起落架的组成
起落架结构布局及其基本类型

起落架组成及其基本结构类型
1.起落架组成
起落架主要由支柱、缓冲器、扭力臂、机轮组及刹车装置等构成。
2.起落架配置形式
通常有三种:前三点式、后三点式和自行车式。
前三点式:两个主起落架对称地安装在飞机重心之后,前轮位于机身前部。
(主要缺点是容易发生摆振);
后三点式:两个主起落架对称地安装在飞机重心之前,尾轮装在机身后部。
(主要缺点是滑跑稳定性差,操作不当容易原地打转);
自行车式:在飞机对称面内重心前后各有一副主起落架,左右意见下有护翼轮
3.基本结构形式
a)支柱式起落架
缓冲器与承力支柱合一,称为缓冲支柱,机轮组直接安装在支柱下端。
b)摇臂式起落架
机轮通过可转动的摇臂与缓冲器下端相连的构造形式。
c)气垫式起落架
利用气垫支撑原理制作的起落架。
d)其他形式起落架
4.机轮布置形式
单轮、双轮、小车式、多轮式。
起落架的名词解释

起落架的名词解释起落架是飞机的重要组成部分,它承载着飞机在地面和空中的安全运行。
本文将对起落架进行详细的名词解释,并探讨其在航空领域中的重要性。
起落架是飞机底部的结构,它支持整个飞机的重量并使其可以在地面上行驶。
起落架通常由几个关键组成部分构成,包括主起落架、前起落架和收放机构。
主起落架是最重要的组成部分之一,通常位于飞机机身的中心或机翼的根部。
主起落架包含了结构强大的金属框架,可以支撑飞机在地面上的重量。
无论飞机是停在跑道上还是行驶在地面,主起落架都要承受巨大的垂直载荷以及水平力。
此外,主起落架还需要通过减震装置来缓冲起飞和着陆过程中的冲击力。
前起落架是相对主起落架而言的,通常位于飞机机头附近。
前起落架具有更小的尺寸和强度,因为它主要负责支持飞机在地面上的转向和轻微的垂直载荷。
与主起落架不同的是,前起落架可以旋转,以便飞机在地面上更好地进行转向机动。
收放机构是起落架的关键部分之一。
它使得起落架可以在起飞和着陆时自由伸缩。
收放机构通过液压或电动系统来完成起落架的伸缩动作。
当飞机起飞时,收放机构会将起落架收回,这样可以减少阻力并提升飞机的速度和燃油效率。
而在着陆时,起落架则会被伸出,为飞机提供稳定的支撑。
起落架在航空领域中的重要性不容忽视。
它直接影响着飞机的安全性和性能。
一个牢固可靠的起落架可以保护飞机及其乘客免受颠簸和冲击的影响,确保飞机在起飞、着陆以及行驶过程中的稳定性。
在飞机设计和制造过程中,起落架的结构和材料选择至关重要,需要满足严格的标准和要求。
此外,起落架还有一些其他的功能。
它可以承载并保护飞机的机械和电气系统,如刹车系统和燃油系统。
起落架还可以用作飞机的储存和维护空间,以便在飞机停放时进行例行检查和维修。
总的来说,起落架是飞机重要且复杂的组成部分,其名词解释涉及主起落架、前起落架和收放机构。
起落架在飞机的安全性、性能和稳定性方面发挥着重要作用。
对于飞机制造商和航空运营商而言,选择合适的起落架结构和材料至关重要,以确保飞机的可靠性和航行安全。
飞机起落架原理

