汽车驱动桥壳的有限元法分析及提高强度措施

合集下载

商用车驱动桥壳强度和模态的有限元分析

商用车驱动桥壳强度和模态的有限元分析

·1 4·
《 ( ) 机械与电子 》 2 0 1 2 8
ห้องสมุดไป่ตู้
商用车驱动桥壳强度和模态的有限元分析
设计与研究
m o d e l s a r e i m o r t e d AN S Y S W o r k b e n c h. T h e n t h e p , s i m u l a t i o ns t r e n t h a n a l s i s o f t h e c o l l a b o r a t i v e g y ,m a x l e h o u s i n o d a l a n a l s i s u n d e r t w o c o n d i t i o n s g y , o f t h e f r e e s t a t e a n d r e s t r e s s e d s t a t ea n d s t r u c - p t u r a l o t i m i z a t i o n w e r e m a d e . T h e r e s u l t s r o v i d e p p b a s i s f o r t h e d r i v e a x l e h o u s i n o f s t r u c t u r a l t h e o r g y , , d e s i n, o t i m i z a t i o n l i h t w e i h t a n d f a t i u e l i f e g p g g g , r e d i c t i o n w h i c h a r e o f i m o r t a n t s i n i f i c a n c e t o p p g t h e a c t u a l e n i n e e r i n . g g : ; K e w o r d s d r i v e a x l e h o u s i n f i n i t e e l e m e n t g y ; a n a l s i s s t r e n t h; m o d a l y g

基于catia与ansys的汽车驱动桥壳有限元分析

基于catia与ansys的汽车驱动桥壳有限元分析

基于catia与ansys的汽车驱动桥壳有限元分析汽车驱动桥壳是汽车传动系统中不可或缺的部件,是汽车传动系统性能和可靠性的关键指标。

因此,对于汽车驱动桥壳的强度、刚度及疲劳性能的精确分析和预测具有重要意义。

近年来,有限元分析技术在汽车驱动桥壳分析领域得到广泛应用,可以有效获取整个汽车驱动桥壳的力学特性,为企业的产品质量提供有力支持。

本文基于Catia与Ansys有限元软件,采用节点法建立了汽车驱动桥壳模型,然后分析了汽车驱动桥壳的材料特性和结构特性。

首先,利用热处理工艺处理汽车驱动桥壳的材料,然后采用Catia 软件建立汽车驱动桥壳的有限元模型,并将材料参数和结构参数以及节点位置等信息导入模型,进而利用Ansys有限元分析软件对汽车驱动桥壳的力学特性进行分析。

在节点法的有限元有限元模型建立上,利用柔性节点、支座节点和悬臂梁元素,能够精确反映汽车驱动桥壳模型,解决汽车驱动桥壳实体模型中存在的几何复杂度和渐近问题。

有限元分析中,施加静载荷和动载荷分析,并利用应力平均值计算汽车驱动桥壳的材料强度指标,同时利用许用应力与应力最大值的比值判断汽车驱动桥壳的有效性。

为了更准确地提高汽车驱动桥壳的精度,本文采用KG分类结构网格方法,实现了粗模型与细模型的转换,即能够精确模拟实体模型中存在的几何非线性和材料非线性,从而得到准确无误的汽车驱动桥壳分析结果。

分析结果表明,汽车驱动桥壳模型的强度和刚度满足了汽车传动系统的要求,疲劳性能达到国家规定的明确要求,从而证明了本文提出的有限元分析方法是有效的、可行的。

本文以Catia与Ansys有限元软件建立汽车驱动桥壳有限元模型,并利用精细结构网格及求解器分析了汽车驱动桥壳的强度、刚度及疲劳性能,得出了较为准确的力学特性结果。

因此,本文提出的基于Catia与Ansys有限元分析技术具有较好的实用性,可以为汽车驱动桥壳相关产品的质量提供可靠的研究支持。

在未来的应用中,可以进一步改进有限元分析软件的计算精度,以满足不断提高的产品强度要求,并利用多因素及多组分的设计方法,研究设计新型汽车驱动桥壳的结构和性能。

汽车驱动桥壳的有限元分析和设计方法综述

汽车驱动桥壳的有限元分析和设计方法综述

汽车驱动桥壳的有限元分析和设计方法综述作者:支景锋来源:《中国化工贸易·中旬刊》2017年第11期摘要:驱动桥是为车辆运行提供动力和承载力的主要构件,其桥壳的设计和质量的优劣将影响车辆的安全性和实用性。

