有机电致发光材料研究现状

有机电致发光材料研究现状
有机电致发光材料研究现状

<有机化学进展>结课论文

题目:有机电致发光材料的研究现状

院系:

专业:

班级:

学号:

姓名:

有机电致发光材料的研究现状

摘要:本文对有机电致发光显示器件的发展历史,器件结构、工作特征、发光器件(OLED)的优点、发展现状和趋势等都做了简要的概括。详细介绍了有机发光材料的研究状况,包括小分子发光材料、高分子(聚合物)发光材料,以及新材料的开发。最后总结了国内外OLED 技术的发展状况。

关键词:小分子有机电致发光有机高分子聚合物电致发光

Research and development

of organic electroluminescent materials Abstract Organic light-emitting diodes (OLEDs), having excellent properties of low driving voltage and brightemission, have been extensively studied due to their possible applications for flat panel color displays.At the same time, or-ganic electroluminescent materials have been made with an outstanding progress.And thestatus of organic electrolumi-nescent materials(including evaporated molecules and polymers)were reported in this paper.

Key words OLED, organic luminescent materials, evaporated molecules and polymers

有机电致发光显示(organic electroluminesence Display)技术被誉为具有梦幻般显示特征的平面显示技术,因其发光机理与发光二极管(LED)相似,所以又称之为OLED(organic light emitting diode)。2000年以来,OLED受到了业界的极大关注,开始步入产业化阶段。

一、发展历史

1936年,Destriau将有机荧光化合物分散在聚合物中制成薄膜,得到最早的电致发光器件。20 世纪50年代人们就开始用有机材料制作电致发光器件的探索,A. Bernanose等人在蒽单晶片的两侧加上400V的直流电压观测到发光现象,单晶厚10mm~20mm,所以驱动电压较高。1963年M. Pope等人也获得了蒽单晶的电致发光。70年代宾夕法尼亚大学的Heeger探索了合成金属[1]。1987年Kodak 公司的邓青云首次研制出具有实用价值的低驱动电压(<10V,>1000cd/m2)OLED 器件(Alq作为发光层)[2]。1990年,Burroughes及其合作者研究成功第一个

高分子EL(PLED)(PPV作为发光层),更为有机电致发光显示器件实用化进一步奠定了基础。1997年单色有机电致发光显示器件首先在日本产品化,1999年月,日本先锋公司率先推出了为汽车音视通信设备而设计的多彩有机电致发光显示器面板,并开始量产,同年9月,使用了先锋公司多色有机电致发光显示器件的摩托罗拉手机大批量上市[3]。这一切都表明,OLED技术正在逐步实用化,显示技术又将面临新的革命[4]。

二、发光器件(OLED)的优点

随着信息时代的来临 , 作为人机界面的新型显

示器件的研制, 越来越引起人们的重视, 特别是各类平板显示器件(FPD)以其体积小、重量轻、能耗低、屏幕大等特点, 引发了一股强劲的平板显示器件研制热潮。作为新一代平板显示器件 , 有机电致发光器件(OLED)具有如下优点 :

(1)设计方面:结构简单, 成品率高成本低;不需要背景光源和滤光片, 因而可以制造出超薄、重量轻、易于携带的产品。

(2)显示方面:主动发光、视角范围大 ;响应速度快,图像稳定;亮度高、色彩丰富、分辨率高。

(3)工作条件 :驱动电压低、能耗低 ,可与太阳能电池、集成电路等相匹配。

(4)适应性广 :采用玻璃衬底可实现大面积平板显示;如用柔性材料做衬底 , 能制成可折叠的显示器。

(5)由于 OLED 是全固态、非真空器件, 具有抗震荡、耐低温(—40℃)等特性 ,在军事方面也有十分

重要的应用 ,如用作坦克、飞机等现代化武器的显示终端。

由于上述优点,有机电致发光器件在手机、个人电子助理(PDA)、数码相机、车载显示、笔记本电脑、壁挂电视以及军事领域都具有广阔的应用前景,是一种可用来替代液晶显示器(LCD)的新型平板显示器件。因此,OLED 是近几年来新材料及显示技术领域研究、开发的一大热点,其产业化势头十分迅猛。目前, 国内外对 OLED 的研究主要集中在发光材料的研究、器件的制作和产品开发上。

三、器件分类

按照组件所使用的载流子传输层和发光层有机薄膜材料的不同,OLED可区分为两种不同的技术类型。一是以有机染料和颜料等为发光材料的小分子基OLED,

典型的小分子发光材料为Alq(8-羟基喹啉铝);另一种是以共轭高分子为发光材料的高分子基OLED,简称为PLED,典型的高分子发光材料为PPV(聚苯撑乙烯及其衍生物[5])。

四、有机发光材料的研发状况

有机发光材料应同时具备以下条件 [ 9] :(1)固态具有较高的荧光量子效率, 荧光光谱主要分布在400~ 700nm 的可见光区域内;(2)具有良好的半导体特性 ,或传导电子, 或传导空穴, 或既传导电子又传导空穴;(3)具有良好的成膜特性 ,在很薄(几十纳米)的情况下能形成均匀、致密、无针孔的薄膜;(4)在薄膜状态下具稳定性,不易产生重结晶, 不与传输层材料形成电荷转移络合物或聚集激发态。

(一)小分子发光材料

有机小分子材料以金属螯合物和稀土配合物为代表。1987 年 Tang C W [ 10] 首先采用此种化合物Alq 3 实现较高效率的有机电致发光器件。常见的此类物质有:Alq 3 ,Almq 3 ,Zn(5Fa) 2 , BeBq 2 等。此类发光物质的缺点是制作过程中难分离。其它性能比较优越的发光薄膜材料有Perylene , Aromaticdiamine,TAD, TAP , TAZ , TPA, TPB, TPD, TPP 等态。一般来说,小分子材料的亮度与寿命成反比, 因此在两者之间寻求一个平衡点, 成为唯一的解决方案。目前日本出光兴产公司, 已开发出亮度 200cd/m 2 、寿命 1 万 h 以上的蓝光材料以及亮度 200cd/m 2 、寿命 5 万 h 以上的绿光材料。此外 , 东洋 INK公司的绿、蓝、橙光材料也已达到实用阶段。现阶段最大的难题还是红色发光材料。目前日本厂商的红光材料 ,若只考虑其颜色纯度倒还可以接受, 但若要兼顾寿命与发光效率 , 则尚未达到实用化的地步。相对于此 , UDC 公司则已开发出在颜色纯度与寿命方面均达到一定品质的红光与绿光材料。该公司的红光材料 ,在色度图上达到 X∶0.71/Y∶0.29、寿命 1万h 以上、发光效率 6 %。绿光则为 X∶0.28/Y∶0.64 、寿命 1 万 h 、发光效率 10%。而 Kodak 公司虽然未公布发光效率, 不过红、绿发光材料寿命均达到4000 h, 色度图也分别达到 X∶0.628/Y∶0.368与 X∶0.289/Y∶0.65 。但上述两家厂商在蓝光材料方面 ,却没有太大的成果。因此以现阶段而言 ,还没有任何一家材料厂商 ,能够同时提供满足颜色纯度/寿命/发光效率三大要素的 RGB 三原色发光材料(二)高分子(聚合物)发光材料