飞机起落架原理飞机起落架是飞机的重要组成部分,它承担着支撑飞机、起降时的冲击吸收、地面行驶和转弯等重要功能。
其原理涉及到机械结构、液压系统、操纵系统等多个方面,下面我们就来详细了解一下飞机起落架的原理。
首先,飞机起落架的结构一般包括主起落架和前起落架。
主起落架一般安装在飞机的机身下方,用于支撑飞机的重量,而前起落架则安装在飞机的机头部分,用于支撑飞机的前部重量。
这些起落架通常由多个液压缸、伸缩杆、减震器、轮轴等部件组成,通过液压系统和操纵系统来实现起落架的伸缩和操纵。
其次,飞机起落架的伸缩原理是通过液压系统来实现的。
液压系统利用液体的不可压缩性和传递压力的特性,通过液压泵将液体压入液压缸内,从而推动伸缩杆的伸缩,实现起落架的伸出和收回。
在起落架伸出和收回的过程中,液压系统需要保证液压缸内液体的压力和流量的稳定,以确保起落架的可靠性和稳定性。
另外,飞机起落架的减震原理是通过减震器来实现的。
减震器通常由气压减震器和液压减震器两种类型,它们能够有效地吸收飞机起落时的冲击力,减少对飞机结构和乘客的影响。
气压减震器通过气压的压缩和释放来实现减震,而液压减震器则通过液体的流动和压力来实现减震。
这些减震器的设计和调节需要考虑到飞机在起降过程中的各种情况,以确保减震效果的最佳化。
最后,飞机起落架的操纵原理是通过操纵系统来实现的。
操纵系统一般由操纵杆、液压阀门、传感器等部件组成,通过飞行员的操纵来实现起落架的伸缩和操纵。
操纵系统需要具有高灵敏度和可靠性,以确保飞行员能够准确地控制起落架的状态和位置。
总的来说,飞机起落架的原理涉及到液压系统、减震原理、操纵系统等多个方面,它们共同作用于飞机的起降过程,保障了飞机的安全性和可靠性。
飞机起落架的设计和制造需要考虑到各种复杂的工况和环境,以确保其能够在各种情况下都能够正常工作。
飞机起落架的原理虽然复杂,但是通过科学的设计和精密的制造,能够保证飞机在起降过程中的安全和稳定。
起落架收放工作原理

起落架收放工作原理
起落架主要由支柱和轮子组成,通过液压或电气系统将其收放。
在起飞前,起落架需要全部收起,以减少空气阻力和重量,提高飞机速度。
着陆时,需要将起落架放下,以支撑飞机重量,使其顺利着陆。
2. 液压系统
大型客机通常使用液压系统来收放起落架。
这种系统通过液压泵将液压油压缩并泵入起落架,从而产生足够的推力来收回起落架。
液压系统需要精确的控制和维护,以确保其可靠性和安全性。
3. 电气系统
小型飞机通常使用电气系统来收放起落架。
这种系统通常使用电动机来带动起落架,通过开关和保险丝来控制电流。
电气系统相对于液压系统较为简单,但需要保持良好的维护和检查,以确保其安全性和可靠性。
4. 安全措施
起落架系统需要采取多种安全措施,以保障乘客和机组人员的安全。
这些措施包括起落架的机械锁定、液压压力检测、防止起落架误操作的控制杆等。
总之,起落架收放是飞机起飞和着陆过程中不可或缺的一环,其工作原理需要综合运用液压、电气等系统,同时采取多种安全措施,以确保飞行的安全和可靠。
- 1 -。
飞机起落架四杆机构方程

飞机起落架的四杆机构主要由上下阻尼杆、上下拉杆、前后合力杆和剪切杆组成。
这些杆件通过连接和运动关节连接在一起,形成复杂的机构系统。
起落架的运动可以描述为受力平衡的状态,其中涉及各个杆件的受力和运动关系。
在理想情况下,四杆机构可以满足以下平衡条件:
1. 上下阻尼杆处于压缩状态:上下阻尼杆受到上方负载的压缩力和下方支撑点的反作用力,保持杆件稳定且不产生变形。
2. 上下拉杆平衡拉力:上下拉杆受到上方负载的拉力和下方支撑点的反作用力,使得系统保持平衡。
3. 剪切杆受力平衡:剪切杆受到水平方向的拉力和垂直方向的支撑力,以保持起落架稳定。
4. 剪切杆和前后合力杆之间的几何关系:剪切杆和前后合力杆之间的夹角和长度关系,保证起落架的刹车效果、支撑性能和稳定性。
这些平衡条件可以用一系列方程来描述,具体形式会根据起
落架的设计和杆件连接的具体方式而有所不同。
根据杆件和连接形式的不同,使用力学原理和几何关系来推导方程,以求解起落架的受力和运动情况。
需要注意的是,飞机起落架的设计和运动涉及多个因素,如飞机的重量和重心位置、起落架的材料和结构、地面条件等,因此方程的具体形式会有所复杂和多样化。
精确的起落架四杆机构方程需要通过详细的工程计算和仿真分析来确定。
飞机起落架制造知识点总结