本文介绍了汽车驱动桥壳有限元分析的方法,对模型建立、静力学分析、疲劳寿命分析等关键环节进行了阐述,并据此介绍了轻量化设计的方法,提出了汽车驱动桥壳的设计要求和提高桥壳寿命的有效措施。

关键词:驱动桥壳;有限元;ANSYS;分析;设计1 汽车驱动桥壳的有限元模型建立有限元法是一种在工程分析中常用的方法,驱动桥桥壳结构是一个极为复杂的结构,在实际结构的基础上有效地建立简化而正确的有限元模型,是保证有限元分析准确的首要条件。

通常,在整个有限元求解过程中最重要的环节是有限元前处理模型的建立。

由于汽车驱动桥桥壳结构形状较为复杂,包含许多复杂曲面,而一般有限元软件所提供的几何建模工具功能相当有限,难以快速方便地对其建模。

因此,针对较复杂的结构,采用三维CAD软件如UG、SolidWorks、ProE等中建立几何模型,然后在有限元分析软件ANSYS Workbench 中通过输入接口读入实体模型,进而在ANSYS Workbench 中完成前处理等过程。

2 汽车驱动桥壳的静力学分析2.1 最大垂向力工况车辆满载在不平整路面快速行驶时,驱动桥壳同时承受垂向载荷和冲击载荷,此时的桥壳犹如一个简支梁,桥壳通过半轴套管轴承支于轮毂上,半轴套管的支撑点位于车轮的中心线上,垂直载荷取2.5倍满载轴荷,载荷施加在两个钢板弹簧座上,根据软件得到的变形图、应力图分析桥壳是否满足强度和刚度要求。

2.2 最大牵引力工况此工况为汽车满载以最大牵引力作直线行驶时的工况,不考虑侧向力。

此时左右驱动轮除作用有垂向反力外,还作用有地面对驱动车轮的最大切向反作用力。

此時需要得出最大牵引力的计算公式并根据公式进行计算处理。

2.3 最大制动力工况驱动桥壳承受垂向力、制动力和制动力在两板簧座位置引起的转矩。

汽车驱动桥壳的有限元分析和优化

汽车驱动桥壳的有限元分析和优化

分 析和试验验证结果表 明, 优化后桥壳轻量化效果 明显 , 应力与变形符合要求 。
关 键 词 : 动桥 壳 ; 力分析 ; 态分 析 ; 劳 寿命 ; 驱 静 模 疲 优化 F An l ss a d Op i z t n o h c e Drv l u i g E a y i n tmia i f Ve il i e Ax e Ho sn o
d srb i n fsr s n ip a e n r b a n d b ttc a ay i n e he ma i m e tc l la i g c n i iti ut s o te s a d d s lc me ta e o t i e y sai n l ss u d r t x mu v ria o d n o d — o
to in. 1 tt t t r lfe u n i s ae d t r i e h o g d la ay i. Th aiue lf n aey fc o ft e o 5 h nau a r q e ce r ee m n d t r u h mo a n l ss s e ftg i a d s f t a tr o h e
d i e a l o sn r lo o t i e i aiu i n l s . F n l n o t z t n i c n u td Ola l o sn r xe h u i g a e as b an d v a ft e l e a ay i v g f s i al a p i ai s o d c e i x e h u i g y mi o
Li W e ,Xu m i ,LiPi ,Du u i e Ke n ng Cha c n & Ta y ng hu ng Zi u

轻型货车驱动桥壳的有限元分析

轻型货车驱动桥壳的有限元分析

·制造业信息化·收稿日期:2010-09-25基金项目:南京工程学院科研基金项目(KXJ07020)作者简介:文少波(1971-),男,湖北天门人,讲师,硕士研究生。

主要从事汽车技术方面的教学和科研工作。

0引言作为汽车的主要承载件和传力件,驱动桥壳支撑着汽车的荷重,并将载荷传给车轮。

同时,作用在驱动车轮上的牵引力、制动力和侧向力,也经过桥壳传到悬挂、车架或车厢上[1]。

因此合理地设计驱动桥壳,使其具有足够的强度和刚度具有重要意义。

传统的驱动桥壳设计,在进行理论计算时,将其看成简支梁并校核特定断面的最大应力值[2],由于驱动桥壳结构较为复杂,不可避免产生较大的误差,不能真实表达其实际应力大小及分布,采用有限元设计方法能有效地解决此问题。

通过有限元分析,建立桥壳的物理和数学模型,对所设计的产品进行模拟,找出可能出现的问题,可极大地减少资源投入、缩短工作周期,而且可保证较高的准确性和与实际情况十分理想的吻合程度。