人们发现小分子有机发光器件稳定性差, 而聚合物结构与性能都很稳定。若要

得到高亮度、高效率,通常要采用带有载流子输运层的多层结构。以前都采用小分子材料作为输运层 , 由于小分子材料容易重结晶或与发光层物质形成电荷转移络合物和激发态聚集导致性能下降 , 而聚合物则能克服上述缺点 ,因此 ,人们逐渐把注意力转到聚合物上。1990 年 , 英国剑桥大学的Friend 与Burrough-es [ 8] 等人用共轭聚合物 PPV 实现了电致发光。共轭聚合物是有机半导体, 从原理上讲, 这种材料比无机半导体更易于处理和制造 , 电荷输运与量子效率也不逊色。有机高分子材料主要包括聚乙炔、聚噻吩及其衍生物的有机共轭聚合物。近年来 ,人们发现在发光与其它性能都比较优良的聚合物中 ,电致发光薄膜材料有 PBD、PBP 、PRL 、PMMA 、PPV 、PVCZ 等。

最初人们只采用共轭聚合物(如 PPV)作为发光层材料 ,后发现部分共轭聚合物也可用作发光材料 ,且可获得更大的发光效率。如完全共轭的 PPV 发光效率为 0.01%光子/电子, 而部分共轭的 PPV 发光效率则为 0.8%光子/电子。这可能是因为后者的非辐射能耗散过程受到抑制, 从而提高了发光效率。但是共轭链的变短可能降低聚合物分子对载流子的传输,因此, 共轭链太短时, 发光效率也可能下降。

表 2 总结了有机发光材料及工艺的研发现状。整体而言,高分子材料的研发明显落后于小分子。

值得注意的是 , 采用聚合物材料并不是完全排斥小分子材料的利用。实际上, 聚合物 OLED 常需要添加一些小分子材料。例如 :有时需要采用染料掺杂的方法来调节发光的颜色 ;另外 , 由于聚合物材料一般只传输空穴而阻挡电子, 因而常需要在器件中加入一层起传输电子作用的小分子薄膜 , 以提高电子、空穴的复合效率。用来对聚合物薄膜进行掺杂的染料分子包括 :DCM 系列染料、若丹明6G 、蒽、并四苯、1,1 ,4, 4-四苯基丁二烯(TPB)、香豆素系列染料等。在聚合物材料中 , PMMA 比较特殊, 它既不能传输空穴又不能用作发光材料, 但是具有很好的成膜特性。应用时 , 在 PMMA 薄膜中掺入空穴传输材料、电子传输材料以及发光材料 , 器件的 EL光谱与发光材料的荧光光谱一致[10]。

五、新材料的开发

获在 OLED 上施加直流电压 , 空穴和电子分别从器件正极和负极注入到有机材料中。空穴和电子在有机发光材料中相遇、复合, 释放出能量 , 并将能量传递给有机发光物质的分子, 使其受激, 从基态跃迁到激发态。当受激分子从激发态回到基态时 ,将能量以光能的形式释放出来 , 从而产生电致发光现象。前述材料在注入空穴和电子时 , 只有 25%的空穴和电子能够形成单线态激子 , 另外 75%形成三线态激子。三线态激子到基态的跃迁是自旋禁阻的, 故大部分有机分子的三线态激子的发光效率极低。若不利用激子三线态, 即使充分利用单线态激子, OLED的内部量子效率也只能达到 25%。因此目前材料研究的重点转向充分利用激子三线态。磷光材料既可通过单线态 , 又可通过三线态激子去激活发光, 因而采用磷光材料可突破OLED 最高内量子效率为 25%的上限, 理论上可达到100%。吉林大学与香港大学合作, 较早进行利用三线态发光材料制备电致发光器件的实验并提出突破 25%理论上限的可能性。随后 Prinston 大学的Forrest 和南加州大学的 Thompson 合作发现了几种磷光发射的铂卟啉(PtOEP)化合物适于发光器件的制备 , 器件具有高的发光效率。Baldo 及其合作者通过在主体材料中掺杂 Ir (PPy) 3 或 PtOEP 磷光材料提高能量传递效率 , 采用 Ir (PPy) 3 时外量子效率达到 7.5 %。除了 Ir (PPy) 3 和 PtOEP 两种

有机电致发光材料与器件

有机电致发光材料与器件 有机电致发光器件发展及展望综述 有机电致发光器件发展及展望综述 中文摘要 有机电致发光器件(organic light-emitting device, OLED)目前已成为平板信息显示领域的一个研究热点。OLED具有平板化、自发光、色彩丰富、响应快、视野宽及易于实现超薄轻便等优点,被认为是未来最有可能替代液晶显示器和等离子显示器的一种新技术,同时可以用做照明和背光源。但是,其制作成本高、良品率低等不足有待解决。OLED显示技术与传统的LCD显示方式不同,无需背光灯,采用非常薄的有机材料涂层和玻璃基板,当有电流通过时,这些有机材料就会发光。而且OLED显示屏幕可以做得更轻更薄,可视角度更大,并且能够显著节省电能。 为了形像说明OLED构造,可以将每个OLED单元比做一块汉堡包,发光材料就是夹在中间的蔬菜。每个OLED的显示单元都能受控制地产生三种不同颜色的光。OLED与LCD一样,也有主动式和被动式之分。被动方式下由行列地址选中的单元被点亮。主动方式下,OLED单元后有一个薄膜晶体管(TFT),发光单元在TFT驱动下点亮。主动式的OLED比较省电,但被动式的OLED显示性能更佳。 关键词有机电致发光器件器件性能结构优化空穴阻挡 - I -

Organic Light-Emitting Devices Performance Overview tianjia (Class0413 Grade2006 in College of Information&Technology,Jilin Normal University, Jilin Siping 136000) Directive Teacher: jiang wen long(professor) Abstract Electroluminescent devices (organic light-emitting device, OLED) flat panel information display has become a hot topic in the field. OLED technology has a flat, self-luminous, rich colors, fast response, wide horizons and easy to implement the advantages of ultra-thin light, is considered the next best possible alternative to liquid crystal displays and plasma displays, a new technology while can be used as lighting and backlight. However, its high production cost, low rate of less than good product to be resolved. OLED display technology with the traditional LCD display in different ways, no backlight, with a very thin coating of organic materials and glass substrate, when a current is passed, these organic materials will be light. OLED display screen can be done but lighter and thinner, larger viewing angle, and can significantly save power. To image shows OLED structure, each OLED element can be likened to a hamburger, light-emitting material is sandwiched in between

