数列的概念单元测试题+答案doc

数列的概念单元测试题+答案doc
数列的概念单元测试题+答案doc

一、数列的概念选择题

1.数列{}n a 满足 112a =,11

1n n

a a +=-,则2018a 等于( )

A .

1

2

B .-1

C .2

D .3

2.已知数列{}n a 满足12a =,11

1n n

a a +=-,则2018a =( ). A .2

B .

12 C .1-

D .12

-

3.已知数列{}n a 的前n 项和2

23n S n n =-,则10a =( )

A .35

B .40

C .45

D .50

4.设{}n a 是等差数列,且公差不为零,其前n 项和为n S .则“*n N ?∈,1n n S S +>”是“{}n a 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件

5.已知数列2233331131357135

1,,,,,,,...,,,,...2222222222n n n

,则该数列第2019项是( ) A .

10

19892 B .

10

2019

2

C .

11

1989

2

D .

1120192

6.设数列{}n a 的前n 项和为n S 已知()*

123n n a a n n N

++=+∈且1300n

S

=,若

23a <,则n 的最大值为( )

A .49

B .50

C .51

D .52

7.已知数列{}n a 满足1n n n a a +-=,则20201a a -=( ) A .20201010?

B .20191010?

C .20202020?

D .20192019?

8.数列{}n a 满足()1

1121n n n a a n ++=-+-,则数列{}n a 的前48项和为( )

A .1006

B .1176

C .1228

D .2368

9.设()f x 是定义在R 上恒不为零的函数,且对任意的实数x 、y R ∈,都有

()()()f x f y f x y ?=+,若112

a =

,()()

*

n a f n n N =∈,则数列{}n a 的前n 项和n S 应满足( ) A .

1324

n S ≤< B .

3

14

n S ≤< C .102

n S <≤

D .

1

12

n S ≤< 10.在数列{}n a 中,已知11a =,25a =,()

*

21n n n a a a n N ++=-∈,则5a 等于( )

A .4-

B .5-

C .4

D .5

11.已知数列{}n a 满足00a =,()11i i a a i +=+∈N ,则20

1

k

k a

=∑的值不可能是( ) A .2

B .4

C .10

D .14

12.数列1,3,6,10,…的一个通项公式是( )

A .()2

1n a n n =-- B .2

1n a n =-

C .()12

n n n a +=

D .()

12

n n n a -=

13.已知数列{}n a 满足()()*

6

22,6,6

n n p n n a n p

n -?--≤=∈?

>?N ,且对任意的*

n ∈N 都有

1n n a a +>,则实数p 的取值范围是( )

A .71,4?? ???

B .101,

7??

???

C .()1,2

D .10,27??

???

14.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .174

B .184

C .188

D .160

15.已知数列{}n a 满足111n n n n a a a a ++-=+,且11

3

a =,则{}n a 的前2021项之积为( ) A .

23 B .

13

C .2-

D .3-

16.已知数列{}n a 满足:11a =,145n n a a +=+,则n a =( ) A .8523

3n

?- B .1

852

3

3n -?- C .8543

3

n

?-

D .1

854

3

3

n -?- 17.大衍数列,来源于《乾坤普》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两翼数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,……则此数列的第40项为( ). A .648

B .722

C .800

D .882

18.已知数列{}n a 满足2122

1

1

1,16,2n n n a a a a a ++===则数列{}n a 的最大项为( ) A .92

B .102

C .

81

82

D .112

19.已知数列{}n a 满足1N a *

∈,1,2+3,n

n n n n a a a a a +??=???为偶数为奇数

,若{}n a 为周期数列,则1a 的

可能取到的数值有( ) A .4个

B .5个

C .6个

D .无数个

20.已知数列{}n a 前n 项和为n S ,且满足*

112(N 3)33n n n n S S S S n n --+≤+∈≥+,,则( )

A .63243a a a ≤-

B .2736+a a a a ≤+

C .7662)4(a a a a ≥--

D .2367a a a a +≥+

二、多选题

21.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:

1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列

数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数

C .202020182022

3a a a =+

D .123a a a +++…20202022a a +=

22.若不等式1

(1)(1)2n n

a n

+--<+对于任意正整数n 恒成立,则实数a 的可能取值为( ) A .2- B .1- C .1 D .2

23.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( ) A .0,2,n n a n ?=?