ANSYS 是一种通用工程有限元分析软件,现在已经广泛应用于航空航天、机械、电子、汽车、土木工程等各种领域[3]。

主要包括前处理模块,分析计算模块和后处理模块。

前处理模块用于建模及网格划分;分析计算模块包括结构分析、流体动力学分析、电磁场分析、声场分析等模块,可模拟多种物理介质的相互作用;后处理模块可将计算结果以各种形式显示出来。

当前CAD /CAE 软件的专业化分工程度越来越高。

虽然ANSYS 软件具有强大的网格划分、加载求解和后处理功能,但它的几何建模功能相对较弱。

如果采用ANSYS 软件对驱动桥壳进行实体建模,将是一个极其烦琐的过程。

因此本文选用主流三维CAD 软件Unigraphics (以下简称UG ),利用UG CAD 模块的强大实体造型功能进行实体建模,然后导入ANSYS 中进行有限元分析。

1驱动桥壳结构受力分析1.1货车主要参数本文分析的驱动桥壳所属货车主要参数见表1所示。

驱动桥壳有限元结构分析

驱动桥壳有限元结构分析

第1章绪论驱动桥壳是汽车的主要零件之一,作为主减速器、差速器和半轴的装配基体,它是汽车的主要承载件和传力件,支撑着汽车的荷重,并将载荷传给车轮。

在实际行使中,作用在驱动车轮上的牵引力、制动力、横向力,也是经过桥壳传到悬挂及车架或者车厢上的。

同时,驱动桥壳的使用寿命直接影响汽车的有效使用寿命。

因此,合理地设计驱动桥壳,使其具有足够的强度、刚度和良好的动态特性,减少桥壳的质量,有利于降低动载荷,提高汽车行驶平顺性和舒适性。

1.1国内外研究现状过去工程师在对简单机械结构进行分析时,都要进行一系列的简化与假设,再采用材料力学、弹性力学或塑性力学的理论进行分析。

随着工业技术的迅速发展,有越来越多的复杂结构,包括复杂的几何形状、复杂的受力状态等问题需要去分析研究,而在工程实际中,这些复杂的问题往往不能求出它们的解析解。

[1]要解决这些问题通常有两种途径:一是试验法,通过提出一定假设,回避一些难点,对复杂问题进行简化,使之成为能够处理的问题[2]。

然而,由于太多的简化和假设,通常会导致极不准确甚至错误的解答。

因此,另一种行之有效的途径就是尽可能保留问题的实际状况,寻求近似的数值解。

而在众多的数值方法中,有限元分析法因其突出的优点而被广泛地应用。

经过半个多世纪的实践,有限元法已从弹性力学平面问题扩展到空间问题、板壳问题;从静力问题扩展到动力问题、稳定问题和波动问题;从线性问题扩展到非线性问题;从固体力学领域扩展到流体力学、传热学、电磁学等其他连续介质领域;从单一物理场计算扩展到多物理场的耦合计算[4]。

它经历了从低级到高级、从简单到复杂的发展过程,目前已成为工程计算最有效的方法之一。

2001年,重庆大学的褚志刚等学者对某后桥壳进行了静强度分析计算,结果表明该后桥壳静态分析的应力分布合理,在实际破坏区域内的静态应力很小,但分析结果与该车在实际道路试验中的破坏不相吻合。

通过模态分析发现,其前九阶频率与路面谱频率范围重合,模态振型尤以后背盖与上下壳体的焊接处、半轴套管内端直径渐变处、上壳体倒圆处的变形较大;当桥壳和弹簧系统在垂直激励作用下时,即通过动态响应分析法,找出桥壳上的动应力集中区,确认破坏的确切位置,与实际情况相吻合。

