数理方程公式大全2

数理方程公式大全2
数理方程公式大全2

Equations of Mathematical Physics and Special Functions

公式大集合

1. 考察两端固定的弦的自由振动问题

● 可得出 X"(x) + l X(x) = 0 在不同的齐次边界条件下的本征函数系(表2-1). 容易发现如下的规律:

● (1)若齐次边界条件含X (0)=0,则本征函数为正弦函数;若齐次边界条件含X ‘ (0) = 0,则本征函数为余弦函数 ● (2)若边界条件为同类齐次边界条件(均为第一类或均为第二类),则本征函数的宗量为

若边界条件属不同类齐次边界条件,则本征函数的宗量为

2. 有界长杆的热传导问题

3. 二维拉普拉斯方程的边值问题

??

?

??====><<=),()0,( ),()0,( ,0),( ,0),0(

),0 ,0( 2x x u x x u t l u t u t l x u a u t xx tt ψ? sin )cos sin (),(1

∑∞

=+-=

n

n n t l

x

n l at n b l at n a l a n t x u ππππ,sin

)(2

dx l

x

n x l

a l

n ?=

π?,sin

)(2

dx l

x

n x a

n b l

n ?=

πψπ???

??===><<= ),()0,( ,0),( ,

0),0( ),0 ,0( 2x x u t l u t u t l x u a u xx t ?,sin ),(1

)(2l x n e a t x u n t l a n n ππ∑∞=-=,sin )(20dx l x n x l a l n ?=π??????====<<<<=+ .0),( ,0),0( ),(),( ),()0,

(

),y 0 ,0( 0y a u y u x g b x u x f x u b a x u u yy xx sin

) (),(1

∑∞

=-

+=

n y a

n n y a

n n x a

n e

b e

a y x u πππ

,sin )(2

0?=+a

n n xdx a

n x f a b a π

,sin

)(2

?=

+-

a

b a

n n b a

n n xdx a

n x g a

e

b e

a π

π

π

4. 圆域上拉普拉斯方程的边值问题 (化为极坐标)

5. 圆域内的泊松公式

6. 无限长弦自由振动问题

的达朗贝尔解为公式

其中方程(3)的通解形式为

7. 无限长弦强迫振动问题

的解为公式

和差化积

sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2] sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2] cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2] cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2]

积化和差

sin αsin β=-[cos(α+β)-cos(α-β)]/2(注意:此时公式前有负号) cos αcos β= [cos(α-β)+cos(α+β)]/2 sin αcos β= [sin(α+β)+sin(α-β)]/2 cos αsin β= [sin(α+β)-sin(α-β)]/2

1

1

2

=+

+θθu r u r u r rr

).(|

0θf u r r ==),

0(0r r <<)

20(πθ≤≤.)sin cos (21

),(10∑∞

=++=n n n n r n b n a a r u θθθ?=π

θθθπ20

cos )(1d n f r a n n ?

θ

θθπ20

0sin )(1d n f r b n

n

), ,2 ,1 ,0( =n ),

,2 ,1( =n ),( )

(cos 2)(21

),(020

02

202

20r r d n r r r r r r f r u <--+-=?

??θ?π

θπ

),

0 ,( 2>+∞<<-∞=t x u a u xx tt

)

()0,( ),()0,

(x x u x x u t ψ?==2

)()(),(at x at x t x u ++-=

??.

)(21

?+-+at

x at

x

d a ααψ).

()(),(at x g at x f t x u ++-=(3)

),

0 ,( ),(2>+∞<<-∞+=t x t x f u a u xx tt )

()0,( ),()0,(x x u x x u t ψ?==2

)

()(),(at x at x t x u ++-=

???+-+

at

x at

x

d a

ααψ)(21.