?为奇数

为偶数

B .1(1)1n n a -=-+

C .2sin

2

n n a π= D .cos(1)1n a n π=-+

24.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足140(2)n n n a S S n -+=≥,114

a =,则下列说法错误的是( ) A .数列{}n a 的前n 项和为4n S n = B .数列{}n a 的通项公式为1

4(1)

n a n n =

+

C .数列{}n a 为递增数列

D .数列1n S ??

????

为递增数列

25.已知数列{}2

n

n a n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6

D .a 1,a 2,a 3可能成等差数列

26.已知等差数列{}n a 的前n 项和为,n S 且1

5

11

0,20,a a a 则( )

A .80a <

B .当且仅当n = 7时,n S 取得最大值

C .49S S =

D .满足0n S >的n 的最大值为12

27.无穷等差数列{}n a 的前n 项和为S n ,若a 1>0,d <0,则下列结论正确的是( ) A .数列{}n a 单调递减 B .数列{}n a 有最大值 C .数列{}n S 单调递减

D .数列{}n S 有最大值

28.等差数列{}n a 的前n 项和记为n S ,若10a >,717S S =,则( ) A .0d < B .120a > C .13n S S ≤

D .当且仅当0n

S <时,26n ≥

29.设{}n a 是等差数列,n S 是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =

C .95S S >

D .6S 与7S 均为n S 的最大值

30.已知数列{}n a 为等差数列,则下列说法正确的是( ) A .1n n a a d +=+(d 为常数)

B .数列{}n a -是等差数列

C .数列1n a ??

????

是等差数列

D .1n a +是n a 与2n a +的等差中项

31.在数列{}n a 中,若22*

1(2,.n n a a p n n N p --=≥∈为常数),则称{}n a 为“等方差数

列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .{(1)}n -是等方差数列

C .若{}n a 是等方差数列,则{}(

)*

,kn a k N

k ∈为常数)也是等方差数列

D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 32.数列{}n a 满足11,121

n

n n a a a a +=

=+,则下列说法正确的是( ) A .数列1n a ??

?

???是等差数列 B .数列1n a ???

???

的前n 项和2

n S n = C .数列{}n a 的通项公式为21n a n =- D .数列{}n a 为递减数列

33.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( ) A .45n a n =-

B .23n a n =+

C .2

23n S n n =-

D .2

4n S n n =+

34.在下列四个式子确定数列{}n a 是等差数列的条件是( )

A .n a kn b =+(k ,b 为常数,*n N ∈);

B .2n n a a d +-=(d 为常数,

*n N ∈);

C .(

)

*

2120n n n a a a n ++-+=∈N ; D .{}n a 的前n 项和2

1

n S n n =++(*n N ∈).

35.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .当9n =或10时,n S 取最大值 C .911a a <

D .613S S =

【参考答案】***试卷处理标记,请不要删除

一、数列的概念选择题 1.B 解析:B 【分析】

先通过列举找到数列的周期,再求2018a . 【详解】

n=1时,234511

121,1(1)2,1,121,22

a a a a =-=-=--==-

==-=- 所以数列的周期是3,所以2018(36722)21a a a ?+===-. 故选:B 【点睛】

本题主要考查数列的递推公式和数列的周期,意在考查学生对这些知识的掌握水平和分析推理能力.

2.B

解析:B 【分析】

利用递推关系可得数列{}n a 是以3为周期的周期数列,从而可得2018a . 【详解】 在数列{}n a 中,

11

1n n

a a +=-

,且12a =,

211112

a a ∴=-

=, 32

1

1121a a =-

=-=- , ()413

1

1112a a a =-

=--== ∴数列{}n a 是以3为周期的周期数列,

201867232=?+,

201821

2

a a ∴==.

故选:B 【点睛】

本题考查了由数列的递推关系式研究数列的性质,考查了数列的周期性,属于基础题.

