有机电致发光材料..
电致发光材料

电致发光材料电致发光材料,又称为电致冷光材料,指的是能够通过电场或电流激发而发出可见光的材料。
电致发光材料在现代电子技术和光电子技术中具有广泛的应用,例如LED、液晶显示器等。
最常见的电致发光材料是LED(Light Emitting Diode),也就是电致发光二极管。
LED是一种具有电致发光特性的二极管,通过施加正向电压,使得电子和空穴重新组合并释放能量,产生可见光。
LED具有体积小、节能、寿命长等优点,广泛应用于室内外照明、屏幕显示、汽车照明等领域。
另外一种常见的电致发光材料是有机电致发光材料(OLED)。
有机电致发光材料是一种由有机化合物构成的薄膜材料,通过电压激发有机分子的激发态,从而发出光线。
OLED具有发光均匀、色彩鲜艳、可弯曲等特点,因此被广泛应用于手机屏幕、电视屏幕、车载显示器等领域。
除了LED和OLED,还有一些其他的电致发光材料,如电致发光多晶硅材料、电致发光蓝宝石材料等。
这些电致发光材料都具有突出的发光特性,可以通过激励能源(如电场或电流)来产生发光效果。
电致发光材料的运作原理可以简单地描述为电子和空穴在材料中重新组合并释放能量,产生光线。
具体来说,当材料中施加电压时,电子会从高能级跃迁到低能级,而空穴则从低能级跃迁到高能级。
当电子和空穴重新组合时,释放出能量,这些能量以光的形式辐射出来。
电致发光材料的应用广泛,不仅可以用于照明和显示领域,还可以用于传感、通信、医疗等领域。
电致发光材料具有发光效率高、寿命长、响应速度快等优点,因此在现代科技中扮演着重要的角色。
总之,电致发光材料是一类能够通过电场或电流激发而发光的材料,其中LED和OLED是最常见的电致发光材料。
电致发光材料具有广泛的应用前景,推动了现代电子技术和光电子技术的发展。
OLED有机电致发光材料与器件

1、有机材料中载流子输运(纵波、孤子)P16~P17与无机半导体或单晶材料不同的是,有机半导体中并没有延续的能带,有机半导体的结构中都会有去定域化的π电子,这些电子比较自由,但也只被局限在分子之内,因此,跳跃式的理论最常被用来说明电荷在有机分子间传递的现象,即在一电场的驱动下,电子在被激发或被注入至分子的LUMO能级后,经由跳跃至另一分子的LUMO能级,以达到传递的目的。
需要特别指出的是,电荷并不只是简单地以电子或空穴存在于这些有机分子中,而是带电荷的位置会伴随化学键长和结构而变形。
因此,一个电子或空穴加上变形区形成一个单位一起移动,此单位称为极化子。
有机半导体由于电子或空穴的移动往往伴随着结构的变形(核的运动),所以有机半导体中的自由电子或空穴的迁移率一般比无机半导体或金属中的低。
2、OLED结构(从能级匹配分析)P27~P29发光层(EML)、电子/空穴输运层(E/HTL)、阻隔层(BL)、电子/空穴注入层(E/HIL)、激子幽禁层(ECL)激子:在光跃迁过程中,被激发到导带中的电子和在价带中的空穴由于库仑相互作用,将形成一个束缚态,称为~。
而激子的复合导致发光。
淬灭:在这里,淬灭是指在荧光过程中,光子产生的数量在很短的时间内衰减或者消失。
PS:空穴阻隔是因为阻隔层的HOMO能级比发光层高,因此在EML和BL间会产生很大的能垒,空穴的传递会被阻挡在发光层与阻隔层的界面,增加了空穴在界面的浓度,如此可增加电子、空穴在发光层发生复合的几率。
而这些阻隔层的三重态激发态的能隙也要比发光层大,才可防止能量转移至电子输运层而消光。