有机电致发光材料的新进展

有机电致发光材料的新进展 唐杰 (湖南工程学院化学化工学院,湘潭,411101) 摘要:介绍了有机电致发光材料的最新进展,对有机电致发光材料进行分类和评述,重点介绍载流子传输材料和发光材料(小分子发光材料,金属配合物发光材料和聚合物发光材料)的国内外研究现状,并对有机电致发光材料的应用前景进行评述。 关键词:有机电致发光;发光材料;有机小分子;金属配合物;聚合物 Abstract:The recent progress of organic electroluminescent materials was introduced. Various kinds of organic molecular materials and polymer materials used for organic electroluminescence at present were mainly described. The future application of the materials was described. Key words:organic electroluminescence;luminescent material;small organic molecule;organometallic complex;polymer 前言 有机电致发光(organic electro-luminescence ),也叫有机发光二极管(organic light-emitting diode),简称为OLED[1],是指有机物在电场作用下,受到电流电压的激发而发光的现象,是一种直接将电能转化光能的过程。该类材料具有低成本、制作简单、驱动电压低、体积小、响应时间短、重量轻、高导电性、良好的成膜性、视角宽、可大面积使用、柔韧性及可塑性好、自身可发光等显著优点,能够满足照明和显示技术高的需求,已经吸引了科学界和商业界的高度关注。目前国内外对OLED的研究主要集中在发光材料的研究,器件的制作和产品研发上。 在20世纪30年代的时候,人类就开始对有机电致发光材料进行研究了。最初的是1936年Destriau发现的,他将化合物不集中在聚合物中制备了薄膜。1963年,Pope、Lohmann、Helfrich和Willams等人都接连研究了稠环芳香族的蒽、萘等化合物,但大都由于诸多因素而使其发展受到限制。1982年,美国柯达集团的Vincett[2]等人,用真空沉积有机薄膜的这样方法得到有机电致发光材料。从此,对有机发光材料研究的帷幕拉开了。1987年,C.W.Tang[2,3]利用超薄薄膜技术,得到了有机电致发光的材料这一进展对有机发光材料研究的影响很大,全世界都

有机电致发光材料与技术试题

选择 1、有机电致发光材料应具备哪些性质(ABCD) A 在固态或溶液中,在可见光区要有较高效率的光发射现象 B 具有较高的导电率,呈现良好的半导体特性 C 具有良好的成膜特性,在几纳米甚至几十纳米的薄膜内基本无针孔 D 稳定性强,一般具有良好的机械加工性能 2、1963年Pope等人报道了哪种材料的电致发光现象(D) A 苯 B 菲 C Alq3 D 蒽 3、下面哪些发光现象是OLED中经常出现的(ABD) A 磷光 B 荧光 C 上转换发光 D 激基复合物发光 4、1987年C.W.Tang等人利用Alq3成功制备出(B)OLED器件 A 单层 B 双层 C 三层 D 四层 5、高分子材料可以利用以下哪种方式制备薄膜(BC) A 热蒸镀法 B 溶液旋涂法 C 喷墨打印法 D 真空升华法 填空 6、OLED内量子效率是指器件中产生的所有(光子)的总数与注入(电子空穴对)数量之比 7、可以利用LiF等无机绝缘材料作为OLED的()层,是利用了电子的()效应 8、在有机电致发光材料中,噁二唑基团有(电子传输)性质,而咔唑基团具有(空穴)传输性质 9、如何实施()的有效注入,降低器件()是实现高效聚合物电致发光的关键 10、配合物发光材料主要有()发光()发光和电荷转移跃迁发光三种发光机制 判断 11、(错)发光是电子从高能态向低能态产生跃迁释放能量的过程 12、()有光辐射必然有热辐射 13、()一个发光物质有几种发光中心,他们的激发光谱都一致 14、(错)红光的发光波长比蓝光的发光波长长,所以红光光的辐射能量高 15、()有机电致发光器件必须具有多层结构或者是掺杂结构 简答 16、OLED用ITO基片最常用的清洗方法 先用普通或专用清洁剂和中等硬度的刷子或百洁布刷洗,并用清水冲洗干净;将ITO基片置于丙酮中超声清洗,再换用清洁的丙酮,反复超声多次,再把丙酮换成乙醇.也反复超声清洗多次.再用去离子水反复超声清洗多次:然后用高速喷出的N2吹干基片上的去离子水。 17、还有一个或者多个乙稀基或者乙炔基不饱和基团的可交联硅氧烷作为刚性封装材料有哪些优点? (1) 允许封装剂覆盖发光部分,聚硅氧烷及硅氧烷衍生物对OLED的寿命和行为没有损害作用; (2)封装剂直接接触器件,可以阻隔性.隔绝水、溶剂、灰尘等外部污染; (3)封装剂不与OLED在高热条件下反应,有很好的强度; (4) 直接接触OLED,没有空气、溶剂和水封在器件中。 18、理想的小分子空穴传输材料应当具有哪些性质 (1)具有高的热稳定性; (2)与阳极形成小的势垒; (3)能真空蒸镀形成无针孔的薄膜

有机电致发光材料研究现状

<有机化学进展>结课论文 题目:有机电致发光材料的研究现状 院系: 专业: 班级: 学号: 姓名:

有机电致发光材料的研究现状 摘要:本文对有机电致发光显示器件的发展历史,器件结构、工作特征、发光器件(OLED)的优点、发展现状和趋势等都做了简要的概括。详细介绍了有机发光材料的研究状况,包括小分子发光材料、高分子(聚合物)发光材料,以及新材料的开发。最后总结了国内外OLED 技术的发展状况。 关键词:小分子有机电致发光有机高分子聚合物电致发光 Research and development of organic electroluminescent materials Abstract Organic light-emitting diodes (OLEDs), having excellent properties of low driving voltage and brightemission, have been extensively studied due to their possible applications for flat panel color displays.At the same time, or-ganic electroluminescent materials have been made with an outstanding progress.And thestatus of organic electrolumi-nescent materials(including evaporated molecules and polymers)were reported in this paper. Key words OLED, organic luminescent materials, evaporated molecules and polymers 有机电致发光显示(organic electroluminesence Display)技术被誉为具有梦幻般显示特征的平面显示技术,因其发光机理与发光二极管(LED)相似,所以又称之为OLED(organic light emitting diode)。2000年以来,OLED受到了业界的极大关注,开始步入产业化阶段。 一、发展历史 1936年,Destriau将有机荧光化合物分散在聚合物中制成薄膜,得到最早的电致发光器件。20 世纪50年代人们就开始用有机材料制作电致发光器件的探索,A. Bernanose等人在蒽单晶片的两侧加上400V的直流电压观测到发光现象,单晶厚10mm~20mm,所以驱动电压较高。1963年M. Pope等人也获得了蒽单晶的电致发光。70年代宾夕法尼亚大学的Heeger探索了合成金属[1]。1987年Kodak 公司的邓青云首次研制出具有实用价值的低驱动电压(<10V,>1000cd/m2)OLED 器件(Alq作为发光层)[2]。1990年,Burroughes及其合作者研究成功第一个