.),(21

)

()

(??-+--+

t t a x t a x

d d f a

τξτξττ

22

2222z

y x ??+??+??=?是三维拉普拉斯算子。

非齐次方程的求解问题

高等数学公式汇总(大全)

高等数学公式汇总(大全) 一 导数公式: 二 基本积分表: 三 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , , a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

高等数学常用公式大全

高数常用公式 平方立方: 22222222 332233223223332233222(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()(8)222(a b a b a b a ab b a b a ab b a b a b a b a ab b a b a b a ab b a a b ab b a b a a b ab b a b a b c ab bc ca -=+-++=+-+=-+=+-+-=-+++++=+-+-=-+++++= 21221)(9)()(),(2) n n n n n n a b c a b a b a a b ab b n ----++-=-++++≥ 三角函数公式大全 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π -a) 半角公式 sin( 2A )=2cos 1A - cos( 2A )=2cos 1A + tan( 2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan( 2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a -

关于高等数学常用公式大全

高数常用公式 平方立方: 三角函数公式大全 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π -a) 半角公式 sin( 2 A )=2cos 1A - cos( 2 A )=2cos 1A + tan( 2 A )=A A cos 1cos 1+- cot(2 A )=A A cos 1cos 1-+ tan( 2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2 b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos ) sin(+ 积化和差 sinasinb = -21 [cos(a+b)-cos(a-b)] cosacosb = 21 [cos(a+b)+cos(a-b)] sinacosb = 21 [sin(a+b)+sin(a-b)] cosasinb = 2 1 [sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π -a) = cosa cos(2π -a) = sina sin(2π +a) = cosa cos(2 π +a) = -sina sin(π-a) = sina c os(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA = a a cos sin 万能公式

数理方程(调和方程)

第四章 调和方程 §1.调和方程的定解问题 1.方程的几个例子 例1. 稳定的温度分布 温度分布满足),(2t x f u a u t =?- 稳定热源:),,,)((321x x x x x f f ==与t 无关 边界绝热(即边界条件也与t 无关) 则长时间后,温度分布必然趋于稳定状态(与t 无关),即)(x u u = 此时有)(1x f u =?, (2 1a f f - =)称为Poission 方程 当01=f 时,0=?u ,称为Laplace 方程或调和方程. 例2.弹性膜的平衡状态: u 为膜在垂直方向的位移,外力),(21x x f f =,则有 f x u x u =??+ ??2 2 22 1 2 例3.静电场的电势u Maxwell 方程组??? ? ? ? ??? ==??-=??+=ρdivD divB t B rotE t D J rotH 0 E :电场强度, H :磁场强度, D :电感应强度, B :磁感应强度 J :传导电流的面密度, ρ:电荷的体密度 物质方程?? ? ??===E J H B E D σμε :μ导磁率, σ:导电率, ε: 介质的介电常数 divE divD ερ== ∵静电场是有势场:u grad E -= ερ-=?u grad div , 即ε ρ -=u ? 若静电场是无源的,即0=ρ,则0=?u 例4.解析函数 )(),,(),()(iy x z y x iv y x u z f +=+= 则v u ,满足Cauchy-Riemann 条件:y x y x u v v u -==, 例5.布朗运动(见图) 设质点运动到边界上即终止, ?????===?0,10 `),,(),,(21 1C C u u u C z y x z y x u 概率,则上的为起点,终止在:以 易知,0,0=?=?v u 2.定解问题 (1)内问题:n R ?Ω,有界,Γ=Ω?,u 在Ω内满足f u =? 边界条件: 第一类(Dirichlet):g u =Γ| 第二类(Neumann): g n u =??Γ| 第三类(Robin):)0(|)(>=+??Γσσg u n u n 为Γ的单位外法线方向. (2) 外问题:u 在Ω外部满足f u =? 同样有三类边界条件(此时n 为Ω的内法线方向). 但解在无穷远处是否可以不加限制?要加何种限制? 先看两个例子: 例1.2=n ?????=>+=?=+0|) 1(,01 2 222y x u y x u 221 ln 1ln ,0y x r u u +===均为解, 例 2. 3=n ?????=++=>==1),1(01222r u z y x r r u ? r u u 1 ,1==均为解. 因此,解在无穷远点一定要加限制,以确定解的唯一性. 通常, :2=n 解在无穷远处有界:),(lim y x u r ∞ →有界 :3≥n 解在无穷远处趋于0:0),,(lim =∞ →z y x u r (3) 无界区域的边值问题:与外问题类似 (4) 等值面边值问题:0=?u 边界条件:?? ? ??=??=?ΓΓ)()(|已知待定A dS n u C u 这个问题可约化为 Dirichlet 问题: 设???==?Γ1|0U U 的解为)(x U U =,选取常数C , s.t.:A dS n U C =???Γ 则CU u = §2.分离变量法 1. 圆的Dirichlet 内问题与外问题 内问题?????=<+=?=+)(|)(02 222 22θf u a y x u a y x 引入极坐标θθsin ,cos r y r x == 2 22 222 221)(111θ θ??+????=??+??+??≡u r r u r r r u r r u r r u u ? 则原问题化为:

高等数学公式总结(绝对完整版).

高等数学公式大全 导数公式: 基本积分表: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

高数二公式大全

高等数学公式 导数公式: 基本积分表: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

数理方程版课后习题答案

第一章曲线论 §1 向量函数 1. 证明本节命题3、命题5中未加证明的结论。 略 2. 求证常向量的微商等于零向量。 证:设,为常向量,因为 所以。证毕3. 证明 证: 证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。

证:设,为定义在区间上的向量函数,因为在区间上可导当且仅当数量函数,和在区间上可导。所以,,根据数量函数的Lagrange中值定理,有 其中,,介于与之间。从而 上式为向量函数的0阶Taylor公式,其中。如果在区间上处处有,则在区间上处处有 ,从而,于是。证毕 5. 证明具有固定方向的充要条件是。 证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。 充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是

因为,故,从而 为常向量,于是,,即具有固定方向。证毕 6. 证明平行于固定平面的充要条件是。 证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。 充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。如果,则与不共线,又由可知,,,和共面,于是, 其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。证毕 §2曲线的概念

1. 求圆柱螺线在点的切线与法平面的方程。 解:,点对应于参数,于是当时,,,于是切线的方程为: 法平面的方程为 2. 求三次曲线在点处的切线和法平面的方程。 解:,当时,,, 于是切线的方程为: 法平面的方程为 3. 证明圆柱螺线的切线和轴成固定角。 证: 令为切线与轴之间的夹角,因为切线的方向向量为,轴的方向向量为,则

数理方程概念汇总

1、什么是泛定方程?以及解的稳定性 物理规律,用数学的语言“翻译”出来,不过是物理量u在空间和时间中的变化规律,换句话说,它是物理量u在各个地点和各个时刻所取的值之间的联系。正是这种联系使我们有可能从边界条件和初始条件去推算u在任意地点(x,y,z)和任意时刻 t 的值u(x,y,z,t)。而物理的联系总是取的值之间的关系式。这种邻近地点、邻近时刻之间的关系式往往是偏微分方程。物理规律用偏微分方程表达出来,叫作数学物理方程。数学物理方程,作为同一类物理现象的共性,跟具体条件无关。在数学上,数学物理方程本身(不连带定解条件)叫作泛定方程 2、什么是定解条件? 答:给定一个方程,一般只能描写某种运动的一般规律,还不能确定具体的运动状态,所以把这个方程称为泛定方程。如果附加一些条件(如已知开始运动的情况或者在边界上受到外界的约束)后,就能完全确定具体运动状态,称这样的条件为定解条件。表示开始情况的附加条件称为初始条件,表示在边界上受到的约束的条件称为边界条件。 3、什么是定解问题? 答:给定了泛定方程(在区域D内)和相应的定解条件的数学物理问题为定解问题。根据不同定解条件,定解问题分为三类: 1)初值问题只有初始条件和没有边界条件的定解问题为初值问题或者柯西问题; 2)边界问题只有边值条件而没有初值条件的定解问题称为边值问题。 3)混合问题既有边界条件也有初值条件的定解问题称为混合问题(有时也称为边值问题) 4、什么是定解问题的解? 答:设函数u在区域D内满足泛定方程,当点从区域D内趋于给定初值的超平面或者趋于给出边界条件的边界曲面时,定解条件中要求的u及它的倒数的极限处处存在而且满足相应定解条件,就称u为定解问题的解。 5、什么是解的稳定性? 答:如果定解条件的微小变化只引起定解问题解在整个定义域中的微小变化,也就是解对定解条件存在这连续依赖关系,那么称定解问题的解是稳定的。 6、什么是定解问题的适应性? 如果定解问题的解存在与唯一并且关于定解条件的稳定的,就说定解问题的提法是稳定的。 7、什么是解的唯一性?

