传统的LCD显示方式不同,无需背光灯,采用非常薄的有机材料涂层和玻璃基板,当有电流通过时,这些有机材料就会发光。

而且OLED显示屏幕可以做得更轻更薄,可视角度更大,并且能够显著节省电能。

为了形像说明OLED构造,可以将每个OLED单元比做一块汉堡包,发光材料就是夹在中间的蔬菜。

每个OLED的显示单元都能受控制地产生三种不同颜色的光。

OLED与LCD一样,也有主动式和被动式之分。

被动方式下由行列地址选中的单元被点亮。

主动方式下,OLED单元后有一个薄膜晶体管(TFT),发光单元在TFT驱动下点亮。

主动式的OLED比较省电,但被动式的OLED显示性能更佳。

关键词有机电致发光器件器件性能结构优化空穴阻挡- I -Organic Light-Emitting Devices PerformanceOverviewtianjia(Class0413 Grade2006 in College of Information&amp;Technology,JilinNormal University, Jilin Siping 136000)Directive Teacher: jiang wen long(professor)Abstract Electroluminescent devices (organic light-emitting device, OLED) flat panel information display has become a hot topic in the field. OLED technology has a flat, self-luminous, rich colors, fast response, wide horizons and easy to implement the advantages of ultra-thin light, is considered the next best possible alternative to liquid crystal displays and plasma displays, a new technology while can be used as lighting and backlight. However, its high production cost, low rate of less than good product to be resolved. OLED display technology with the traditional LCD display in different ways, no backlight, with a very thin coating of organic materials and glass substrate, when a current is passed, these organic materials will be light. OLED display screen can be done but lighter and thinner, larger viewing angle, and can significantly save power.To image shows OLED structure, each OLED element can be likened to a hamburger, light-emitting material is sandwiched in betweenthe vegetables. Each OLED display unit can be controlled to produce three different colors of light. OLED and LCD as well- II -as active and passive distinction. Passive mode selected from the ranks of the unit address to be lit. Active mode, OLED module has a thin film transistor (TFT), light-emitting unit in the TFT-driven light. More active in OLED power, but the passive OLED display performance better.Keywords oledHole blocking Device performance- III - Structural optimization目录第1章绪论.................................................................................................... (1)1.1 有机电致发光的发展背景 (1)1.2 国内外动态和进展 (3)1.3 课题研究的意义 (4)第2章有机电致发光器件的相关理论 (5)2.1 有机电致发光器件发光机理 (5)2.2 小分子有机电致发光材料..................................... (6)第3章有机电致发光器件的制备与测试 (8)3.1 实验材料和仪器 (8)3.2 主要材料和试剂 (8)3.3 膜层制备.................................................................................................... . (9)第4章OLED的基本要素 (10)4.1 OLED的关键工艺 (10)4.2 OLED的彩色化技术 (11)4.3 OLED的优缺点 (13)4.4 OLED的应用..................................................................................................144.5 技术分类.................................................................................................... .. (15)第5章OLED的驱动方式 (17)5.1 无源驱动.................................................................................................... .. (17)5.2 有源驱动.................................................................................................... .. (18)5.3 主动式与被动式比较 (19)第6章结论和展望..................................................................................................206.1 结论.................................................................................................... . (20)6.2 展望.................................................................................................... . (21)结论.................................................................................................... . (22)参考文献.................................................................................................... . (24)附录.................................................................................................... (25)致谢.................................................................................................... (26)- IV -第1章绪论1.1 有机电致发光的发展背景显示器集电子、通信和信息处理技术于一体,被视为电子工业在本世纪继电子和计算机之后的又一个重大发展机会。

有机电致发光发展历程及TADF材料的发展进展

有机电致发光发展历程及TADF材料的发展进展

有机电致发光发展历程及TADF材料的发展进展有机电致发光发展历程及TADF材料的发展进展1.1引⾔有机光电材料(Organic Optoelectronic Materials),是具有光⼦和电⼦的产⽣、转换和传输等特性的有机材料。

⽬前,有机光电材料可控的光电性能已应⽤于有机发光⼆极管(Organic Light-Emitting Diode,OLED)[1,2,3],有机太阳能电池(Organic Photovoltage,OPV)[4,5,6],有机场效应晶体管(Organic Field Effect Transistor,OFET)[7,8,9],⽣物/化学/光传感器[10,11,12],储存器[13,14,15],甚⾄是有机激光器[16,17]。