有机电致发光材料研究进展

2005年8月 云南化工 Aug.2005 第32卷第3期 Yunnan Chemical Technology Vol.32,No.4 ?专家专栏? 有机电致发光材料研究新进展 程晓红1,2,傅长金1,鞠秀萍1,古 昆1, 2 (1.云南大学应化系,2.云南大学生物制药创新人才培养基地,云南昆明650091) 收稿日期: 2005-05-12基金项目:国家自然科学基金项目(20472070) 作者简介:程晓红(1968~),女,2001年获德国理学博士学位,教授,博导,研究方向为超分子功能材料的合成与应用。 摘 要: 简要介绍了有机电致发光器件的结构、工作原理。重点从有机电致发光材料器件结构的角度出发,对电致发光材料最新研究进展进行了综述。 关键词: 电致发光材料;有机小分子 中图分类号: O631,TQ57 文献标识码: A 文章编号: 1004-275X (2005)04-0001-06 Research Progress on Organic Electroluminescent Materials CHENG Xiao-hong 1,2,FU Chang-jin 1,JU Xiu-pingju 1,Gu Kun 1, 2 (1.Department of Chemistry ; 2.Center for Advanced Studies of Medicinal &Organic Chemistry ,Yunnan University ,Kunming 650091,China )Abstract : Structure and work principle of organic electro -luminescence (OEL )device ,https://www.360docs.net/doc/432775849.html,anic light -emit-ting diode (OLED )were introduced ,and chemical structural design of the best organic materials used in OLED devices were emphasized. Key words : electroluminescent materials ;small organic molecule 前言 有机电致发光(EL )是指有机材料在电场作用下,将电能直接转化为光能的一种发光现象。关于有机电致发光器件(OEL )即有机发光二极管(OLED )的研究起始于上世纪50年代。到1987年,Tang 等制备了以8-羟基喹啉铝(Alq3)为发光材料的多层器件,使有机电致发光研究取得突破性进展;1990年,剑桥大学卡文迪许实验室又成功 地报道[1~3] 了共轭聚合物聚(对苯撑乙烯)(PPV ) 的电致发光现象。这一重大发现,开辟了发光器件的又一新领域———聚合物薄膜电致发光器件的研究。本文将简要介绍有机电致发光器件的结构、工作原理,重点介绍自1987年以来出现的有机电致发光小分子材料的研究进展。 1 有机薄膜电致发光器件结构 图1 有机薄膜电致发光器件结构示意图 最简单的有机发光二极管的结构为单层夹心式 (如图1( a )所示),但效率很低。目前主要采取[2] :DL-E (图1(b )),DL-H (图1(c ))和TL-C 型(图1(d ))三种基本形式的多层结构器件。DL-E 和DL-H 属三层结

粉末电致发光材料晶体生长和发光特性(精)

粉末电致发光材料晶体生长和发光特性 本论文研究了Cu~+对ZnS:Cu电致发光材料发光特性的影响;讨论了晶体生长过程中灼烧温度、助熔剂的作用及对发光材料结构、粒度、发光特性的影响;采取相变技术和采用掺入两种激活剂的方法较大地提高了粉末电致发光材料的发光性能。研究表明,随着Cu+掺入量的增加,材料发光亮度随之增加,Cu+掺入浓度为0.15%时,发光材料的亮度达到最大,但发光亮度并不会随着Cu+掺杂浓度的增加一直增大。同时借助光致发光光谱进一步研究了ZnS:Cu的发光机理及发光特性,Cu+浓度小于0.15%时,光致发光光谱的峰值随Cu+浓度增加而逐渐增大,当Cu+浓度为0.15%时,光致发光光谱的峰值达到最大, Cu+浓度大于0.15%时,光致发光光谱的峰值开始迅速下降。通过改变灼烧温度及灼烧气氛达到改变晶体粒度的大小,随着焙烧温度的提高,ZnS:Cu的平均粒度增大,在800℃到1250℃之间可以获得平均粒度在5/μm-22/μm的发光材料,发光材料的亮度也呈增大的趋势。虽然助熔剂Br-、Cl-的加入对发光材料的粒度影响较小,但Br-、C1-起电荷补偿作用,可增加Cu+在晶体中的溶解度。我们采用晶体相变技术,获得了以立方相结构为主、结晶好、亮度高的绿色发光材料。本文提出在ZnS基质材料中同时掺入Cu+、Au+两种激活剂,通过改变掺杂比例来探索提高粉末电致发光材料发光性能的方法,在ZnS晶体中它们以一价阳离子形式进入ZnS晶格中,形成更多的发光中心。通过在基质ZnS材料中掺入Cu+和Au+两种不同浓度的激活剂,在不影响材料颜色的前提下,较大地提高了电致发光材料的亮度。论文的完成对改善绿色交流粉末电致发光材料ZnS:Cu的发光特性,获得优质的ZnS:Cu绿色发光材料及拓宽材料的应用领域有着重要的经济和现实意义。 同主题文章 [1]. Aron ,Vecht ,朱自熙. 八十年代粉末电致发光(EL)技术' [J]. 发光学报. 1981.(03) [2]. 近期外文资料索引' [J]. 液晶与显示. 1986.(06) [3]. 周连祥. 一种研究粉末电致发光(EL)器件频率特性的新方法' [J]. 发光学报. 1992.(01) [4]. 王金忠,杜国同,王新强,闫玮,马燕,姜秀英,杨树人,高鼎 三,Chang ,R ,P ,H. 退火对ZnO薄膜结构及发光特性的影响' [J]. 光学学报. 2002.(02) [5]. 谢伦军,陈光德,竹有章,汪,屿. ZnO薄膜表面和边缘的发光特性(英文)' [J]. 发光学报. 2006.(06)

有机光电材料综述

有机小分子电致发光材料在OLED的发展与应用的综述 电致发光(electroluminescence,EL),指发光材料在电场的作用下,受到电流或电场激发而发光的现象,它是一个将电能直接转化为光能的一种发光过程。能够产生这种电致发光的物质有很多种,但目前研究较多而且已经达到实际应用水平的,主要还是无机半导体材料,无机EL 器件的制作成本较高,制作工艺困难,发光效率低,发光颜色不易实现全色显示,而且由于很难实现大面积的平板显示,使得这种材料的进一步发展具有很严峻的局限性。由于现有的显示技术无法满足我们生产生活的需要,因此促使人们不断地寻求制备工艺成本更低、性能更好的发光材料。有机电致发光材料(organic light-emitting device,OLED)逐渐的进入了人们的视野,人们发现它是一种很有前途的、新型的发光器件。有机电致发光就是指有机材料在电流或电场的激发作用下发光的现象。根据所使用的有机材料的不同,我们将有机小分子发光材料制成的器件称为有机电致发光材料,即OLED;而将高分子作为电致发光材料制成的器件称为高分子电致发光材料,即PLED。不过,通常人们将两者笼统的简称为有机电致发光材料OLED。 一.原理部分 与无机发光材料相比,有机电致发光材料具有很多优点:光程范围大、易得到蓝光、亮度大、效率高、驱动电压低、耗能少、制作

