基于ANSYS的汽车驱动桥壳的有限元分析

合集下载

基于catia与ansys的汽车驱动桥壳有限元分析

基于catia与ansys的汽车驱动桥壳有限元分析

基于catia与ansys的汽车驱动桥壳有限元分析汽车驱动桥壳是汽车传动系统中不可或缺的部件,是汽车传动系统性能和可靠性的关键指标。

因此,对于汽车驱动桥壳的强度、刚度及疲劳性能的精确分析和预测具有重要意义。

近年来,有限元分析技术在汽车驱动桥壳分析领域得到广泛应用,可以有效获取整个汽车驱动桥壳的力学特性,为企业的产品质量提供有力支持。

本文基于Catia与Ansys有限元软件,采用节点法建立了汽车驱动桥壳模型,然后分析了汽车驱动桥壳的材料特性和结构特性。

首先,利用热处理工艺处理汽车驱动桥壳的材料,然后采用Catia 软件建立汽车驱动桥壳的有限元模型,并将材料参数和结构参数以及节点位置等信息导入模型,进而利用Ansys有限元分析软件对汽车驱动桥壳的力学特性进行分析。

在节点法的有限元有限元模型建立上,利用柔性节点、支座节点和悬臂梁元素,能够精确反映汽车驱动桥壳模型,解决汽车驱动桥壳实体模型中存在的几何复杂度和渐近问题。

有限元分析中,施加静载荷和动载荷分析,并利用应力平均值计算汽车驱动桥壳的材料强度指标,同时利用许用应力与应力最大值的比值判断汽车驱动桥壳的有效性。

为了更准确地提高汽车驱动桥壳的精度,本文采用KG分类结构网格方法,实现了粗模型与细模型的转换,即能够精确模拟实体模型中存在的几何非线性和材料非线性,从而得到准确无误的汽车驱动桥壳分析结果。

分析结果表明,汽车驱动桥壳模型的强度和刚度满足了汽车传动系统的要求,疲劳性能达到国家规定的明确要求,从而证明了本文提出的有限元分析方法是有效的、可行的。

本文以Catia与Ansys有限元软件建立汽车驱动桥壳有限元模型,并利用精细结构网格及求解器分析了汽车驱动桥壳的强度、刚度及疲劳性能,得出了较为准确的力学特性结果。

因此,本文提出的基于Catia与Ansys有限元分析技术具有较好的实用性,可以为汽车驱动桥壳相关产品的质量提供可靠的研究支持。

在未来的应用中,可以进一步改进有限元分析软件的计算精度,以满足不断提高的产品强度要求,并利用多因素及多组分的设计方法,研究设计新型汽车驱动桥壳的结构和性能。

基于ANSYS Workbench的驱动桥壳模态分析

基于ANSYS Workbench的驱动桥壳模态分析

作者简介 : 源 , 福 建龙岩人 , 谢 男, 工程师、 讲师 , 主要研 究方 向: 机械设计及制造。
1 2
无 阻 尼 自由振动 方程 计 算结 构 的 固有 特性 ,由式
() 得: 1可

z : = ;

… 嚣 矗
rr ・ .
z . 瞳 ∞
[ { ()+| {()= t)[ 】 £}O K 其对 应 的特征方 程为 : ( 一 [ ) }O [ =
汽车的安全 性和可靠性 具有重要 的意义 。【2 -】 _
2 冲焊桥 壳的有 限元分析模型
图 1 桥 壳有 限元分析模型
3 模 态分析理 论
冲焊桥壳 是一个 复杂 的焊接 结构 , 实际模 型 在
的基础上建 立正确 的有 限元 模型 。 是正确 进行 有限 元 分析 的前 提条件 。 因此在 建立 冲焊桥壳有 限元 模 型时 ,既要 如 实反 映桥 壳实 际 结构 的重 要力 学 特 性 ,又要尽 量采用 较少 的单 元和 简单 的单 元形 态 。
刚度 矩 阵 ;P fl { ()为激 振 力 向量 ;菇 f}{ £) { ()、 ()、
度 和模态 , 为桥壳 的结构设计 提出可行 的措施 。 由于驱 动桥壳 的结构形 状极 为复杂 。 而有 限元 软件 的几何 建模功 能相 当有限 , 以方便 地对 其建 难 模 。因此 ,本 文采用 Slw rs od ok 对桥壳进 行 三维建 i 模 ,然 后 通过 A S SWokec 入接 1读入 实 N Y rbnh输 : 3
车桥 是车辆 重要的承载件 和传力件 。 它起支撑 车 辆荷 重 、 动力传 导 到驱动 轮上 的作 用 。 车辆 将 是
上各 种复杂力 的集合点 。 传统 的结构设计 多是基 于 静力 分析 的结 果 。 照相应 的强度 理论进 行 的。但 按