必修二公式大全

高中数学必修2知识点总结 第一章 空间几何体 1.1柱、锥、台、球的结构特征 1.2空间几何体的三视图和直观图 1 三视图: 正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则: 长对齐、高对齐、宽相等 3直观图:斜二测画法 4斜二测画法的步骤: (1).平行于坐标轴的线依然平行于坐标轴; (2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变;(3).画法要写好。 5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图 1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积 1棱柱、棱锥的表面积: 各个面面积之和 2 圆柱的表面积 3 圆锥的表面积2r rl S ππ+= 4 圆台的表面积2 2R Rl r rl S ππππ+++= 5 球的表面积2 4R S π= (二)空间几何体的体积 1柱体的体积 h S V ?=底 2锥体的体积 h S V ?=底3 1 3台体的体积h S S S S V ?++=)3 1下下上上( 4球体的体积 334 R V π= 第二章《空间中点、直线、平面之间的位置关系》知识点总结 1.内容归纳总结 (1)四个公理 公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。 符号语言:,,,A l B l A B l ααα∈∈∈∈ ? ∈且。 公理2:过不在一条直线上的三点,有且只有一个平面。 三个推论:① 经过一条直线和这条直线外一点,有且只有一个平面 ② 经过两条相交直线,有且只有一个平面 2 22r rl S ππ+=

③ 经过两条平行直线,有且只有一个平面 它给出了确定一个平面的依据。 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(两个平面的交线)。 符号语言:,,P P l P l αβαβ∈∈?=∈I 且。 公理4:(平行线的传递性)平行与同一直线的两条直线互相平行。 符号语言://,////a l b l a b ?且。 (2)空间中直线与直线之间的位置关系 1.概念 异面直线及夹角:把不在任何一个平面内的两条直线叫做异面直线。 已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所 成的角(或直角)叫异面直线,a b 所成的夹角。(易知:夹角范围 090θ<≤?) 定理:空间中如果一个角的两边分别与另一个角的两边分别平行,那么这两个角相等或互补。(注意:会画两个角互补的图形) 2.位置关系:???? ??? ?相交直线:同一平面内,有且只有一个公共点; 共面直线平行直线:同一平面内,没有公共点; 异面直线:不同在任何一个平面内,没有公共点 (3)空间中直线与平面之间的位置关系 直线与平面的位 置 关 系 有 三 种 : //l l A l ααα??? =?? ???? I 直线在平面内()有无数个公共点直线与平面相交()有且只有一个公共点直线在平面外直线与平面平行()没有公共点 (4)空间中平面与平面之间的位置关系 平面与平面之间的位置关系有两种://l αβαβ?? =?I 两个平面平行()没有公共点两个平面相交()有一条公共直线 直线、平面平行的判定及其性质 1.内容归纳总结