3、OLED发光原理(主发光、掺杂、主客体关系)P23、P14步骤一:当施加一正向外加偏压,空穴和电子克服界面能垒后,经由阳极和阴极注入,分别进入空穴输运层(HTL)的HOMO能级和电子输运层(ETL)的LUMO能级;步骤二:电荷在外部电场的驱动下,传递至空穴输运层和电子输运层的界面,因为界面的能级差,使得界面会有电荷的累积;步骤三:当电子、空穴在有发光特性的有机物质内复合,形成处于激发态的激子,此激发态在一般的环境中是不稳定的,能量将以光或热的形式释放出来而回到稳定态的基态,因此电致发光是一个电流驱动的现象。
有机电致发光材料三(8-羟基喹啉)铝的合成工艺

有机电致发光材料三(8-羟基喹啉)铝(tris(8-hydroxyquinolinato)aluminum, Alq3)是一种常用的有机半导体材料,广泛应用于有机发光二极管(OLED)、有机场效应晶体管(OEFT)和太阳能电池等领域。
其合成方法较为简单,一般采用反相溶剂法,主要步骤如下:1.雄性醇类亲核试剂(如异丙醇)在氧化剂存在下氧化制备出8-羟基喹啉酸(8-hydroxyquinolinol, HQ)。
将醇类亲核试剂(如异丙醇)放入反应釜内,加入氧化剂(如氧气或过氧化氢) 进行氧化反应。
反应的最终产物是8-羟基喹啉酸。
2.在惰性溶剂(如氢氧化钾/钾碳酸钠溶液)中,将8-羟基喹啉酸与氯化铝反应制备出配合物Alq3。
在一个量热容器中加入8-羟基喹啉酸和氯化铝。
在惰性溶剂(如丙酮或四氢呋喃)中在-78°C 的温度下进行反应,控制加入氢氧化钾/钾碳酸钠两者的浓度,使反应物迅速反应形成Alq3中间体。
在反应后,Alq3物质会沉淀在反应溶液中。
为获取纯度高的Alq3,少量的取沉淀物用冷水洗涤,用真空泵吸干。
这些步骤需要多次重复,以确保纯度充分高的Alq3沉淀晶体获得。
3.沉淀的Alq3物质在凉水中反复洗涤、过滤干燥、再经真空干燥得到纯净的Alq3粉末。
取得的Alq3晶体沉淀通过凉水反复洗涤和过滤处理。
这些沉淀晶体然后在高温烘干箱中干燥,也可在真空下在低温下干燥以去除水分。
这样合成得到的Alq3配合物大多数晶体为亮绿黄色,对有机发光二极管的制备有广泛应用。
上述工艺过程比较简单,但需要注意入料顺序、溶剂的选择和反应条件等因素,以保证合成出的Alq3样品物理化学性质良好,达到研究和工程应用的需求。
有机高分子电致发光材料及器件

西北工业大学
Northwestern Polytechnical University
PLED
ELM简介
ELD简介
PLED材料
PLED最新进展
有机电致发光器件的结构示意图 西北工业大学
Northwestern Polytechnical University
PLED
ELM简介
ELD简介
PLED材料
西北工业大学
Northwestern Polytechnical University
PLED
ELM简介
ELD简介
PLED材料
PLED最新进展
PLED材料的性能参数
发光光谱
发射光谱通常有两种,即光致发光光谱(PL)和电致 发光光谱(EL)。PL光谱是由光能激发的,而EL光谱 则需要电能的激发。通过比较器件的光谱和不同载 流子传输材料和发光材料的光谱,可以得出复合区 的位置以及实际发光物质等信息。一般说来,光谱 分散范围愈窄,其单色性愈好
PLED最新进展
西北工业大学
Angew. Chem. Int. Ed. 2014, 53, 1048 –1052
Northwestern Polytechnical University
PLED
ELM简介
ELD简介
PLED材料
PLED最新进展
西北工业大学
J. AM. CHEM. SOC. 9 VOL. 131, NO. 40, 2009
小分子类:
蒽化合物、芴类小 分子 、芳胺类材 料 、喹吖啶酮类 、 有机类硼类蓝光材 料