工艺简单以及成本低。综上所述,有机电致发光材料在薄膜晶体管、太阳能电池、非线性发光材料、聚合物发光二极管等方面存在巨大的需求,显示出广泛的应用前景,因而成为目前科学界和产业界十分热门的科研课题之一。虽然,世界上众多国家投入巨资致力于有机平板显示器件的研究与开发,但其产业化进程还远远低于人们的期望,主要原因是器件寿命短、效率低等。目前有很多关键问题没有解决:1. 光电材料分子结构、电子结构和电子能级与发光行为之间的关系,这是解决材料合成的可能性、调控材料发光颜色、色纯度、载流子平衡及能级匹配等关键问题的理论和实验依据; 2. 光电材料和器件的退化机制、器件结构与性能之间的关系、器件中的界面物理和界面工程等,这是提高器件稳定性和使用寿命的理论和实验基础,也是实现产业化、工业化的根本依据。 1.基态与激发态 “基态”在光物理和光化学中指的是分子的稳定态,即能量最低的状态。如果一个分子受到光或电的辐射使其能量达到一个更高的数值后,分子中的电子排布不完全遵从构造原理,这时这个分子即处于“激发态”,它的能量要高于基态。基态和激发态的不同并不仅仅在于能量的高低上,而是表现在多方多面,例如分子的构型、构象、极性、酸碱性等。在构型上主要表现在键长和二面角方面,与基态相比,激发态的一个电子从成键轨道或非成键轨道跃迁到反键轨道上,使得键长增长、键能级降低;同时,由于激发后共轭性也发生了变化,所以二面角即分子的平面性也发生了明显的改变。

有机光电材料综述

有机小分子电致发光材料在OLED的发展与应用的综述电致发光(electroluminescence,EL),指发光材料在电场的作用下,受到电流或电场激发而发光的现象,它是一个将电能直接转化为光能的一种发光过程。能够产生这种电致发光的物质有很多种,但目前研究较多而且已经达到实际应用水平的,主要还是无机半导体材料,无机 EL 器件的制作成本较高,制作工艺困难,发光效率低,发光颜色不易实现全色显示,而且由于很难实现大面积的平板显示,使得这种材料的进一步发展具有很严峻的局限性。由于现有的显示技术无法满足我们生产生活的需要,因此促使人们不断地寻求制备工艺成本更低、性能更好的发光材料。有机电致发光材料(organic light-emitting device,OLED)逐渐的进入了人们的视野,人们发现它是一种很有前途的、新型的发光器件。有机电致发光就是指有机材料在电流或电场的激发作用下发光的现象。根据所使用的有机材料的不同,我们将有机小分子发光材料制成的器件称为有机电致发光材料,即 OLED;而将高分子作为电致发光材料制成的器件称为高分子电致发光材料,即 PLED。不过,通常人们将两者笼统的简称为有机电致发光材料 OLED。 一.原理部分 与无机发光材料相比,有机电致发光材料具有很多优点:光程范围大、易得到蓝光、亮度大、效率高、驱动电压低、耗能少、制作工艺简单以及成本低。综上所述,有机电致发光材料在薄膜晶体管、

太阳能电池、非线性发光材料、聚合物发光二极管等方面存在巨大的需求,显示出广泛的应用前景,因而成为目前科学界和产业界十分热门的科研课题之一。虽然,世界上众多国家投入巨资致力于有机平板显示器件的研究与开发,但其产业化进程还远远低于人们的期望,主要原因是器件寿命短、效率低等。目前有很多关键问题没有解决:1. 光电材料分子结构、电子结构和电子能级与发光行为之间的关系,这是解决材料合成的可能性、调控材料发光颜色、色纯度、载流子平衡及能级匹配等关键问题的理论和实验依据; 2. 光电材料和器件的退化机制、器件结构与性能之间的关系、器件中的界面物理和界面工程等,这是提高器件稳定性和使用寿命的理论和实验基础,也是实现产业化、工业化的根本依据。 1.基态与激发态 “基态”在光物理和光化学中指的是分子的稳定态,即能量最低的状态。如果一个分子受到光或电的辐射使其能量达到一个更高的数值后,分子中的电子排布不完全遵从构造原理,这时这个分子即处于“激发态”,它的能量要高于基态。基态和激发态的不同并不仅仅在于能量的高低上,而是表现在多方多面,例如分子的构型、构象、极性、酸碱性等。在构型上主要表现在键长和二面角方面,与基态相比,激发态的一个电子从成键轨道或非成键轨道跃迁到反键轨道上,使得键长增长、键能级降低;同时,由于激发后共轭性也发生了变化,所以二面角即分子的平面性也发生了明显的改变。 2.吸收和发射

有机电致发光综述

有机电致发光综述 本文对有机电致发光显示器件的发展历史,器件结构、工作特征、获得彩色显示的方法以及所具有的优缺点、发展现状和趋势等都做了简要的概括。详细比较了小分子OLED与聚合物PLED、OLED与LCD性质上的比较,对OLED显示的发光机理进行了详细的综述。此外,对获得彩色显示的无源驱动电路和有源驱动电路的结构进行了总结,认为有源驱动将是最终发展趋势。最后总结了国内外OLED技术的发展状况。 关键词:小分子有机电致发光有机聚合物电致发光无源驱动有源驱动 (作者:姚华文,上海华嘉光电技术有限公司,上海市嘉定区招贤路928号,201821) 有机电致发光显示(organic electroluminesence Display)技术被誉为具有梦幻般显示特征的平面显示技术,因其发光机理与发光二极管(LED)相似,所以又称之为OLED(organic light emitting diode)。2000年以来,OLED受到了业界的极大关注,开始步入产业化阶段。 1.发展历史 1936年,Destriau将有机荧光化合物分散在聚合物中制成薄膜,得到最早的电致发光器件。 20 世纪50年代人们就开始用有机材料制作电致发光器件的探索,A. Bernanose等人在蒽单晶片的两侧加上400V的直流电压观测到发光现象,单晶厚10mm~20mm,所以驱动电压较高。1963年M. Pope等人也获得了蒽单晶的电致发光。70年代宾夕法尼亚大学的Heeger 探索了合成金属[1]。1987年Kodak公司的邓青云首次研制出具有实用价值的低驱动电压(<10V,>1000cd/m2)OLED器件(Alq作为发光层)[2]。1990年,Burroughes及其合作者研究成功第一个高分子EL(PLED)(PPV作为发光层),更为有机电致发光显示器件实用化进一步奠定了基础。1997年单色有机电致发光显示器件首先在日本产品化,1999年月,日本先锋公司率先推出了为汽车音视通信设备而设计的多彩有机电致发光显示器面板,并开始量产,同年9月,使用了先锋公司多色有机电致发光显示器件的摩托罗拉手机大批量上市[3]。这一切都表明,OLED技术正在逐步实用化,显示技术又将面临新的革命[4]。 2.器件分类 按照组件所使用的载流子传输层和发光层有机薄膜材料的不同,OLED可区分为两种不同的技术类型。 一是以有机染料和颜料等为发光材料的小分子基OLED,典型的小分子发光材料为Alq(8-羟基喹啉铝);另一种是以共轭高分子为发光材料的高分子基OLED,简称为PLED,典型的高分子发光材料为PPV(聚苯撑乙烯及其衍生物[5]。 3.基本结构和发光机理 OLED是基于有机材料的一种电流型半导体发光器件。其典型结构是在ITO玻璃上制作一层几十纳米厚的有机发光材料作发光层,发光层上方有一层低功函数的金属电极。当电极上