数学物理方法知识点归纳

第一章 复述和复变函数 1.5连续 若函数)(x f 在0z 的领域内(包括0z 本身)已经单值确定,并且 )()(0 lim 0 z f z f z z =→, 则称f(z)在0z 点连续。 1.6导数 若函数在一点的导数存在,则称函数在该点可导。 f(z)=u(x,y)+iv(x,y)的导数存在的条件 (i) x u ??、y u ??、x v ??、y v ??在点不仅存在而且连续。 (ii)C-R 条件在该点成立。C-R 条件为 ???? ?? ???-=????=??y y x u x y x v y y x v x y x u ),(),(),(),( 1.7解析 若函数不仅在一点是可导的,而且在该点的领域内点点是可导的,则称该点是解析的。 解析的必要条件:函数f(z)=u+iv 在点z 的领域内(i) x u ??、y u ??、x v ??、y v ??存在。 (ii)C-R 条件在该点成立。 解析的充分条件:函数f(z)=u+iv 在领域内(i) x u ??、y u ??、x v ??、y v ??不仅存在而且连续。 (ii)C-R 条件在该点成立。 1.8解析函数和调和函数的关系 拉普拉斯方程的解都是调和函数: 22x u ??+2 2y u ??=0 ①由此可见解析函数的实部和虚部都是调和函数。但是任意的两个调和函数作为虚实两部形成的函数不一定是解析函数,因为它们不一定满足C —R 条件。 ②当知道f(z)=u(x,y)+iv(x,y)中的u(x,y)时,如何求v(x,y)? 通过C —R 条件列微分方程 第二章 复变函数的积分 2.2解析函数的积分 柯西定理:若函数f(z)在单连区域D 内是解析的,则对于所有在这个区域内而且在两个公共端点A 与B 的那些曲线来讲,积分 ?B A dz z f )(的值均相等。 柯西定理推论:若函数f(z)在单连区域D 内解析,则它沿D 内任一围线的积分都等于零。 ?=C dz z f 0)( 二连区域的柯西定理:若f(z)在二连区域D 解析,边界连续,则f(z)沿外境界线(逆时针方向)的积分等于f(z)沿内境界线(逆时针方向)的积分。 n+1连区域柯西定理: ???? ΓΓΓΓ+++=n i i i e dz z f dz z f dz z f dz z f )(....)()()(2 1 推论:在f(z)的解析区域中,围线连续变形时,积分值不变。 2.3柯西公式 若f(z)在单连有界区域D 内解析,在闭区域D 的边界连续,则对于区域D 的任何一个内点a ,有?Γ -= dz a z z f i a f ) (21)(π其中Γ是境 界线。 2.5柯西导数公式 ξξξπd z f i n z f C n n ?+-= 1)() () (2!)( 第三章 级数 3.2复变函数项级数 外尔斯特拉斯定理:如果级数 ∑∞ =0 )(k k z u 在境 界Γ上一致收敛,那么 (i)这个级数在区域内部也收敛,其值为F(z) (ii)由它们的m 阶导数组成的级数

数理方程总结完整终极版

00 |()()t t u x u x t ?ψ===????=?? ?k z j y i x ?????+??+??= ?u u ?=grad 拉普拉斯算子:2222222 z y x ??+??+??=???=?2 2 22 2y u x u u ??+??=? 四种方法: 分离变量法、 行波法、 积分变换法、 格林函数法 定解问题: 初始条件.边界条件.其他 波动方程的初始条

波动方程的边界条件:

(3) 弹性支承端:在x=a端受到弹性系数为k 的弹簧的支承。 定解问题的分类和检验:(1) 初始 问题:只有初始条件,没有边界条 件的定解问题; (2) 边值问题:没有初始条件,只 有边界条件的定解问题; (3) 混合问题:既有初始条件,也 有边界条件的定解问题。 ?解的存在性:定解问题是 否有解; ?解的唯一性:是否只有一 解; ?解的稳定性:定解条件有 微小变动时,解是否有相应的微小变动。 分离变量法:基本思想:首先求出具有变量分离形式且满足边界条件的特解,然后由叠加原理作出这些解的线性组合,最后由其余的定解条件确定叠加系数。把偏微分方程化为常微分方程来处理,使问题简单化。适用范围:波动问题、热传导问题、稳定场问题等