聚合物类:
聚对苯乙烯撑,聚 噻吩,聚苯胺、和
聚咔唑
西北工业大学
Northwestern Polytechnical University
有机电致发光材料及器件导论

有机电致发光材料及器件导论引言:近年来,由于有机电致发光材料及器件的研究和应用取得了巨大的进展,成为光电领域的研究热点之一、有机电致发光材料及器件具有很高的发光效率、易于制备、柔性可折叠等特点,被广泛应用于平板显示、照明、生物传感等领域。
本文将介绍有机电致发光材料及器件的基本原理、制备方法以及应用前景。
一、有机电致发光材料的基本原理有机电致发光材料是一种能够通过施加电场来实现发光的材料,其基本原理是在有机半导体材料中注入载流子,通过载流子在材料中的扩散和再组合过程中释放出能量,从而产生发光。
一般来说,有机电致发光材料包括发光层、载流子注入层和电极层等。
载流子注入层用于实现载流子从电极注入到发光层,电极层用于提供足够的电场以驱动载流子在发光层中运动。
二、有机电致发光材料的制备方法1.分子设计法:有机电致发光材料的制备通常需要合成复杂的有机分子,具有特殊的分子结构和能级分布。
通过分子设计法,可以设计出具有良好光电性能的有机分子,进而制备出高效的电致发光材料。
2.整体法:整体法是一种将有机分子溶解在溶剂中,通过溶液沉积、旋涂等技术制备电致发光材料的方法。
这种方法制备的电致发光材料结构均匀、制备成本较低,但是光电转换效率较低。
3.蒸发法:蒸发法是一种将有机分子在真空条件下蒸发沉积在基板上的方法。
这种方法制备的电致发光材料具有较高的光电转换效率和较好的膜层质量,但是制备过程较为复杂。
三、有机电致发光器件的制备方法1.有机电致发光二极管(OLED):OLED是一种采用有机电致发光材料制备的光电器件,具有高亮度、广色域、快速响应等特点。
OLED器件由ITO透明导电玻璃基板、有机电致发光层、载流子注入层和金属电极等组成。
制备OLED器件的方法主要有真空蒸发法、旋转涂敷法和喷墨印刷法等。
2.有机电致发光场效应晶体管(OFET):OFET是一种利用有机电致发光材料制备的场效应晶体管。
OFET器件由基底、源极、漏极和门极等组成,其中源极和漏极之间的有机电致发光材料层起到了发光的作用。
有机电致发光器件(OLED)课件

OLED技术的创新与突破
提高效率和稳定性
通过材料和工艺的改进,提高OLED的发光效率和 稳定性,延长使用寿命。
柔性显示技术
进一步研究柔性OLED显示技术,实现更轻薄、可 弯曲的显示产品。
多功能集成
探索将触摸功能、传感器等集成到OLED显示面板 中,实现更多功能。
OLED产业的发展趋势与展望
市场规模持续增长
随着OLED在更多领域的应用,市场规模将持续增长,带动产业的 发展。
技术竞争加剧
随着技术的不断进步,OLED产业将面临激烈的技术竞争,促使企 业加大研发投入。
产业布局优化
随着全球产业格局的变化,OLED产业将进一步优化布局,形成更 加合理的产业链结构。
感谢观看
有机电致发光器件( OLED课件
• OLED基础知识 • OLED器件结构与性能 • OLED制造工艺与设备 • OLED市场与技术发展趋势 • OLED的未来展望
01
OLED基础知识
OLED的定义与特点
总结词
OLED是一种有机电致发光器件,具有自发光的特性,能够实现高对比度、广 视角、快速响应等优点。
OLED在未来的应用前景
显示器技术
随着显示技术的不断进步,OLED 有望成为下一代主流显示技术, 广泛应用于电视、电脑、手机、 平板等电子产品。
照明领域
OLED具有自发光的特性,可以做 成柔性的照明产品,为室内外照明 提供新的解决方案。
可穿戴设备