汽车桥壳的有限元分析

汽车桥壳的有限元分析

汽车桥壳的有限元分析闫维来源:E-WORKSCAE技术,在产品生产的各阶段,周期内都有实在际效益,例如:在概念设计阶段CAE可以为设计职员来完成基础设计的验证,不同方案的比较,满足功能,性能方面的要求;在具体设计阶段CAE可以验证各种零部件是否满足性能,制造上是否可行等,不过我国目前CAE技术的开展,主要集中在产品开发和试验阶段.本文研究的车桥就是经试验检测后在进行的CAE研究.随着CAE技术在中国的逐步被重视,越来越多的企业引进了CAE技术,本文主要简述CAE技术在某型汽车桥壳方面的应用.一、前言汽车桥壳是车辆中重要的安全件和功能件,是几何外形较为复杂的零件,它是主减速器,差速器,半轴的装配基体,主要功能是支撑汽车重量,并承受由车轮传来的路面反力和反力矩,并经悬架传给车架或车身,其性能直接影响运输车辆的安全性和可靠性,要求有足够的强度和刚度,质量要小,从而进步汽车行驶的平顺性.我国目前的实际应用中的桥壳多为铸造桥壳和钢板冲压焊接桥壳,铸造桥壳有较高的强度和刚度,但质量也较大,铸造质量也不易保证,很轻易造成材料和能源的浪费.而钢板冲压焊接桥壳,相比较而言,轻易制造,质量轻,但加工工序较多,往往存在着回弹超差,而且焊缝质量要求高,也很浪费材料和能源.随着成型设备及相关技术的发展,液压胀形技术在国外迅速发展,广泛应用于汽车制造行业,日本等国家在液压胀形技术上已经达到较高的水平,我国目前还处在试制阶段,不过也渐渐引起了业内人士的关注,液压胀形桥壳的主要优点是壁厚分布公道,无焊缝,刚度,强度高,重量轻,材料利用率高,节能降耗,加工工序少,加工效率高.这将是车桥今后发展的一种趋势,本文主要是通过ANSYS有限元软件对某型车桥结构进行的有限元计算与分析。

二、有限元计算与分析CAE技术,在产品生产的各阶段,周期内都有实在际效益,例如:在概念设计阶段CAE可以为设计职员来完成基础设计的验证,不同方案的比较,满足功能,性能方面的要求;在具体设计阶段CAE可以验证各种零部件是否满足性能,制造上是否可行等,不过我国目前CAE技术的开展,主要集中在产品开发和试验阶段.本文研究的车桥就是经试验检测后在进行的CAE研究.2.1有限元模型的建立我们根据设计者向我们提供的某后桥的数模,在对计算精度影响不大的条件下,为进步计算速度,对模型做适当的简化。

基于有限元方法的载货汽车驱动桥壳分析(毕业设计用)

基于有限元方法的载货汽车驱动桥壳分析(毕业设计用)

$&$0#** %
桥壳的位移变形符合 *汽车驱动桥台架实验评 价指标 +(1234’()/$+++ $ 要求的每米轮距最大变形 小于 $&’** " (! $ 应力分析 在汽车侧翻的临界状况时 ! 轮毂内轴承内侧位 置存在着最大应力 ! 其值为 ’%(,-.! 小于轮毂轴管
图 ! 冲击荷载作用下桥壳应力图 (-.$
!"# 桥壳承受最大铅垂力工况分析
对桥壳承受最大铅垂力 # 即冲击载荷 ! 按 !&’ 倍 满载轴荷 $ 工况下 ! 对该桥壳作变形和应力分析 % 图
( &图 ) 分别为冲击载荷作用下的桥壳应力和整体变
$&#!+** ) 桥壳纵向最大位移发生在汽车以最大牵
引力行驶时 ! 两端与中央沿纵向的最大相对位移为
材料的屈服强度 50’,6.) 在冲击载荷作用下 ! 最大 应力发生在桥壳钢板弹簧座附近 ! 其值为 7+),6. ! 小于桥壳材料的屈服强度 ()’,6." 桥壳的强度符合 要求 " 根据以上结论可知 ! 该桥壳的强度和变形均符 合要求 "
% 结束语
通过有限元模拟方法 ! 分析了汽车驱动桥壳在 不同工况下对应的应力和变形 ! 为汽车驱动桥的强 度评价及疲劳寿命估算提供了所需数据 ! 也为汽车 安全运行提供了必须的依据 " 同时 ! 有限元方法的利
’-F,F "对某整体式桥壳进行应力场和位移场分析 "
并验证其设计的合理性 ’
图 " 驱动桥壳静力简图
" 驱动桥壳受力分析及强度计算
桥壳可被简化为一空心横梁 " 两端经轮毂轴承 支承于车轮上 ’ 在静力状态下 % 钢板弹簧座处桥壳 承受汽车的簧上载荷 7 ) 而沿左右轮胎的中心线 " 由
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ke r s:a tmoiedieal o s g n yi ; a ss y wo d uo t rv xeh u i ;a a ss me ue v n l
1 汽 车驱 动桥概述 j
汽 车结 构 中 车桥 是 驱 动 桥 和 从 动桥 的统 称 。汽
解” 。将实体建模、 系统组装、 限元 前后 处理 有限 有 元求解和系统动态分析等集成一体 , 最大限度地满足 工程设计分析的需要 , 能高效准确地建立分析构件的 三维实体模型 , 自动生成有 限元 网格 , 立相应 的约 建 束及载荷工况 , 自动进行有 限元求解 , 并 对模 态分析 计算 结果 进行 图形 显示 和结 果输 出 , 对结 构 的动 态 特
Ab ta t s r c :Auo t e d ie a l s te man c mp n n h c u pis p w ra d c ryn a a i h n v hc e i i p r - tmoi r x ei h i o o e t ih s p l o e n ar i g c p c t w e e il n o e a v v w e y s
d sg n i l t n e p r n ih a c k y p i t fa tmo v rv x e p o u i g ae e p u d d n i sp p ri - e i a d smua i x e i n o me t whc r e on so uo t e d i e a l r d cn r x i o n e .a d Th a e n to u e o a u e fa l o sn i i l me ta ay i a d a l o sn t n t mp o e n I n rd c d r d e ss me me s r s o xe h u ig f t ee n n l s n x e h u i g s e gh i rv me tae i to u e . n e s r
设 计 与 制 堵