分离变量法步骤:一有界弦的自由振动二有限长杆上的热传导三拉普拉斯方程的定解问题 常用本征方程齐次边界条件 2''0 (0)()0,/,1,2,sin k k X X X X l k l k X x λλββπβ+=?? ==? ====0,1,2,0,1,2,λ0,1,2,λ

非齐次方程的求解思路用分解原理得出对应的齐次问题。解出齐次问题。求出任意非齐次特解。叠加成非齐次解。 行波法:1.基本思想:先求出偏微分方程的通解,然后用定解条件确定特解。这一思想与常微分方程的解法是一样的。2.关键步骤:通过变量变换,将波动方程化为便于积分的齐次二阶偏微分方程。3.适用范围:无界域内波动方程,等…

高数积分公式大全(2)

12. (一)含有ax b 的积分(a 1 . dx 1 ax b a =-In ax b 2. 3. 4. 5. 6. 7. 9. 10. 11. 13. 常用积分公式 0) 1 (ax b) dx = a( 1) x 1 dx = -^(ax b ax b a 丄dx =丄 ax b a 3 (ax bln b)2 b) ax b) C 2b(ax b) b 2ln ax b dx x( ax b) dx x 2(ax b) x 2dx (ax b) 2 (^dx 1ln b 1 bx ax ax b 1 = -r(ln a ax b ax b ) 2bln ax b b 2 ax b ) C dx 2 x(ax b) b(ax b) 含有.ax b 的积分 1 2 In b 2 ax b Tax~ dx = — T(ax~b)3 3a x 、、ax bdx = -^(3ax 2b 15a x 2 . ax bdx = ^^(15a 2x 2 12abx 8b 2) ., (ax b)3 C 105a ).(ax b)3 C x 2 - d x = -- 2 (ax 2b)、ax b C ,ax b 3a 2

2 15a 3 dx x ¥ ax b dx x 21 ax b ax b. dx = (3a 2x 2 4abx 8b 2)、、ax b ■, ax b 、. ; b .ax b .b A C (b (b 0) 0) bx 2b x 丫 ax b 2 ax b dx x, ax b ax b , 2 dx = x a dx 2 x 、ax b 14. 15. 16. 17. 18. (三) 19. 20. 21 . (四) 22. 23.

同济高等数学公式大全

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππa x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '

数理方程方法汇总

数理方程方法汇总 1.0=+y x bu au (1)行波法 设)(ξf u = (y kx +=ξ) 代入方程得0)()(''=+ξξbf akf 0=+b ak 故通解为)(y x a b f u +- = (2)特征线法 特征方程为0'=-b ay 特征线为C ay bx =- 故通解为)(ay bx f u -= (3)微分算子法 方程记为 0)(=+u bD aD y x 故通解为)(ay bx f u -= 2.0=++cu bu au y x 通解为 )(ξf e u mx = ()y kx +=ξ 3.0=++yy xy xx cu bu au 通解为 )()(21y x k g y x k f u +++= 4.0=+++++nu eu du cu bu au y x yy xy xx 微分算子法 0)(2 2=+++++u n eD dD cD D bD aD y x y y x x 试探函数法 5.?????=+=++===xy u xy x u u u u a u t t t zz yy xx tt 03 02 |,|)( 设3 23Bt xyt At xy x u ++++= 代入方程得 )6(623 2 2 Bt At x a Bt A ?+?+=+ 令???==?2 620xa A A ?? ?==?0 60 B B