随着可穿戴设备的普及,OLED的轻 薄、柔性特点使其在智能手表、健 康监测器等设备上具有广阔的应用 前景。
OLED技术的挑战与机遇
挑战
OLED技术的成本较高,良品率较低,且寿命相对较短,这些 问题制约了OLED技术的进一步普及和应用。
有机小分子电致发光材料
5.1.1只含碳和氢两种元素的芳香型蓝光材料 5.1.1.1 苝类蓝光材料
苝是由Kodak公司用作蓝色发光材料,但它的能级与Alq3的能级 不匹配,需要掺杂在发射光谱蓝移的Alq3衍生物Q2Al-OAr中才 能获得蓝光OLED。
将大休积的TBPe掺杂在BAlq中构成的EL器件,能有效地 降低浓度淬灭现象。
5.1.3有机硅类蓝光材料
基于四苯基硅单元的蓝色发光化合物Ph3Si(PhTPAOXD) , Ph2Si(PhTPAOXD)2,PhSi(PhTPAOXD)3和Si(PhTPAOXD)4,分别含 有三苯胺噁二唑单元(TPAOXD) ,
玻璃化温度高,如Si(PhTPAOXD)4 的 Tg=174 , 蓝色发光材料,发射峰值在 450 465 nm之间。
色坐标为(0.15, 0.15)。
5.1.2芳胺类蓝光材料
5.1.2.3具有D--A结构的芳胺类蓝光材料
具有 D--A结构的芳胺类化合物的分子 偶极矩较大,当电子给体和共轭基团相同 时,D--A结构的芳胺类化合物的荧光光谱 比D--D结构的芳胺类化合物的要红移。
所以,要求共轭体系不能太大且电子 受体基团不能太强。
器件ITO / NPB(40nm) / Ph3Si(Ph-TPAOXD (20nm) / Alq3 (40nm) / Mg:Ag显示了纯蓝色的窄带发射,半峰宽(FWHM)为75 nm,器件的最大亮度超过20 000 cd/m2,外量子效率为1. 7 %。
基于MPS的蓝光OLED的最大效率达到20 cd/A (外量子效 率为8%)。通过调节阴极材料,功率效率可以达到14 lrn/W,但 EL器件的发射峰值在490 nm处,色度不纯。
具有蓝色荧光发射的含有嘧啶的螺芴衍生物TBPSF的荧光 量子产率为80%,最大发射波长为430 nm。较大的空间位阻使 得化合物具有非常好的成膜性和很高的玻璃化转变温度(Tg = 195℃)。
OLED有机电致发光材料与器件
OLED有机电致发光材料与器件摘要本文概述了OLED的发展简史,并简单介绍了OLED有机电致发光器件的基本结构与发光机理。
此外,还对比了OLED与PLED,这两种系列材料只是材料特性和成膜方法不同,本质上却无异。
相较于LCD,OLED具有很大优势,但仍面临寿命短等技术瓶颈。
随着研发力度的加大,其技术瓶颈将会被逐渐解决,可以预见在未来的显示市场,OLED必将是绝对主流产品。
关键词:有机电致发光器件;OLED显示器OLED (Organic Light Emitting Device)全名叫做有机电致发光器件,是指有机半导体材料和发光材料在电场驱动下,通过载流子注入和复合导致发光的现象。
其原理是用ITO透明电极和金属电极分别作为器件的阳极和阴极,在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子和空穴传输层,电子和空穴分别经过电子和空穴传输层迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,后者经过辐射弛豫而发出可见光。
辐射光可从ITO一侧观察到,金属电极膜同时也起了反射层的作用。
根据这种发光原理而制成显示器被称为有机发光显示器,也叫OLED显示器[1]。
1.OLED有机电致发光显示器件的发展简史1963年New York University的Pope[2]等第一次发现有机材料单晶蒽的电致发光现象。