3.A

解析:A 【分析】

利用()n n n a S S n 12-=-,根据题目已知条件求出数列的通项公式,问题得解.

【详解】

223n S n n =-,

n 2∴≥时,1n n n a S S -=-

22(23[2(1)3(1)]n n n n )=-----=45n

1n = 时满足11a S = ∴ =45n a n ,∴ 10a =35

故选:A. 【点睛】

本题考查利用n a 与n S 的关系求通项. 已知n S 求n a 的三个步骤: (1)先利用11a S =求出1a .

(2)用1n -替换n S 中的n 得到一个新的关系,利用()n n n a S S n 12-=-便可求出当n 2

≥时n a 的表达式.

(3)对1n =时的结果进行检验,看是否符合n 2≥时n a 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分1n =与n 2≥两段来写. .

4.A

解析:A 【分析】

根据等差数列的前n 项和公式以及充分条件和必要条件的定义进行判断即可.

【详解】

{}n a 是等差数列,且公差d 不为零,其前n 项和为n S ,

充分性:

1n n S S +>,则10n a +>对任意的n *∈N 恒成立,则20a >,

0d ≠,若0d <,则数列{}n a 为单调递减数列,则必存在k *∈N ,使得当n k >时,

10n a +<,则1n n S S +<,不合乎题意;

若0d >,由20a >且数列{}n a 为单调递增数列,则对任意的n *∈N ,10n a +>,合乎题意.

所以,“*n N ?∈,1n n S S +>”?“{}n a 为递增数列”;

必要性:设10n a n =-,当8n ≤时,190n a n +=-<,此时,1n n S S +<,但数列{}n a 是递增数列.

所以,“*n N ?∈,1n n S S +>”?/“{}n a 为递增数列”.

因此,“*n N ?∈,1n n S S +>”是“{}n a 为递增数列”的充分而不必要条件. 故选:A. 【点睛】

本题主要考查充分条件和必要条件的判断,结合等差数列的前n 项和公式是解决本题的关键,属于中等题.

5.C

解析:C 【分析】 由观察可得()22333311313571351,,,,,,,...,,,,...2222222222n n n ????????

? ??? ?????????

项数为21,1,2,4,8,...,2,...k -,注意到101110242201922048=<<=,第2019项是第12个括号

里的第995项. 【详解】 由数列()22333311313571351,,,,,,,...,,,,...2222222222n n n ????????

? ??? ?????????

,可发现其项数为 21,1,2,4,8,...,2,...k -,则前11个括号里共有1024项,前12个括号里共有2048项,

故原数列第2019项是第12个括号里的第995项,第12个括号里的数列通项为11

21

2m -, 所以第12个括号里的第995项是11

1989

2. 故选:C. 【点睛】

本题考查数列的定义,考查学生观察找出已知数列的特征归纳出其项数、通项,是一道中档题.

6.A

解析:A 【分析】

对n 分奇偶性分别讨论,当n 为偶数时,可得2+32n n n

S =,发现不存在这样的偶数能满

足此式,当n 为奇数时,可得21+34

2

n n n S a -=+,再结合23a <可讨论出n 的最大值.

【详解】

当n 为偶数时,12341()()()n n n S a a a a a a -=++++???++

(213)(233)[2(1)3]n =?++?++???+-+ 2[13(1)]32n n =?++???+-+?2+32

n n

=,

因为22485048+34850350

1224,132522

S S ?+?====,

所以n 不可能为偶数;

当n 为奇数时,123451()()()n n n S a a a a a a a -=+++++???++

1(223)(243)[2(1)3]a n =+?++?++???+-+

2134

2

n n a +-=+

因为24911493494

12722S a a +?-=+=+,

25111513514

13752

S a a +?-=+=+,

又因为23a <,125a a +=,所以 12a > 所以当1300n S =时,n 的最大值为49 故选:A 【点睛】

此题考查的是数列求和问题,利用了并项求和的方法,考查了分类讨论思想,属于较难题.

7.B

解析:B 【分析】

由题意可得211a a -=,322a a -=,433a a -=,……202020192019a a -=,再将这2019个式子相加得到结论. 【详解】

由题意可知211a a -=,322a a -=,433a a -=,……202020192019a a -=,

这2019个式子相加可得()

20201201912019123 (2019201910102)

a a +-=++++==?.