飞机起落架制造知识点总结1. 飞机起落架的基本原理飞机起落架主要由支柱、轮子、减震系统和液压系统等部分组成。
在飞机起落过程中,起落架需要承受巨大的冲击力和压力,因此需要具备良好的承载和减震性能。
同时,在飞行过程中,起落架还需要具备轻量化和高强度的特点,以减轻飞机整体重量,提高飞行效率。
2. 起落架材料的选择在飞机制造中,起落架的材料选择至关重要。
传统的起落架材料主要包括铝合金、钢材和钛合金等。
这些材料具备较好的机械性能和耐腐蚀性能,在飞机制造领域被广泛应用。
随着材料技术的发展,一些新型高强度、轻量化材料,如德国的碳纤维复合材料,也逐渐应用到飞机起落架的制造中,以提高其整体性能。
3. 设计与制造工艺飞机起落架的设计与制造一般需要经过多道工序,包括零部件设计、材料选择、加工制造、装配调试等。
在设计阶段,需要考虑起落架的受力情况、轮胎选择、减震器设计等方面,以确保起落架具备足够的可靠性和安全性。
在制造过程中,需要严格按照设计要求进行加工和装配,且需要进行严格的质量检测和试验,确保起落架的性能符合要求。
4. 起落架的减震系统起落架的减震系统是保证飞机在起飞和降落时平稳性和安全性的重要组成部分。
减震系统一般由减震器、橡胶支柱、气压弹簧和液压阻尼器等部分组成。
减震系统的设计需要考虑飞机起落过程中的冲击和振动,以确保飞机在起降过程中具备足够的稳定性和安全性。
5. 飞机起落架的液压系统飞机起落架的液压系统主要用于起落架的放起和收起操作,其工作原理是通过液压油压力驱动起落架的伸缩和锁紧。
液压系统一般由液压泵、油箱、液压管路和液压执行元件等部分组成,其设计和制造需要考虑其运行稳定性和安全性,以确保其在飞机起落过程中的可靠性。
综上所述,飞机起落架的制造是飞机制造中的重要组成部分,其设计和制造需要综合考虑结构设计、材料选择、加工工艺、液压系统等多个方面,以确保其具备足够的可靠性和安全性。
随着材料和制造技术的不断进步,飞机起落架的性能和品质也将逐步提升,为飞机制造业的发展提供更优质的产品和服务。
起落架的结构形式

起落架的结构形式起落架是飞机上的重要组成部分,用于支撑飞机在地面上移动和起降时的支撑和减震作用。
它通常由几个主要部分组成:主起落架、前起落架、减震装置和操纵装置。
一、主起落架主起落架是起落架的主要承重部分,一般安装在飞机机身的主翼下方。
它通常由两个主要部分组成:主起落架支柱和主起落架轮胎组。
1. 主起落架支柱主起落架支柱是主起落架的主要承重部分,负责承受飞机在地面上的重量和起降时的冲击力。
它通常由高强度材料制成,如钢或铝合金。
主起落架支柱通常是可伸缩的,以便在飞机起飞和降落时调整高度。
2. 主起落架轮胎组主起落架轮胎组是主起落架的移动部分,负责支撑飞机在地面上的移动。
它通常由多个轮胎组成,每个轮胎都有一定的载荷能力和减震能力。
主起落架轮胎组通常由橡胶制成,具有良好的抗磨损和抗冲击性能。
二、前起落架前起落架是起落架的前部分,通常安装在飞机机头下方。
它与主起落架类似,由前起落架支柱和前起落架轮胎组组成。
1. 前起落架支柱前起落架支柱是前起落架的主要承重部分,负责承受飞机在地面上的重量和起降时的冲击力。
它通常与主起落架支柱类似,由高强度材料制成。
2. 前起落架轮胎组前起落架轮胎组是前起落架的移动部分,负责支撑飞机在地面上的移动。
它通常由单个或多个轮胎组成,具有一定的载荷能力和减震能力。
三、减震装置减震装置是起落架的重要部分,用于减轻飞机在起降时的冲击力,保护飞机和乘客的安全。
1. 弹簧减震器弹簧减震器是常见的减震装置之一,它利用弹簧的弹性来吸收起降时的冲击力。
弹簧减震器通常由金属弹簧和液压缓冲器组成,能够提供良好的减震效果。
2. 气压减震器气压减震器是另一种常见的减震装置,它利用气压的变化来吸收起降时的冲击力。
气压减震器通常由气压室和气压控制系统组成,能够提供稳定的减震效果。
四、操纵装置操纵装置是起落架的控制部分,用于控制起落架的展开和收起。
它通常由液压系统或电动系统驱动,通过操纵杆或按钮进行控制。
起落架的结构形式是飞机设计中的重要考虑因素之一,不同飞机根据其用途和设计要求可能采用不同的结构形式。
液压起落架原理