1982年Vincett[3]的研究小组制备出厚度0.6 蒽的薄膜,并观测到电致发光。
1987年Kodak公司的邓青云等采用了夹层式的多层器件结构,开创了有机电致发光的新的时代[4]。
1990年,英国剑桥大学Cavendish实验室的Burroghes[5]等人首次采用共轭聚合物聚对苯撑乙烯(PPV,polyphenylene vinylene)制作了高分子发光二极管,简化了制备工艺,开辟了发光器件的又一个新领域—聚合物薄膜电致发光器件。
1997年,Princeton Univ. Forrest S R的小组发现磷光的有机电致发光材料,使得有机电致发光器件的内量子效率可能到达100%。
有机电致发光材料的研究进展及应用
有机电致发光材料的研究进展及应用材化1111班王蒙 1120213122摘要:简要论述有机电致发光设备的发光机理、器件结构及彩色显示方法,详细介绍有机电致发光材料的种类、组成、特点和研究近况,并对其用途和前景,尤其在军事领域的应用作了一定介绍。
另外还指出了有机电致发光在商业化过程中一些急待解决的问题。
关键词:有机发光材料,进展,应用。
正文:信息技术的持续快速发展对信息显示系统的性能,如亮度、对比度、色彩变化、分辨率、成本、能量消耗、质量和厚度等均提出了高的要求。
在已有的成熟显示技术中,电致发光显示设备能够满足上述性能要求,另外它还具有宽视角、较宽的工作温度范围和固有的强度等优点。
电致发光显示设备一般包括发光二极管(LED)、粉末磷设备、薄膜电致发光设备(TFEL)和厚介质电致发光设备等。
目前的信息显示市场上真正的参与者主要是TFEL和有机LED (OLED)。
OELD技术的发展时间并不很长,但发展速度较快。
近几年,随着市场对高质量、高可靠性、大信息量显示器件的需求日益增加,OLED技术更是得到了长足的发展,目前已有多种OLED产品投入市场。
1997年,日本Pioneer公司推出配备有绿色点阵OLED的车载音响,并建立了世界上第一条OELD生产线。
1998年,日本NEC、Pioneer公司各自研制出5英寸无源驱动全彩色四分之一显示绘图阵列(QVGA)有机发光显示器。
2000年,Motorola公司推出了有机显示屏手机。
2002年,Toshiba公司推出了17英寸的全彩色显示器。
清华大学与北京维信诺公司共同开发出国内首款多色OLED手机模块。
2003年,台湾奇美电子公司与IBM合作推出加英寸的OELD显示器。
2004年5月,日本精工爱普生公司研制成功的40英寸大屏幕OLED显示器以全彩、超薄、动态影像显示流畅的特点成为OELD显示市场上最大的亮点。
2006年,首尔半导体株式会社的子公司SeoulOptodeviceCo.Lid.以控股方式与美国SensorElectronicTechnology公司共同开发生产的世界唯一的短波长紫外发光二极管(UVEL D)产品已开始量产。
无机和有机电致发光材料
无机和有机电致发光材料
电致发光技术是一种通过电场激发材料发光的技术,它已经成为制造高质量平面显示器和照明设备的关键技术之一。
无机和有机材料是目前应用最广泛的电致发光材料,以下是它们的详细介绍。
一、无机电致发光材料
1.磷光体
磷光体是由氧化物或氟化物等高熔点材料和稀有金属离子组成的复合材料,具有较高的耐高温性和抗氧化性。
目前,磷光体已被广泛应用于LED照明和显示器行业。
其中,红色磷光体的发光效率较高,已经成为了LED照明产业中应用最广泛的颜色之一。
2.氮化物LED
氮化物LED是由镓铝氮化物等材料制成的发光二极管,具有发光效率高,颜色纯度度高等特点。