故选:B. 【点睛】

本题考查累加法,重点考查计算能力,属于基础题型.

8.B

解析:B 【分析】

根据题意,可知()

1

1121n n n a a n ++--=-,分别列出各项,再整理得出132a a +=,

248a a +=,572a a +=,6824a a +=,

,45472a a +=,4648184a a +=,可知,

相邻的奇数项之和为2,相邻的偶数项之和为等差数列,首项为8,公差为16,利用分组

求和法,即可求出{}n a 的前48项和. 【详解】

解:由题可知,()1

1121n n n a a n ++=-+-,

即:()

1

1121n n n a a n ++--=-,则有:

211a a -=,323a a +=,435a a -=,547a a +=,

659a a -=,7611a a +=,8713a a -=,9815a a +=,

474691a a +=,484793a a -=.

所以,132a a +=,248a a +=,572a a +=,6824a a +=,

45472a a +=,4648184a a +=,

可知,相邻的奇数项之和为2,相邻的偶数项之和为等差数列,首项为8,公差为16, 设数列{}n a 的前48项和为48S , 则4812345645464748S a a a a a a a a a a =++++++

++++,

()()1357454724684648a a a a a a a a a a a a =++++

+++++++++

1211

1221281611762

?=?+?+

?=, 所以数列{}n a 的前48项和为:1176. 故选:B. 【点睛】

本题考查数列的递推公式的应用,以及利用分组求和法求和,考查归纳思想和计算能力.

9.D

解析:D 【分析】

根据题意得出111

2

n n n a a a a +==

,从而可知数列{}n a 为等比数列,确定该等比数列的首项和公比,可计算出n S ,然后利用数列{}n S 的单调性可得出n S 的取值范围. 【详解】

取1x =,(

)y n n N

*

=∈,由题意可得()()()111

112

n n n a

f n f f n a a a +=+=?==

, 11

2n n a a +∴

=,所以,数列{}n a 是以12为首项,以12

为公比的等比数列, 11112211212n n n S ??

- ???

∴==--,所以,数列{}n S 为单调递增数列,则11n S S ≤<,即

1

12

n S ≤<. 故选:D. 【点睛】

本题考查等比数列前n 项和范围的求解,解题的关键就是判断出数列{}n a 是等比数列,考查推理能力与计算能力,属于中等题.

10.B

解析:B 【分析】

根据已知递推条件(

)*

21n n n a a a n N ++=-∈即可求得5

a

【详解】

由(

)*

21n n n a a a n N

++=-∈知:

3214a a a 4321a a a 5

43

5a a a

故选:B 【点睛】

本题考查了利用数列的递推关系求项,属于简单题

11.B

解析:B 【分析】

先由题中条件,得到2

12

21i i i a a a +-=+,由累加法得到20

2211

221k k a a ==-∑

,根据00a =,

()11i i a a i +=+∈N ,逐步计算出221a 所有可能取的值,即可得出结果.

【详解】

由11i i a a +=+得()2

221121i i i i a a a a +=+=++,

则21221i i i a a a +-=+, 所以2221121a a a -=+, 2232221a a a -=+,

……,

2202022121a a a -=+,

以上各式相加可得:()21120

2

21

0221

2 (20202)

k

k a a a a a a

=-

=+++++=∑,

所以20

22121

1220

k k a a a ==--∑

又00a =,所以2

12

0211a a a =++=,则20

2211

221

k k a a ==-∑

因为()11i i a a i +=+∈N ,00a =,则0111a a =+=,所以11a =±,则2110a a =+=或

2,

所以20a =或2±;则3211a a =+=或3,所以31a =±或3±;则4310a a =+=或2或

4,所以42a =±或4±或0;则5411a a =+=或3或5,所以51a =±或3±或5±;……,

以此类推,可得:211a =±或3±或5±或7±或9±或11±或13±或15±或17±或19±或

21±,

因此221a 所有可能取的值为222222222221,3,5,7,9,11,13,15,17,19,21,

所以22112

2a -所有可能取的值为10-,6-,2,14,30,50,74,102,134,

170,210;

20

1

k

k a

=∑所有可能取的值为10,6,2,14,30,50,74,102,134,170,210,

即ACD 都有可能,B 不可能. 故选:B. 【点睛】 关键点点睛:

求解本题的关键在于将题中条件平方后,利用累加法,得到20

22121

1220

k k a a a ==--∑

,将问题

转化为求221a 的取值问题,再由条件,结合各项取值的规律,即可求解.