6.?????-=+++==2 302 |6)(yz x u y u u u a u t zz yy xx t 设Bt Ayt yz x u ++-=23 代入方程得 y B A y t y x a B Ay 6)26(2+?+?+-=+ 令?? ?==?60 A A ???-==?2 )26(0 a y x B B 7.???=====x w u x w u u a u t t t xx tt 20102sin |,sin | 设x w t aw B x w t aw u 2211sin sin sin cos += 8.???=====x w u x w u u a u t t t xx tt 20102cos |,cos | 设x w t aw B x w t aw u 2211cos sin cos cos += 9.??? ??==??+??+??=θ θn aR u r r m R r u r u r u cos |01122222 设θn Ar u n cos = n m aR A -= 分离变量法 10.?? ? ??====)()0,(0),(),0(2x x u t l u t u u a u xx t φ 设解为 )()(),(t T x X t x u = 得?? ???===+=+0)()0(00' '2'l X X X X T a T λλ ??? ??? ?==x l n X l n n n ππλs i n )(2 x l n e A t x u l n a n ππsin ),(2 )(1 -∞ ∑=

高数公式大全

大学数学公式 常用导数公式: 常用积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1 )(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

高等数学公式大全完整版

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

数学物理方法总结归纳改

数学物理方法总结 第一章 复变函数 复数的代数式:z=x+iy 复数的三角式和指数式:(cos sin )z ρ??=+和i z e ? ρ= 欧拉公式:{1sin ()21cos () 2 iz iz iz iz z e e i z e e --= -=+ 柯西-黎曼方程(或称为柯西-黎曼条件):{u u x y v v x y ??=????=-?? (其中f(z)=u+iv) 函数f(z)=u+iv 在点0z 及其领域上处处可导,则称f(z)在0z 点解析.在区域B 上每一点都解析,则称f(z)是在区域B 上的解析函数. 解析函数的性质:1.若函数f(z)=u+iv 在区域B 上解析,则12(,),(,)u x y C v x y C == (12,C C 为常数)是B 上的两组正交曲线族. 2.若函数在区域B 上解析,则u,v 均为B 上的调和函数,即 22220u v x y ??+=?? 例题: 已知某解析函数f(z)的实部2 2 (,)u x y x y =-,求虚部和这个解析函数. 解答: 由于22u x ??=2;22v y ??=-2;则22220u v x y ??+=?? 曲线积分法 u x ??=2x;u y ??=-2y.根据C-R 条件有:v x ??=2y;v y ??=2x. 于是 22dv ydx xdy =+;

(,0) (,) (0,0) (,0) (,)(,) (,0) (22)(22)(22)22x x y x x y x y x v ydx xdy C ydx xdy ydx xdy C xdy C xy C =++=++++=+=+??? ? 凑全微分显式法 由上式可知 22dv ydx xdy =+ 则易得 (2)dv d xy = 则显然 2v xy C =+ 不定积分法 上面已有 v x ??=2y;v y ??=2x 则第一式对y 积分,x 视为参数,有 2()2()v xy x xy x ??=+=+? . 上式对x 求导有 2'()v y x x ??=+?,而由C-R 条件可知 '()0x ?=, 从而 ()x C ?=.故 v=2xy+C. 2 2 2 ()(2)f z x y i xy C z iC =-++=+ 第二章 复变函数的积分 单连通区域柯西定理 如果函数f(z)在闭单连通区域B 上解析,则沿B 上任意一分段 光滑闭合闭合曲线l(也可以是B 的边界),有 ()0l f z dz =??. 复连通区域柯西定理 如果f(z)是闭复连通区域上的单值解析函数,则 1 ()()0i n l l i f z dz f z dz =+=∑?? 蜒.式中l 为区域外边界线,诸i l 为 区域内边界线,积分均沿边界线的正方向进行.即 1 ()()i n l l i f z dz f z dz ==∑??i i . 柯西公式 1() ()2l f z f dz i z απα = -?? n 次求导后的柯西公式 () 1!() ()2()n n l n f f z d i z ζζπζ+= -?? 第三章 幂级数展开