有机电致发光发展历程及TADF材料的发展进展

有机电致发光发展历程及TADF材料的发展进展 1.1引言 有机光电材料(Organic Optoelectronic Materials),是具有光子和电子的产生、转换和传输等特性的有机材料。目前,有机光电材料可控的光电性能已应用于有机发光二极管(Organic Light-Emitting Diode,OLED)[1,2,3],有机太阳能电池(Organic Photovoltage,OPV)[4,5,6],有机场效应晶体管(Organic Field Effect Transistor,OFET)[7,8,9],生物/化学/光传感器[10,11,12],储存器[13,14,15],甚至是有机激光器[16,17]。和传统的无机导体和半导体不同,有机小分子和聚合物可以由不同的有机和高分子化学方法合成,从而可制备出大量多样的有机半导体材料,这对于提高有机电子器件的性能有十分重要的意义。 其中,有机电致发光近十几年来受到了人们极大的关注。有机电致发光主要有两个应用:一是信息显示,二是固体照明。在信息显示方面,目前市面上主流的显示产品是液晶显示器(Liquid Crystal Display,LCD),它基本在这个世纪初取代了阴极射线管显示,被广泛应用于各种信息显示,如电脑屏幕,电视,手机,以及数码照相机等。但是,液晶显示器也有其特有的缺点,比如响应速度慢,需要背光源,能耗高,视角小,工作温度范围窄等。所以人们也迫切需要寻求一种新的显示技术来改变这种局面。有机发光二级管显示器(OLED)被认为极有可能成为下一代显示器。因为其是主动发光,相对于液晶显示器有着能耗低,响应速度快,可视角广,器件结构可以做的更薄,低温特性出众,甚至可以做成柔性显示屏等优势。但是,有机发光显示技术目前还有许多瓶颈需要解决,尤其是在蓝光显示上,还需要面对蓝光显示的色度不纯,效率不高,材料寿命短的挑战。目前,有机发光二极管显示的发展显示出研究,开发和产业化起头并进的局面。 本论文的主要工作是合成新型有机发光材料并研究其光电性能,本章将介绍有机电致发光的发展历程,以及有机材料的发光机制,最后提出本论文的设计思路。 1.2 有机电致发光发展历程 Destriau于1936年首次观察到了电致发光现象[18],而有机电致发光现象要追溯到

有机电致发光材料感悟

有机电致发光材料 学院:化工学院专业:应化姓名:000 学号:20111130152 随着信息时代的来临,作为人机界面的新型显示器件的研制,越来越引起人们的重视,特别是各类平板显示器件(FPD)以其体积小、重量轻、能耗低、屏幕大等特点,引发了一股强劲的平板显示器件研制热潮。作为新一代平板显示器件,有机电致发光器件(OLED)具有如下优点:(1)设计方面:结构简单,成品率高成本低;不需要背景光源和滤光片,因而可以制造出超薄、重量轻、易于携带的产品。(2)显示方面:主动发光、视角范围大;响应速度快,图像稳定;亮度高、色彩丰富、分辨率高。(3)工作条件:驱动电压低、能耗低,可与太阳能电池、集成电路等相匹配。(4)适应性广:采用玻璃衬底可实现大面积平板显示;如用柔性材料做衬底,能制成可折叠的显示器(5)由于OLED是全固态、非真空器件,具有抗震荡、耐低温(一40℃)等特性,在军事方面也有十分重要的应用,如用作坦克、飞机等现代化武器的显示终端。 由于上述优点,有机电致发光器件在手机、个人电子助理(PDA)、数码相机、车载显示、笔记本电脑壁挂电视以及军事领域都具有广阔的应用前景,是一种可刚来替代液晶显示器(LCD)的新型平板显示器件。因此,OLED是近几年来新材料及显示技术领域研究、开发的一大热点,其产业化势头卜分迅猛。 一、有机电致发光原理

有机电致发光是载流子从阳极和阴极双注入式的发光过程,是将电能转化为光能的能量转移过程.有机电致发光机制:在外加电场作用下,电子和空穴分别从两电极注入有机层的导带(反键轨道)和价带(成键轨道),经过有机层的电子传输和空穴传输,在发光层复合形成激子,激子通过辐射发光(荧光或磷光)从激发态跃迁回基态.有机物电荷传输大部分以∏-电子为基础,分子之间仅仅具有弱的分子间作用力——范德华力,具有可吸收和发射紫外可见光、产生和传输电荷、非线性光学性能等性质;其导电过程可用分子轨道理论解释,即电荷传输是靠载流子在不同分子轨道的最高占据轨道(HOMO)和最低空轨道(LUMO)能级之间的跃迁完成的;发光是受激发电子从LUMO能级跃迁到HOMO能级产生的。有机分子之间的HOMO和LUMO分别相当于无机半导体的价带和导带,他们之间的能隙相当于无机半导体的禁带。在电场作用下,电子从阴极注人有机分子的LUMO,再通过相邻分子能级相近的LUMO之间的传递,形成类似于无机半导体的导带的传递,实现电子传输;空穴从阳极注入有机分子的HOMO中,并在分子问的HOMO传递空穴,类似于无机半导体的价带传递。 二、有机电致发光材料研究现状 有机电致发光材料应同时具备以下条件:(1)固态具有较高的荧光量子效率,荧光光谱主要分布在400~700nm的可见光区域内;(2)具有良好的半导体特性,或传导电子,或传导空穴,或既传导电子又传导空穴;(3)具有良好的成膜特性,在很薄(几十纳米)的情况下能形成均匀、致密、无针孔的薄膜;(4)在薄膜状态下具稳定性,不易产