和传统的⽆机导体和半导体不同,有机⼩分⼦和聚合物可以由不同的有机和⾼分⼦化学⽅法合成,从⽽可制备出⼤量多样的有机半导体材料,这对于提⾼有机电⼦器件的性能有⼗分重要的意义。

其中,有机电致发光近⼗⼏年来受到了⼈们极⼤的关注。

有机电致发光主要有两个应⽤:⼀是信息显⽰,⼆是固体照明。

在信息显⽰⽅⾯,⽬前市⾯上主流的显⽰产品是液晶显⽰器(Liquid Crystal Display,LCD),它基本在这个世纪初取代了阴极射线管显⽰,被⼴泛应⽤于各种信息显⽰,如电脑屏幕,电视,⼿机,以及数码照相机等。

但是,液晶显⽰器也有其特有的缺点,⽐如响应速度慢,需要背光源,能耗⾼,视⾓⼩,⼯作温度范围窄等。

所以⼈们也迫切需要寻求⼀种新的显⽰技术来改变这种局⾯。

有机发光⼆级管显⽰器(OLED)被认为极有可能成为下⼀代显⽰器。

因为其是主动发光,相对于液晶显⽰器有着能耗低,响应速度快,可视⾓⼴,器件结构可以做的更薄,低温特性出众,甚⾄可以做成柔性显⽰屏等优势。

但是,有机发光显⽰技术⽬前还有许多瓶颈需要解决,尤其是在蓝光显⽰上,还需要⾯对蓝光显⽰的⾊度不纯,效率不⾼,材料寿命短的挑战。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有机电致发光发展历程及TADF材料的发展进展1.1引言有机光电材料(Organic Optoelectronic Materials),是具有光子和电子的产生、转换和传输等特性的有机材料。

目前,有机光电材料可控的光电性能已应用于有机发光二极管(Organic Light-Emitting Diode,OLED)[1,2,3],有机太阳能电池(Organic Photovoltage,OPV)[4,5,6],有机场效应晶体管(Organic Field Effect Transistor,OFET)[7,8,9],生物/化学/光传感器[10,11,12],储存器[13,14,15],甚至是有机激光器[16,17]。

和传统的无机导体和半导体不同,有机小分子和聚合物可以由不同的有机和高分子化学方法合成,从而可制备出大量多样的有机半导体材料,这对于提高有机电子器件的性能有十分重要的意义。

其中,有机电致发光近十几年来受到了人们极大的关注。

有机电致发光主要有两个应用:一是信息显示,二是固体照明。

在信息显示方面,目前市面上主流的显示产品是液晶显示器(Liquid Crystal Display,LCD),它基本在这个世纪初取代了阴极射线管显示,被广泛应用于各种信息显示,如电脑屏幕,电视,手机,以及数码照相机等。

但是,液晶显示器也有其特有的缺点,比如响应速度慢,需要背光源,能耗高,视角小,工作温度范围窄等。

所以人们也迫切需要寻求一种新的显示技术来改变这种局面。

有机发光二级管显示器(OLED)被认为极有可能成为下一代显示器。

因为其是主动发光,相对于液晶显示器有着能耗低,响应速度快,可视角广,器件结构可以做的更薄,低温特性出众,甚至可以做成柔性显示屏等优势。

但是,有机发光显示技术目前还有许多瓶颈需要解决,尤其是在蓝光显示上,还需要面对蓝光显示的色度不纯,效率不高,材料寿命短的挑战。

目前,有机发光二极管显示的发展显示出研究,开发和产业化起头并进的局面。

本论文的主要工作是合成新型有机发光材料并研究其光电性能,本章将介绍有机电致发光的发展历程,以及有机材料的发光机制,最后提出本论文的设计思路。

1.2 有机电致发光发展历程Destriau于1936年首次观察到了电致发光现象[18],而有机电致发光现象要追溯到1963年,Pope课题组和Visco课题组发现在微米厚度的蒽单晶施加不小于400V的直流电压可以观察到蓝光发射[19,20]。