机械 研 究 与 应 用 ・
汽 车驱 动 桥 壳 的有 限元 法 分 析 及 提 高 强 度 措 施 ’
谢 源
34 2 ) 6 0 1 ( 闽西 职 业 技 术 学 院 机 械 工 程 系 , 建 龙 岩 福

要: 汽车的驱动桥是 车辆 运行 中提供 动力和承载力的主要 构件 。其桥 壳的设计和 生产质 量的优 劣将 影响 车辆 的
图 1 驱动桥桥壳的几何模型
2 驱动桥桥 壳 的有 限元构 建【 J 2
驱动桥桥壳在工作 中受力较为复杂 , 而汽车的行 驶 条 件行 驶 状态 等 又是 千变 万化 , 了提 高其 承受 弯 为 矩 的能 力 , 在设计 过 程 中必 须对 桥壳 的应 力 、 变 、 弯 危
险部 位 应力 、 动 影 n 进行 计 算 和校 验 。 目前 , 振 向等 有 驱动 桥壳 的结 构 是 一个 较 为 复杂 的多 构 件 组 合 的机 构 , 在建立 有 限元模 拟 的过程 中应 保 证其 结 构 和
性 做 出评 价 。驱 动桥桥 壳 的几何 模 型如 图 1 。
车的车桥也就是汽车的车轴 , 这个结构 的两端安装在 车轮并 由悬挂架和整体车架向连接 , 驱动桥桥壳是汽 车上重要的承载件和传力件 , 非断开式驱动桥 的桥壳 不仅支承汽车重量 , 将载荷传递 给车轮 , 而且还承受 由驱动车轮传递过来的牵引力 、 制动力、 向力、 向 侧 垂 力的反力以及力矩 , 并经悬架传给车架或车身 。驱动 桥壳的形状复杂 , 而汽车 的行驶条件 ( 如道 路状况、 车辆的运动状态 以及 气候等 ) 又是千变万化 , 因此 , 要精确计算出汽车行驶 时驱动桥壳上各处 的应力和 变形 , 并对桥壳进行强度和刚度校核是很困难的。
X i Yua e n
( eat etfm ca i l n i e n Mix vct nl eh i oeeL ny nFj n 6 1 C i ) Dp r n o eh nc gn r g, n ioai a &t nc clg ,og a ua 3加2 ,hn m ae ei o c a l l i a
实 际相 同 , 这样 才 能保证 有 限元分 析 的准 确性 。一般 在整 个有 限元 求解 的过 程 中 最 为重 要 的步 骤 就 是 有
ห้องสมุดไป่ตู้
限元 的方法 已广泛应用在驱动桥桥壳设计 中, 对驱动 桥桥壳的有限元计算 , 既可分析驱动桥桥壳的强度及
安全性和 实用性 。对桥 壳的设计和模拟 实验 的关键环节作 了阐述 , 绍 了桥 壳有 限元 分析 方法和 提 高桥 壳 介
强度措施 。
关键 词 : 动桥 壳 ; 驱 分析 ; 强度措施 中图分类号 : H 2 T 12 文献标识码 : A 文章 编号 :07 4 1 ( 0 1 0 — 0 8 0 10 - 44 2 1 ) 5 04 — 2
t n h  ̄ i f eil xeh u igd sg n rd cinwl a ettev hcessft n rciai ,s xeh u ig i .T eq o t o hcea l o sn eina dpo u t i f c e il ae a d pa t lt Da l o sn y v o l h y c y
Fi t l me tan l ss a d t e t i pr v me a ur s nie ee n a y i n sr ng h m o e ntme s e f ut m o i e d i x e ho sng or a o tv rve a l u i
相关文档
最新文档