有机电致发光材料及器件导论

1.电致发光(EL):发光材料在电场作用下,受到电流和电场的激发而发光的现象,是一个将电能直接转化为光能的 一种发光过程(非热转换即不是通过热辐射实现的)。 2.FED,PDP,LCD都存在问题,不能满足时代需求,所以研究更为高效的有机电致发光器件(OLED)。OLED特点: 材料选择有机物,高分子,因而选择范围宽;驱动电压低;发光亮度和发光效率高,发光视角宽,相应速度快; 器件可弯曲,不受尺寸限制,分辨率高等。 3.基态:分子的稳定态即能量最低状态;激发态:被激发后,分子的电子排布不遵循构造原理。激发态分子内的物 理失活:辐射跃迁和非辐射跃迁。而辐射跃迁:释放光子而从高能激发态失活到低能基态的过程。导致电子运动轨道界面减少;在势能面上跃迁是垂直发生的。 4.有机半导体:在外电场作用下,电子和空穴在LUMO和HOMO间的跳跃产生电流。而掺杂半导体中的载流子浓 度大于本征半导体(电子和空穴浓度相同),所以导电性更好 5.直流注入式有机电致发光:在有机EL器件的两端电机上加上直流电源,通电后发光器件受电激发的作用而发光的 现象。过程:载流子注入,载流子传输,电子和空穴碰撞形成激子(激子是彼此束缚在一起的电子和空穴对),激子辐射退激发发出光子。 6.单线态激子是总自旋为0的激发状态;注入的电子和空穴形成的单线态和三线态激子的比例正比于其状态数,有 机电致发光的量子效率最大为25%;Forster能量转移:能量从主体向掺杂材料的传递方式,能在较远距离内实现,为单线态激子;Dexter能量转移:只能在紧邻分子间实现,为三线态激子。 7.单层器件:单层有机薄膜被夹在ITO阴极和金属极之间,形成的是单层有机电致发光器件。但是单层器件的载流 子的注入不平衡,器件发光效率低。三层器件是目前OLED中最常用的一种。在实际的器件中,在发光层往往采用掺杂的方式提高器件性能 8.器件制备过程:刻蚀好的ITO玻璃—清洗—臭氧/氧等离子体处理—基片置于真空腔体—抽真空—蒸发沉积有机薄 膜和阴极—取出器件并封装—测试表征 9.有机小分子发光器件通常用真空蒸发沉积的方法制备构成器件的薄膜,整个过程要在真空腔内完成(真空度高于 10^-4Pa)。共聚物发光器件主要是通过涂璇的方法制备的,涂璇过程中要精确的控制加速,转速。但涂璇浪费材料且不能全彩显示,而喷墨打印则弥补此缺点。 10.在OLED贮存和工作器件受到化学反应的影响,所以要选择阻隔性好的封装材料。有刚性封装材料(玻璃和聚合 物,玻璃可形成密闭空腔,聚合物可满足显示器大屏化);柔性封装材料(玻璃和聚合物);边缘缝隙封装材料(紫外固化得聚合物黏结剂) 11.有机电致发光器件封装材料的高阻隔性可通过在聚合物薄膜上沉积小分子图层形成复合薄膜获得,多层复合薄膜 可使粗糙的器件表面光滑化,保证无机层的完整,以致渗透分子的传导受阻更好,也可在封装中加捕捉剂来提高阻隔性。 12.器件发光效率:量子效率(器件向外发射的光子数与注入电子空穴对数之比。内量子数ηint指器件产生的所有光 子数与注入电子空穴对数之比;外量子数ηext指器件在全空间发射的光子数Np与注入的电子空穴对数量Nc之比);流明效率(ηl=AL/Ioled,A为器件有效面积,L为器件发光亮度,Ioled为有机发光器件发光亮度为L时的工作电流);功率效率(ηp=Lp/IoledV,ηp为光功率效率,Lp为器件前方发射出来的光功率,IoledV是驱动电压V驱动下的器件总电功率) 13.有机电致发光器件效率可以用积分球光度计测量。但这是一个理想模型,要对测量结果进行修正;发光效率用积 分球光度计加光谱仪的方法测量。 14.亮度,Lv为发光亮度,Km为光功当量,Le. λ为辐射亮度,V(λ)为明视觉光 谱光视效率。Lθ=Iθ/d a cosθ,Lθ为某方向发光功率,Iθ为改方向上的光强,da为一个发光表面。发光亮度一般用各种亮度计测量,测量被测光源表面的像在光电器件表面所产生的光照度,则该像表面的照度正比于光源的亮度,不随光度计与光体之间的距离而变化。 15.色度测量通常用光谱辐射计,如PR-705;有机电致发光器件的电流-电压曲线则可用普通的伏安法测量。亮度-电 压曲线表现器件光电性质;发射光谱测量:使荧光或者磷光通过单色器后照射于检测器上,扫描发射单色器并检

有机电致发光器件(OLED)材料的发展(精)

有机电致发光器件(OLED)材料的发展 MG0424065 颜黎均 一、引言 1987年,美国柯达公司的C. T. Wang等人以8-羟基喹啉铝(Alq3)作为发光层,得到了有实用工业化价值的高亮度有机电致发光器件。在过去的15年中,有机电致发光显示技术得到了长足的发展。各种发光材料也陆续研制出来,包括了有机小分子,比如Tang等将有机小分子DCM掺杂到Alq3中首次实现了红色有机电致发光;有机金属配合物,最典型的就是Alq3;高分子聚合物,1993年,Friend等合成CN-PPV。 O NC CN N DCM N O Al N O N O Alq3 NC * C6H13O OC6H13 OC6H13 C6H13O CN * n CN-PPV Scheme 1 二、基本结构及发光原理 由于有机材料多数都是绝缘的,造成只能有极小的电流能够通过。这个电流量可以用空间电荷的限制(space-charge-limited,SCL)电流来表征。 有机电致发光器件的最简单的结构就是将有机发光体夹在两个能射入电流的电极中间;为了能够在较低的电压下得到足够大的SCL电流,就需要器件结构尽量的薄,一般使用真空蒸镀法将有机材料在真空环境下蒸镀成厚度为10-0.1微米的有机薄膜。 最常见的有机电致发光器件是由柯达公司最先提出的基本的二层结构

(Device-A ),这里镁银合金作为整个器件的负极,金属氧化物(ITO )作为正极,中间夹有电子传输层和空穴传输层;发光体能够输送电子,可以将发光体蒸镀到电子传输层中。这样,器件从上到下依次为玻璃/ITO/空穴传输层/电子传输层(发光体)/Mg-Ag 。电子从镁银合金处进入电子传输层,同时正电荷从ITO 进入空穴传输层,电子传输层与空穴传输层的交界处偏向电子传输层的界面(图中虚线范围内)上结合为激子,激子的能量转移到发光体分子,使得发光体分子中的电子被激发到激发态,电子往低能级跃迁时就可以发光。这里空穴传输层由于不能传输电子,对于阻碍电子也起到了一定作用。相反,对于不能有效传输电子、但是可以传输正电荷的发光体可以使用Device-B 这样的器件结构。与Device-A 中电激发光局限在一定的环带内不同的是,Device-B 中当电子与正电荷在有机接触层附近结合时所产生的激发光可以扩散到整个空穴传输层,表现为整个空穴传输层均在发光。 Scheme 2 OLED 的基本发光机理其实就是上面所形成的激子的能量转移到发光分子中,使得发光分子的电子被激发至不稳定激发态,在电子的去激过程中就能发出可见光。但是根据电子自旋规则的要求,在电子从激发态跃迁至基态的过程中,只有单重态到单重态的跃迁(S 1→S 0、S 2→S 0)才是允许的;只有有机分子的单重态部分能够通过辐射跃迁发射荧光,而这部分能量只是空穴与电子合成的激子传给有机分子的能量的一小部分,大部分的能量通过振动驰豫、热效应等形式耗 ITO 玻璃Mg/Ag 电子传输层空穴传输层发光体 Device-B ITO 玻璃Mg/Ag 电子传输层空穴传输层发光体Device-A

紫外有机电致发光材料分析研究进展

紫外有机电致发光材料的研究进展 摘要:发光材料分为电致发光材料和光致发光材料。其中紫外有机发光相对于其它发光技术,具有面发光、全视角、低驱动电压、低功耗、低制备成本等诸多优势,其应用前景更加广阔。文章对紫外有机发光的研究进行概述,分别从材料类别和器件结构角度回顾相关研究进展,总结和分析该技术存在的问题并提出解决途径。 关键词:有机电致发光二极管;紫外发光;研究进展 引言 目前,世界各国对高效和操作性能稳定的有机发光材料展开了全面广泛的研究, 新材料不断涌现, OLED的发展十分迅猛。有机电致发光具有主动发光图像质量好驱动电压低发光效率高响应速度快分辨率高可视角度广全固态使用温度范围宽可柔性显示等诸多优点,被认为是最可能取代液晶的第三代显示技术自从1987 年邓青云等人开创异质结器件结构以来[1],有机发光技术经历了近二十年飞速发展,其器件性能已经基本达到实用化要求,现在正处于产业化推广阶段有机发光的研究领域也逐步从可见光波段扩展至非可见光范围,包括近红外光和长波紫外光波段 迄今为止,公开报道的有机电致发光均是长波紫外线,其波长范围为 320~ 400nm 长波紫外有机电致发光的应用前景广阔,包括:<1)显示领域:在全彩显示中作为可见光的激发光源,可保证彩色显示的颜色稳定性,解决目前有机发光普遍存在的因为各种颜色衰减速率不同而造成的色稳定性差的问题;<2)涂料固化颜料固