直到1987年,美国柯达公司的邓青云博士等人发明了三明治型有机双层薄膜电致发光器件,利用8-羟基喹啉铝作为发光层材料,在电压小于10V下器件发光亮度达到1000cd/m2,外量子效率提高超过1%,发光效率为1.51 m/W [21,22],这掀起了国际上研究学者对有机电致发光材料和器件的研究热潮。

Burroughes等于1990年在Nature刊物上发表了关于高分子材料聚对苯撑乙烯(PPV)利用溶液加工的方法制成薄膜,在低电压下发现电致发光现象,制成了PLEDs,推动了高分子平板显示研发[23]。

而基于三明治器件结构的有机发光二极管OLED的前景被一致看好,其可用于移动电话,平板显示,光子发射器件等。

众所周知,在电击发下,激子一般由25%单线态激子和75%三线态激子的构成。

然而,75%的三线态激子在荧光材料中是通过热能散发掉,再考虑到在器件上20%出光率,从而导致了理论上最高的外量子效率(EQE)只有5%。

为了提高OLED器件效率,全世界的科学家努力研究,通过有效利用无法发光的三线态激子致力于打破OLED器件效率5%的瓶颈。

其中最成功之一是通过重金属和有机芳环的结合提高自旋轨道之间的相互运动,这促使激子从最低三线态(T1)向基态(S0)转移发出磷光[24,25]。

这种方法同时捕获了三线态和单线态激子,可以使器件的内量子效率接近100%。

通过分散主体材料,磷光金属复合物呈现了非常高的外量子效率(EQE),在最近报道的掺杂的磷光OLEDs(PhOLEDs)其外量子效率超过30%[26,27]。

但是,磷光器件普遍使用的铱(Ir),钯(Pd)等重金属,而这些贵金属是全球稀缺的资源且十分昂贵。

为了避免在实际生产中使用这些昂贵的重金属,科学家们通过其他的方法来捕获75%三线态激子用来发光,目前这些方法包括:三线态-三线态淬灭(TTA)[28],局域电荷转移杂化态(HLCT)[29]和热活性延迟荧光(TADF)机制[30,31]等。

近几年,随着三星OLED手机批量生产以来,OLED显示器商品化越来越迅猛,并且朝着大尺寸显示发展。

2013年,LG电子推出了全球首台曲面OLED电视。

2014年,创维集团也推出了首台中国品牌的OLED电视,这些突破性的进展也极大激发了科研工作者的热情。

1.3 有机电致发光的机理及器件结构1.3.1 有机电致发光材料发光机理发光是很普遍的自然现象,但要了解物质为什么能发光,还需要从物质内部电子的状态来解释。

而有机材料中的电子转移过程分为两类:一类是分子内的电子转移过程,另外一类是分子间的电子转移过程。

图1-1简要地描述了分子内的电子转移过程。

当有机材料吸收某种形式的能量后,其内部的电子吸收能量后会由基态(S0)跳跃到高能激发态(S n…S2,S1)形成激子,而不稳定的高能态电子会通过内转换回到单线态的最低激发态S1,而单线态S1的电子也可能通过系间窜越的途径到达更低能级的三线态的最低激发态T1。

如果电子从激发态S1以电磁辐射的形式回到基态S0,则材料发出荧光;如果电子从三线态的最低激发态T1回到基态,则发出磷光,但是由于三线态的电子自旋方向和基态S0的自旋方向相反,所以一般分子由于禁阻跃迁是不会发出磷光的。

激发态除了以发光的形式散发能量外,还可以非辐射跃迁,化学反应,能量转移的形式回到基态。

图1-1 有机分子内的电子转移过程[32]Fig. 1-1 The process of electron transfer in organic molecules有机电致发光二极管(OLED)是类似于电极/发光层/电极三明治类型的注入型电致发光。

如图1-2所示,这就是典型的OLED的器件结构,也就是1987年邓青云博士所发明的。

这种器件不存在如无机发光二极管的PN结,也不存在自由载流子。

图1-2 典型的OLED器件结构[33]Fig. 1-2 The typical structure of OLED device如图1-3所示,基于上述器件的有机电致发光大致可以分为四个主要过程:①空穴和电子分别从阳极和阴极注入,在电场作用下有机薄膜的电子最高占据轨道(HOMO)和最低未占据轨道(LUMO)将发生倾斜,到达有机活性层;②HOMO能级中的空穴和LUMO能级中的电子在外电场作用下,载流子分别通过电子空穴传输层在器件中相向输运;③电子和空穴在发光层复合产生激子;④激子通过辐射跃迁产生光辐射。