目前,氮化物LED已被广泛应用于绿色、蓝色和紫色LED照明以及RGB LED显示器中。
3.硅基LED
硅基LED是由硅材料和硅基异质结构组成的发光器件,具有低电压、高效率、长寿命等特点。
硅基LED已经成为了微电子学、生命科学、航空航天等领域的关键设备。
二、有机电致发光材料
1.聚合物LED
聚合物LED是由导电聚合物或导电聚合物复合材料制成的发光器件。
它具有发光效率高、颜色范围广等优点,目前已被广泛应用于照明、显示、可穿戴等领域。
2.小分子有机LED
小分子有机LED是由有机荧光分子制成的发光器件,具有可调颜色、发光亮度高等特点。
它已经被广泛应用于OLED电视、OLED照明等领域。
总体来说,无机和有机电致发光材料都具有各自的特点和优缺点。
未来,随着材料科学和控制技术的不断发展,电致发光材料的性能将
得到进一步提高和改善。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4. 亮度,效率高;
5. 直流驱动电压低,能耗少,可与集成电路驱动相匹配; 6. 制作工艺简单,成本低;
7. 可实现超薄的大面积平板显示;
8. 良好的机械加工性能,可做成柔性显示器。
聚合物电致发光二极管(PLED)
PLED,即第二种有机发光材料为高分子聚合物,也称为高分子发光 二极管(PLED),由英国剑桥大学的杰里米伯勒德及其同事首先发现。聚 合物大多由小的有机分子以链状方式结合在一起,以旋涂法形成高分子 有机发光二极管。 作为一种发光显示材料,聚合物发光二极管(PLED)材料具有很强的 应用潜力,因为它是一种自发光的材料,并且还具有制作相对容易的优点。 因此在制作有机发光二极管器件(OLEDs)时,PLED材料是一种很好的基 本材料,因为与小分子OLED材料20 ~25的发光效率相比,PLED材料的 发光效率则为30~40。
驱动电压30V, 但是器件的量子效率很低,小于1% 特点: (1)单层器件;(2)驱动电压高; (3)器件效率低
3). 1987年美国Kodak 公司的邓青云等采用了夹层式的多层器件结构,开创 了有机电致发光的新的时代。
创新点:(1)多功能有机层的结构; (2)超薄的有机层厚度
75nm 60nm驱动Fra bibliotek压小于10V最大外量子效率1%
最大亮度大于1000cd/m2
4).1990年,Burroughs等人将共轭聚合物聚对苯基乙烯(PPV)制作了高 分子发光二极管,简化了制备工艺,开辟了发光器件的又一个新领域, 即聚合物薄膜电致发光器件。
有机电致发光二极管(OLED)
近十多年里,OLED作为一种新型显示技术已经取得了长足的发展, 就器件的发光亮度、发光效率和寿命而言,OLED器件已经基本达到了 实用的要求。
电致发光的发展
1). 1953年,Bernanose等第一次发现了有机物中的电致发光现象; 1963年美国纽约大学的Pope等人也观察到了晶体蒽薄膜的电致。 蒽
单晶层厚度 20m,驱动电压 400 V
2). 1982年 Vincett的研究小组制备出厚度0.6m 蒽的薄膜,并观测到电 致发光。
三层EL器件结构图
多层结构
特点:可提高OLED的发光亮度和发光效率。
形式: ① 在两电极内侧加缓冲层,以增加电子和空穴的注入量; ② 为提高器件的发光效率,使用了空穴阻挡层HBL。
多层EL器件结构图
器件的发光原理
在外界电压的驱动下,由电极注入的电子和空穴在有机物中复合而释放 出能量,并将能量传递给有机发光物质的分子,使其受到激发,从基态 跃迁到激发态,当受激分子从激发态回到基态时辐射跃迁而产生发光现 象。