12.C

解析:C 【分析】

首先根据已知条件得到410a =,再依次判断选项即可得到答案. 【详解】

由题知:410a =,

对选项A ,()2

444113a =--=,故A 错误;

对选项B ,2

44115a =-=,故B 错误;

对选项C ,()

4441102a ?+==,C 正确; 对选项D ,()

444162

a ?-==,故D 错误. 故选:C 【点睛】

本题主要考查数列的通项公式,属于简单题.

13.D

解析:D 【分析】

根据题意,得到数列是增数列,结合通项公式,列出不等式组求解,即可得出结果. 【详解】

因为对任意的*n ∈N 都有1n n a a +>, 则数列{}n a 单调递增;

又()()*622,6,6

n n p n n a n p n -?--≤=∈?>?N , 所以只需6

7201p p a a ->??>??

>??-

本题主要考查由数列的单调性求参数,属于基础题型.

14.A

解析:A 【分析】

根据已知条件求得11n n n a a -=--,利用累加法求得19a . 【详解】 依题意:

3,4,6,9,13,18,24,1,2,3,4,5,

6,

所以11n n n a a -=--(2n ≥),且13a =,

所以()()()112211n n n n n a a a a a a a a ---=-+-++-+

()()12213n n =-+-+

+++

()()()1111332

2

n n n n -+--=

+=+.

所以191918

31742

a ?=+=. 故选:A 【点睛】

本小题主要考查累加法,属于中档题.

15.B

解析:B 【分析】

由111n n n n a a a a ++-=+,且113

a =,可得:111n n n a a a ++=-,可得其周期性,进而得出结论. 【详解】

因为111n n n n a a a a ++-=+,且11

3

a =, 所以111n

n n

a a a ++=

-, 21

132113

a +

∴==-,33a =-,412a =-,513a =,??, 4n n a a +∴=.

123411

···2(3)()132

a a a a ∴=??--??=.

则{}n a 的前2021项之积50511

133

=?=.

故选:B 【点睛】

方法点睛:已知递推关系式求通项:(1)用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式.(2)通过具体的前几项找到其规律,如周期性等求解.

16.D

解析:D 【分析】 取特殊值即可求解. 【详解】

当1n =时,11a =,显然AC 不正确,

当2n =时,21459a a =+=,显然B 不符合,D 符合 故选:D

17.C

解析:C 【分析】

由0、2、4、8、12、18、24、32、40、50…,可得偶数项的通项公式:2

22n a n =,即可得

出. 【详解】

由0,2,4,8,12,18,24,32,40,50…,可得偶数项的通项公式:2

22n a n =.

则此数列第40项为2220800?=. 故选:C

18.B

解析:B 【分析】

本题先根据递推公式进行转化得到21

112n n n n a a a a +++=.然后令1n n n

a b a +=,可得出数列{}n b 是等比数列.即11322n

n n a a +??

= ???

.然后用累乘法可求出数列{}n a 的通项公式,根据通项公式及二

次函数的知识可得数列{}n a 的最大项. 【详解】

解:由题意,可知: 21

112n n n n

a a a a +++=. 令1n n n a

b a +=,则11

2

n n b b +=. 2

11

16a b a =

=, ∴数列{}n b 是以16为首项,

1

2

为公比的等比数列. 1

11163222n n

n b -??

??

∴== ?

???

??

∴11322n

n n a a +??= ???

. ∴1

211322a

a ??

= ???

2

3

21322a a ??

= ???

1

11322n n n a a --??

= ???

各项相乘,可得: 1

2

1

11

111(32)222n n n

a a --??????=? ? ? ???????