图1-3 有机电致发光机理及过程示意图Fig. 1-3 The mechanism of organic electroluminescence众所周知,在OLED器件中,电子和空穴复合产生激子,而这激子中单线态和三线态的激子比例为1:3,又因为分子内磷光的发生伴随电子的自旋翻转,在一般的分子中磷光的发生是禁阻的,所以也就是说器件中有75%的三线态激子是被浪费,而未掺杂的小分子和高分子材料OLED荧光器件最高的外量子效率EQE约为8%[34,35],造成能源的极大浪费。

为了提高OLED的外量子效率,捕获未发光的三线态激子成为最有用的方式。

在1998年,Forrest等通过金属与有机材料配位的方式,捕获三线态激子用于发光取得了第一次突破。

其利用金属配合物中重金属原子的旋轨耦合效应,使本来自旋受阻的三线态激子辐射跃迁产生磷光,通过能量转移的方式转移到被掺杂的主体材料中,获得磷光最终制得磷光器件,其理论上内量子效率高达100%,该过程激子转移如图1-4a。

到目前为止,磷光染料通过与铱,铂,锇,钌等稀有金属络合形成了多种多样可用于PLED 器件中的磷光材料。

这种材料发光波长几乎覆盖了整个可见光区,还有很高的量子效率,并且材料寿命长。

然而,稀有重金属的使用不可避免的限制了他们在显示和光学产品的实际应用,更不用说材料的制备困难和复杂的器件封装。

三线态-三线态淬灭(TTA)过程是利用三线态激子的另一种尝试。

如图1-4b所示,当分子的最低单线态(S1)和最低三线态激子之间的能级差(△E ST)很大(2T1>S1)[36]时,两个三线态激子就可能转变为一个单线态激子。

当分子中高能态的三线态(T m)与高能态的单线态(S n)能级相近时,两个三线态激子碰撞湮灭生成一个具有更高能量的单线态激子和一个稳定的低能量的基态,这种发光被称为P型延迟荧光。

而多生成的单线态激子可以进行发光,依赖于分子中TTA过程的转换效率,基于TTA原理的OLED 器件发光效率可以提升到15~37.5%[37]。

进而TTA OLED器件的最大EQE可以提升到62.5%。

因此,TTA分子捕获三线态激子促使发荧光的受主材料突破了荧光OLED单线态25%的限制[38]。

然而,为了促进TTA转换过程,一般需要高的驱动电压或者高浓度的感光剂,反而相应地又降低了器件的效率[39]。

如图1-4c,激子在能级相近的T M与S N之间的系间窜越过程也会发生在局域电荷转移杂化态(HTLC)。

局域电荷转移杂化态是由局域态(LE)和电荷转移态(CT)杂化而成。

局域态激子(LE)可以进行高效率的荧光辐射衰减,同时电荷转移态激子(CT)可以通过反系间窜越使高能量的CT三线态(T CT)激子回到CT单线态(S CT),进而产生新一批的可发荧光的单线态激子。

从理论上,当T CT到T LE的内转换过程被阻止,则100%的不能发光的三线态激子可以通过反系间窜越转换成单线态激子。

紧接着电荷转移态的单线态激子通过内转换跃迁为局域态的单线态激子,局域态激子进一步发光跃迁,提高了OLED器件的外量子效率。

但是,根据Kasha规则,阻止三线态的内转换过程是很困难的,而且大多数的分子趋向于占据最低能级的单线态或者三线态,而不是高能级的Sn或者Tn激发态;因此,构建和合成具有HLCT激发态结构的分子是很有挑战的[40,41]。

如图1-4d所示,捕获三线态激子更加有效的方法是通过T1到S1之间的反系间窜越(RISC),即热活性延迟荧光(TADF)。

根据Hund规则,因为自旋相同的两个电子之间的排斥力要小于相反两个电子的排斥力,所以T1总是比S1能级低一点。

但是这种反系间窜越是可以被激发或者活化的。

当T1和S1的能量很接近,即单线态-三线态的能级差(△E st)很小,这种RISC过程可以靠分子的吸热过程进行。

相关文档
最新文档