化光刻的紫外光光源;<3)生物学:360nm 波长的 UVA紫外线符合昆虫类的趋光性反应曲线,可制作诱虫灯来诱杀害虫紫外线也具有生理作用,能杀菌消毒帮助人体保健治疗皮肤病和软骨病等;<4)仪器分析: 300~420nm 波长的 UVA紫外线可透过完全截止可见光的特殊着色玻璃灯管,仅辐射出以 365nm 为中心的近紫外光,可用于矿石药物食品分析油烟光氧化分解光触酶<二氧化钛)等;<5)信息存储:紫外线有化学作用能使照相底片感光,紫外光作为读取信息光源,相对可见光源还可以增大信息容量 本文对紫外有机发光的研究进行概述,分别从材料类别和器件结构角度回顾紫外有机发光的研究进展,总结和分析该技术存在的问题并提出相关解决途径 1、紫外有机电致发光材料分类 紫外光子要求能量大于 3eV,同时因为辐射退激之前存在能量损失,所以紫外发光材料必须具有很宽的带隙,决定了作为紫外发光的有机材料可选性较小目前长键共轭发光基团材料的带宽相对较窄,作为紫外发光材料比较困难,绝大部分紫外发光材料都是短键共轭的就紫外发光基团类型,可将发光材料分为以下几类<1)唑类衍生物紫外发光材料<如图 1 所示) 1995年, Magnus Berggren等人以PTOPT和PBD的混合物为空穴注入和传输层, PBD 为发光体,实现峰值在 394nm 的紫外光发射,率先将有机发光的发光波长扩展到紫外发光领域[2],但发光效率相对较低,外量子效率不足 0.1% 随后基本没有以唑类衍生物为

4 有机电致发光材料

一、绪论
应用有机化学
显示器件主要有两大类: CRT(阴极射线管) FPD(平板显示器件)
第四章
有机电致发光材料
液晶显示器(LCD) 有机电致发光显示器(OLED) 等离子体显示器(PDP) 场致发光显示器(FED) 电致发光显示器(ELD) 真空荧光显示器(VFD) 微显示器(LCOS) 数字光处理器(DLP)
平板显示器特点:
重量轻、厚度薄、体积小、无辐射、不闪烁。 自上世纪 90 年代以来,随着技术的突破及市场 需求的急剧增长,使得以液晶显示为代表的平板显示 技术迅速崛起。进入 21 世纪以来,FPD 已超过 CRT 成为主要的显示器件。2005 年CRT 的市场占有率已 经降为 36%,FPD 的市场占有率已达到 64%。2007 年,FPD 更将达到 74%。
在目前的平板显示技术中,LCD 在便携式显示 器市场中得到了广泛应用,并占整个平板显示市场 80%以上的份额。
LCD 缺点:
? 亮度低 ? 对比度弱(与CRT 显示器相比,其图像逼真度和饱和 ? 度仍不够理想)
? 响应速度慢(毫秒级) ? 温度特性差(低温下无法使用) ? 自身不能发光而必须依赖于背光源或环境光 ? 同时,偏振片在 LCD 显示器中的使用影响其透过率。 考虑到光源的量子效率、光能的散射吸收等问题, LCD 的能源利用率很低。
1

有机电致发光器件(Organic Light Emitting Devices,
OLEDs)作为新一代的平板显示技术应运而生并逐 渐进入了人们的视野,它是一种很有前途的、新型 的平板显示器,其广泛的应用前景和这些年技术上 的突飞猛进使得 OLEDs 成为 FPD 信息显示领域的希 望之星。
根据分子量的大小可将有机电致发光材料分为小分子材料和 聚合物材料
有机材料传统上是作为化工、农用、医用而得到 广泛应用的,而作为信息材料的研究与应用只是近几 十年来的事情。有机电致发光材料来源广泛,一般具 备以下特点:
在固体状态下,在可见光区要有高效率的荧光; 具有较高的导电率,呈现良好的半导体特性; 具有良好的成膜特性,在几百纳米甚至几十纳米的薄 膜内基本无针孔; 成膜后,有机分子不易结晶,微观具有不定型特性;
1 有机电致发光研究的进展
随后又出现了由含共轭结构的主体与含共轭结构的活 有机电致发光现象的研究可以追溯到二十世纪六十年 代。1963 年,美国 New York 大学的 Pope 等人以电解质溶液 为电极,在蒽单晶的两侧400V 直流电压,首次观察到了蒽的 蓝色电致发光,拉开了有机电致发光研究的序幕。1965-1966 年,Helfinch 和 Schneider 等人对蒽单晶的电致发光做了进一 步的研究。 化剂所组成的有机电致发光材料如萘、芘、并四苯等,但 当时用有机材料所制备的单层电致发光层,厚度通常都超 过 1μm, 要激发发光所需要的驱动电压很高,所以有机电 致发光材料在那个时期还没有任何实用价值,致使它的研 究一直处于停滞状态。有机电致发光研究再一次兴起始于 1979 年 Vincett 小组的工作,特别是在 1982 年,该小组 采用真空蒸发法制备了 0.6μm 蒽沉积膜,将工作电压降 至 30V 以内。
1987年, Eastern Kodak 公司的 C.W.Tang 等发明了 双层结构的器件, 采用荧光效率很高、有电子传输特性 且能用真空蒸镀的有机小分子 — 8-羟基喹啉铝(Alq3) 作为发光层与电子传输层材料,配合具有空穴传输特性 的均匀致密芳香族二胺衍生物作为空穴传输层。该器件 在10V的工作电压下得到了亮度为1000cd/m2的绿光,发 光效率为1.51lm/w,寿命在 100 小时以上。这一工作被 誉为有机电致发光器件发展的里程碑,标志着有机电致 发光器件进入了孕育实用化的时代。
发光效率[lm/W]= 所产生之光通量[lm] / 消耗电功率[W]. 单位:流明每瓦[lm/W].
1990 年剑桥大学 Cavendish 实验室的 Burroughes 和 Friend 等以聚对苯撑乙烯(PPV)为发光层材料制成了聚合 物 EL 器件,开辟了 EL 器件的又一个新途径——聚合物 薄膜电致发光器件(PLED),并展示出了该类 EL 器件 更具挑战性的应用前景。聚合物 EL 薄膜曾被美国评为 1992 年度化学领域十大成果之一。在 2002 年出版的美 国《福布斯》杂志 85 周年纪念专刊上,PLED 发明人被 列为“影响人类未来的十五位发明家”首位,可见这一成 果将对显示行业产生的深远影响。
2

相关文档
最新文档