(1)

2

511()22n n n --??

= ?

?? 2115(1)

22

1122n n n ---????= ? ???

??

211

5522

12n n n --+??

= ???

21

(1110)

2

12n n -+??= ???

令2()1110f n n n =-+,

则,根据二次函数的知识,可知:当5n =或6n =时,()f n 取得最小值. ()2551151020f =-?+=-,()2661161020f =-?+=-,

()f n ∴的最小值为20-. ∴2

11

(1110)(20)10

2

2

101112222n n -+?--??????=== ? ? ???

??

??

∴数列{}n a 的最大项为102.

故选:B . 【点睛】

本题主要考查根据递推公式得出通项公式,构造新数列的方法,累乘法通项公式的应用,以及利用二次函数思想求最值;

19.B

解析:B 【分析】

讨论出当1a 分别取1、2、3、4、6时,数列{}n a 为周期数列,然后说明当19a ≥时,分1a 为正奇数和正偶数两种情况分析出数列{}n a 不是周期数列,即可得解. 【详解】

已知数列{}n a 满足1N a *

∈,1,2

+3,n

n n n n a a a a a +??=???为偶数为奇数

. ①若11a =,则24a =,32a =,41a =,54a =,

,以此类推,可知对任意的

n *∈N ,3n n a a +=,此时,{}n a 为周期数列;

②若12a =,则21a =,34a =,42a =,51a =,

,以此类推,可知对任意的

n *∈N ,3n n a a +=,此时,{}n a 为周期数列;

③若13a =,则26a =,33a =,46a =,

,以此类推,可知对任意的n *∈N ,

2n n a a +=,此时,{}n a 为周期数列;

④若14a =,则22a =,31a =,44a =,52a =,

,以此类推,可知对任意的

n *∈N ,3n n a a +=,此时,{}n a 为周期数列;

⑤若15a =,则28a =,34a =,42a =,51a =,64a =,,以此类推,可知对任意

的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列; ⑥若16a =,则23a =,36a =,43a =,

,以此类推,可知对任意的n *∈N ,

2n n a a +=,

此时,{}n a 为周期数列;

⑦若17a =,则210a =,35a =,48a =,54a =,,以此类推,可知对任意的2

n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列; ⑧若18a =,则24a =,32a =,41a =,54a =,,以此类推,可知对任意的2

n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列.

下面说明,当19a ≥且1N a *

∈时,数列{}n a 不是周期数列.

(1)当(

34

12,2a ?∈?

且1N a *

∈时,由列举法可知,数列{}n a 不是周期数列; (2)假设当(

()1

12,23,k k a k k N +*?∈≥∈?

且1N a *∈时,数列{}n a 不是周期数列,那么当(

()1

212

,23,k k a k k N ++*

?∈≥∈?

时. 若1a 为正偶数,则(11

22,22

k k a a +?=

∈?,则数列{}n a 从第二项开始不是周期数列,从而可知,数列{}n a 不是周期数列; 若1a 为正奇数,则(

(1

213

2132

3,232,2k k k k a a ++++??=+∈++???且2a 为偶数,

由上可知,数列{}n a 从第二项开始不是周期数列,进而可知数列{}n a 不是周期数列.

综上所述,当19a ≥且1N a *

∈时,数列{}n a 不是周期数列.

因此,若{}n a 为周期数列,则1a 的取值集合为{}1,2,3,4,6. 故选:B. 【点睛】

本题解题的关键是抓住“数列{}n a 为周期数列”进行推导,对于1a 的取值采取列举法以及数学归纳法进行论证,对于这类问题,我们首先应弄清问题的本质,然后根据数列的基本性质以及解决数列问题时常用的方法即可解决.

20.C

解析:C 【分析】

由条件可得出11n n n n a a a a -+-≤-,然后可得

3243546576a a a a a a a a a a -≤-≤-≤-≤-,即可推出选项C 正确.