液压起落架原理
一、液压起落架的结构组成
液压起落架主要由:起落架舱、油缸、液压管和油缸座等部
件组成。
二、起落架的工作原理
1.液压管:液压管是由一根长而有弹性的钢管(油管)和一
根小而有弹性的橡胶管组成。
长的钢管是用来容纳油缸,小的橡
胶管是用来吸收冲击能量。
2.油缸:油缸是由活塞和活塞杆组成,活塞杆可绕自己旋转,而活塞杆上有两个方向相反的活塞。
两个活塞杆的内腔分别装着
一套液压油(油),通过油管与一根长而有弹性的橡胶管(油缸)相连。
3.油缸座:油缸座是用来固定在起落架舱内的,它和飞机上
的其它部分一样,也可通过螺栓与机身固定在一起。
它一般由两
个固定在机身上的活塞和两个固定在起落架舱内的活塞组成,也
可通过螺栓与起落架舱内的其它部分固定在一起。
4.液压管:液压管是用来连接起落架舱和油缸,它有两个作用,一是向起落架舱内输送油,二是将起落架中承受冲击载荷所
需要的缓冲器释放出去。
—— 1 —1 —。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
起落架的组成
起落架是飞机的重要组成部分,它支撑着飞机的重量,使飞机能够在
地面上行驶和起降。
起落架由多个部件组成,下面将逐一介绍。
1. 主起落架
主起落架是起落架的主要组成部分,通常由两个轮子和一个支架组成。
支架连接着飞机的机身,轮子则支撑着飞机的重量。
主起落架通常位
于飞机的机翼下方,可以在起飞和降落时提供额外的稳定性。
2. 前起落架
前起落架通常由一个轮子和一个支架组成,位于飞机的机头下方。
它
主要用于在地面上行驶时提供稳定性,同时也可以在起飞和降落时提
供额外的支撑。
3. 伸缩机构
伸缩机构是起落架的重要组成部分,它可以使起落架在起飞和降落时
伸出和收回。
伸缩机构通常由液压系统或电动机驱动,可以快速而平
稳地完成起落架的伸缩。
4. 刹车系统
刹车系统是起落架的另一个重要组成部分,它可以在飞机着陆后帮助飞机减速。
刹车系统通常由刹车片、刹车盘和刹车液组成,可以通过踏板或手柄来控制。
5. 防滑系统
防滑系统是起落架的安全保障之一,它可以在飞机着陆时防止轮胎打滑。
防滑系统通常由传感器和控制器组成,可以自动调整刹车力度和轮胎转速,确保飞机在着陆时平稳停止。
6. 轮胎
轮胎是起落架的重要组成部分,它直接接触地面,承受着飞机的重量和运动力。
轮胎通常由橡胶和钢带组成,可以在高速和高温环境下保持稳定性和耐久性。
总之,起落架是飞机的重要组成部分,它由多个部件组成,包括主起落架、前起落架、伸缩机构、刹车系统、防滑系统和轮胎等。
这些部件共同作用,使飞机能够在地面上行驶和起降,确保飞机的安全和稳定性。