数学物理方法复习整理

数学物理方法 一、本课程授讲内容 第1章 典型数学物理方程及定解问题 第2章 分离变量法 第3章 积分变换法 第4章 行波法与降维法(d ’Alembert 法) 第5章 数学物理方程差分解法 第6章 Green 函数法 第7章 Bessel 方程与函数 二、章节重点 第一章 典型数学物理方程及定解问题 1.名词解释: (1)定解条件、定解问题、定解问题的适定性; (2).Dirichlet 、Neumann 定解问题; (3)热传导Fourier 定律、Hooke 弹性定律; (4)发展方程、位势方程、Laplace 方程、Poisson 方程; 2.简述二阶线性偏微分方程分类方法。 3.推导一维波动、热传导方程。 4. 写出二阶偏微分方程的特征方程及其特征曲线。 5. 书1.4习题:1,3,4,7,8,9 6. 书例1.1.1,例1.1.3,例1.1.6,例1.2.1 第二章 分离变量法 1.名词解释: (1)特征值、特征函数、Sturm-Liouville 问题; (2)驻波、腹点、节点、基频、固有频率; (3)三角函数系正交性; (4)Fourier 级数; (5)矩形、园域上Laplace 问题; 2.简述采用分离变量法求解齐次边界条件的齐次线性偏微分方程定解问题的步骤。 3.书2.7习题:1,4,6,8,15,16(P65-67)。 4. 书例题:2.1.1、2.1.2、2.2.1。 第三章 积分变换法 1.名词解释: (1)Fourier 变换; (2)Laplace 变换; (3)Fourier 变换线性性质,位移性质,微分性质; (4)Laplace 变换线性性质,平移性质,微分性质; 2.简述积分变换法求解偏微分方程定解问题的基本骤 。 3.写出Fourier 变换、Laplace 变换存在条件。 4. 用Fourier 变换法推导无限长弦振动的d ’Alembert 公式。 5. 书3.6习题:1(1)(2),6,9(1)(2),12,13(P93-94)。 6. 书例题:3.1.1;3.1.2;3.3.1、2、3、4、6; 例3.4.1、3.4.2、3.4.3解的像函数。 第四章 行波法与降维法(d ’Alembert 法) 1.名词解释: (1)无限长弦自由振动的d ’Alembert 公式; (2)行波速度; (3)特征变换,特征线; (4)球对称性,降维法; 2.简述d ’Alembert 公式的物理意义。 3.简述行波法与驻波法的区别。 4. 用行波法推导无限长弦的d ’Alembert 公式。 5. 书4.3习题:3,4。 6. 书例题:4.1.1;4.1.2。 第五章 数学物理方程差分解法 1.名词解释: (1)二元函数的二阶中央差商; (2)逼近误差; (3)差分方程; (4)球对称性,降维法; 2.简述用数值差分法求解偏微分方程的基本原理。 3.简述有限差分法求解应用问题的一般步骤。 4. 课件例题及习题。 第六章 Green 函数法 1.名词解释: (1)Dirichlet 定解问题; (2)Neumann 定解问题; (3)二维三维Laplace 方程基本解; 2.简述调和函数基本性质一及其物理意义。 3.简述调和函数平均值定理及其物理意义。 4. 简述Green 函数的物理意义。 5. 求解Laplace 方程在半空间x > 0 内的Dirichlet 问题。 6. 求解Laplace 方程在半空间y > 0 内的Dirichlet 问题。 7. 书5.6习题:6,7。 第七章 Bessel 方程与函数 1.名词解释: (1)Helmholts 方程; (2)Bessel 方程; (3)Bessel 函数; (4)Bessel 函数正交性; 2.简述整数阶Bessel 函数J0(x)和J1(x)的重要意义,并描绘其简图。 3.简述Bessel 函数零点的概念和特征。 4.设有半径为R 的薄圆盘,上下两面绝热,圆盘边界上温度始终保持为0,且初始温度已知,写出圆 盘内温度分布的定解问题。 5.书 6.5习题:6,7,8(1)。 6.书例题:6.2.1;6.2.2。

相关文档
最新文档