【详解】

因为*

112(N 3)33n n n n S S S S n n --+≤+∈≥+,,

所以12133n n n n S S S S -+-≤--,所以113n n n n a a a a +-≤++ 所以11n n n n a a a a -+-≤-,

所以3243546576a a a a a a a a a a -≤-≤-≤-≤-

所以()6232435465764a a a a a a a a a a a a -=-+-+-+-≤- 故选:C 【点睛】

本题主要考查的是数列的前n 项和n S 与n a 的关系,解答的关键是由条件得到

11n n n n a a a a -+-≤-,属于中档题.

二、多选题 21.AC 【分析】

由该数列的性质,逐项判断即可得解. 【详解】

对于A ,,,,故A 正确;

对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误; 对于C ,,故C 正确; 对于D ,,,, , 各式相加

解析:AC 【分析】

由该数列的性质,逐项判断即可得解. 【详解】

对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确; 对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;

对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,

32121,a a a a a ???=+=,

各式相加得()2022202120202021202020192012182a a a a a a a a a ++???+=+++???++, 所以202220202019201811a a a a a a =++???+++,故D 错误. 故选:AC. 【点睛】

关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项.

22.ABC 【分析】

根据不等式对于任意正整数n 恒成立,即当n 为奇数时有恒成立,当n 为偶数时有恒成立,分别计算,即可得解. 【详解】

根据不等式对于任意正整数n 恒成立, 当n 为奇数时有:恒成立, 由递减

解析:ABC 【分析】

根据不等式1(1)(1)2n n

a n +--<+对于任意正整数n 恒成立,即当n 为奇数时有12+a n

-<恒成立,当n 为偶数时有1

2a n

<-恒成立,分别计算,即可得解. 【详解】

根据不等式1(1)(1)2n n

a n +--<+对于任意正整数n 恒成立, 当n 为奇数时有:1

2+a n

-<恒成立,

由12+n 递减,且1

223n

<+≤,

所以2a -≤,即2a ≥-, 当n 为偶数时有:1

2a n

<-

恒成立,

由12n -

第增,且31

222n ≤-<, 所以3

2

a <

, 综上可得:322

a -≤<, 故选:ABC . 【点睛】

本题考查了不等式的恒成立问题,考查了分类讨论思想,有一定的计算量,属于中当题.

23.BD 【分析】

根据选项求出数列的前项,逐一判断即可. 【详解】

解:因为数列的前4项为2,0,2,0, 选项A :不符合题设; 选项B : ,符合题设; 选项C :, 不符合题设; 选项D : ,符合题设

解析:BD 【分析】

根据选项求出数列的前4项,逐一判断即可. 【详解】

解:因为数列{}n a 的前4项为2,0,2,0, 选项A :不符合题设;

选项B :0

1(1)12,a =-+=1

2(1)10,a =-+=

23(1)12,a =-+=34(1)10a =-+=,符合题设;

选项C :,12sin

2,2

a π

==22sin 0,a π==

332sin

22

a π

==-不符合题设; 选项D :1cos 012,a =+=2cos 10,a π=+=

3cos 212,a π=+=4cos310a π=+=,符合题设.

故选:BD. 【点睛】

本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题.

24.ABC 【分析】

数列的前项和为,且满足,,可得:,化为:,利用等差数列的通项公式可得,,时,,进而求出. 【详解】

数列的前项和为,且满足,, ∴,化为:,

∴数列是等差数列,公差为4, ∴,可得

解析:ABC 【分析】

数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),11

4

a =,可得:1140n n n n S S S S ---+=,化为:1114n n S S --=,利用等差数列的通项公式可得1

n

S ,n S ,2n ≥时,()()

111144141n n n a S S n n n n -=-=

-=---,进而求出n a . 【详解】

数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),11

4

a =, ∴1140n n n n S S S S ---+=,化为:

1

11

4n n S S --=, ∴数列1n S ??

????

是等差数列,公差为4,

∴()1

4414n n n S =+-=,可得14n S n

=, ∴2n ≥时,()()

1111

44141n n n a S S n n n n -=-=

-=---, ∴()1

(1)41(2)41n n a n n n ?=??

=??-≥-??

对选项逐一进行分析可得,A ,B ,C 三个选项错误,D 选项正确. 故选:ABC. 【点睛】

相关主题
相关文档
最新文档