单层EL器件结构图
双层结构 介绍: 柯达公司首先提出了双层有机膜结构,有效 地解决电子和空穴的复合区远离电极和平衡载流 子注入速率问题,使有机电致发光的研究进入了 一个新阶段。他们的器件结构也叫DL-A型双层结 构。 如果发光层材料具有空穴传输性质,就需要 使用DL-B型双层结构,即需要加入电子传输层以 调节载流子的注入速率,使注入的电子和空穴是 在发光层处复合。 特点: 发光层材料具有电子传输性,需要加入一层 空穴传输材料去调节空穴和电子注入到发光层的 速率,这层空穴传输材料还起着阻挡电子的作用, 使注入的电子和空穴在发光层处发生复合。
OLED器件发光过程
1.载流子的注入:在外加电场作用下,电子和空穴分别从阴极和阳极 注入到夹在电极之间的有机功能薄膜层。 2.载流子的迁移:注入的电子和空穴分别从电子传输层空穴传输层向 发光层迁移。 3.载流子的复合:电子和空穴结合产生激子。 4.激子的迁移:激子在电场作用下迁移,将能量传递给光分子,并激 发电子从基态跃迁到激发态。 5.电致发光:激发态能量通过辐射失活,产生光子,释放能量。
有机电致发光材料
基本概念
电致发光(EL)是指发光材料在电场作用下,受到电流电压的激发 而发光的现象,是一种直接将电能转化为光能的过程。 有机电致发光是指由有机光电功能材料制备成的薄膜器件在电场 的激发作用下发光的现象。 根据制备功能薄膜所采用的发光材料的不同,可分为:
有机电致发光二极管(OLED) 聚合物电致发光二极管(PLED)
金属阴极 DC 复合 电源 有机层
e
e
h
光发射
h
透明阳极 衬底
器件主要性能指标
载流子迁移率 :载流子迁移率是指载流子(空穴或电子)在单位电场作用下 在给电定材料中的平均漂移速度,是载流子在电场作用下运动速度的量度, 载流子的漂移速度与迁移率成正比关系。
量子效率:有机电致发光器件的量子效率可用外量子效率和内量子效率来评 价。 外量子效率是指发光器件输出的光子数与注入的电子数之比; 内量子效率则是产生于器件内部的光子数与注入的电子数之比。 能量效率与功率效率:有机电致发光器件的能量效率是指向器件外部辐射的 光功率与外加的电功率之比。 功率效率是指器件每单位面积输出的光通量与输入电功率之比。 器件寿命:器件寿命是指有机电致发光器件实际能够使用的时间长度,通常 以小时表示。
DL-B型双层EL器件结构图
DL-A型双层EL器件结构图
三层结构 介绍: 由空穴传输层(HTL)、电子传输层(ETL) 和将电能转化成光能的发光层组成。HTL负责 调节空穴的注入速度和注入量, ETL负责调节 电子的注入速度和注入量。 优点: 使三层功能层各行其职,对于选择材料和 优化器件结构性能十分方便,是目前有机EL 器件中最常用的器件结构之一。
发光效率:>10lm/W;
稳定性:亮度为100cd/m2时,工作寿命大于1万小时;
发光寿命:绿光器件达8万小时,黄光器件达3万小时,蓝光器件达8千小时; 最大尺寸:已经超过40英寸。
OLED的特点
1. 全固态器件,自发光型,无真空腔,无液态成分,不怕震动,使用方 便; 2. 响应速度快(微秒量级),视角宽(大于160度),工作温度范围宽 (-40℃~80℃); 3. 有机电致发光材料可选范围广,容易得到全色显示;
器件的结构类型
单层结构 介绍:在器件的阴极和阳极间,制作有 一种或多种物质组成的发光层。单层器 件的发光层厚度通常在100nm。
优点:制备方法简单。
缺点: ① 复合发光区靠近金属电极而靠近金属 电极处缺陷多,非辐射复合几率大, 而且该处的高电场容易产生发光淬灭; ② 由于两种载流子注入不平衡,载流子 的复合几率比较低,因而影响器件的 发光效率。