毕业设计(论文)汽车驱动桥壳UG建模及有限元分析

毕业设计(论文)汽车驱动桥壳UG建模及有限元分析

毕业设计(论文)汽车驱动桥壳UG建模及有限元分析毕业设计(论文)汽车驱动桥壳UG建模及有限元分析JIU JIANG UNIVERSITY毕业论文题目汽车驱动桥壳UG建模及有限元分析英文题目 Modeling by UG and Finite Element Analyzing of Automobile Drive Axle Housing 院系机械与材料工程学院专业车辆工程姓名班级指导教师摘要本篇毕业设计(论文)题目是《汽车驱动桥壳建模UG及有限元分析》。

作为汽车的主要承载件和传力件,驱动桥壳承受了载货汽车满载时的大部分载荷,而且还承受由驱动车轮传递过来的驱动力、制动力、侧向力等,并经过悬架系统传递给车架和车身。

因此,驱动桥壳的研究对于整车性能的控制是很重要的。

本课题以重型货车驱动桥壳为对象,详细论述了从UG软件中的参数化建模,到ANSYS中有限元模型的建立、边界条件的施加等研究。

并且通过对桥壳在不同工况下的静力分析和模态分析,直观地得到了驱动桥壳在各对应工况的应力分布及变形情况。

从而在保证驱动桥壳强度、刚度与动态性能要求的前提下,为桥壳设计提出可行的措施和建议。

【关键词】有限元法,UG,ANSYS ,驱动桥壳,静力分析,模态分析AbstractThis graduation project entitled “Modeling and Finite Element Analyzing of Automobile Drive Axle Housing”. As the mainly carrying and passing components of the vehicle, the automobile drive axle housing supports the weight of vehicle, and transfer the weight to the wheel. Through the drive axle housing, the driving force, braking force and lateral force act on the wheel transfer to the suspension system, frame and carriage.The article studies based on heavy truck driver axle ,discusses in detail from the UG software parametric modeling, establish of ANSYS FEM model, and the boundary conditions imposed, etc. And through drive axle housing of the different main conditions of static analysis and modal analysis, it can access the stress distribution and deformation in the corresponding status of drive axle directly. Thus, under the premise of ensuring the strength of drive axle housing, stiffness and dynamic performance requirements, the analysis can raise feasible measures and recommendations in drive axle housing design.Plans to establish thet hree---dimensional model by UG, to make all kinds of emulation analysis by Ansys.【Key words】 Finite element method,UG,ANSYS,Drive axlehousing,Static analysis,Modal analysis目录前言 1第一章绪论 21.1 汽车桥壳的分类 21.2 国内外研究现状 31.3 有限元法及其理论 51.4 ansys软件介绍 71.5 研究意义及主要内容 91.6 本章小结 10第二章驱动桥壳几何模型的建立 11 2.1 UG软件介绍 112.2 桥壳几何建模时的简化处理 11 2.3 桥壳几何建模过程 122.4 本章小结 24第三章驱动桥壳静力分析 25 3.1 静力分析概述 253.2 静力分析典型工况 253.3 驱动桥壳有限元模型的建立 27 3.3.1 几何模型导入 273.3.2 材料属性及网格划分 283.4 驱动桥壳各工况静力分析 293.4.1 冲击载荷工况 293.4.2 最大驱动力工况 323.4.3 最大侧向力工况 343.5 本章小结 37第四章驱动桥壳模态分析 384.1 模态分析概述 384.2 模态分析理论 384.3 驱动桥壳模态分析有限元模型的建立 40 4.4 驱动桥壳模态分析求解及结果 41 4.5 驱动桥壳模态分析总结 474.6 本章小结 47结论 48参考文献 50致谢 52前言在桥壳的传统设计中,往往采用类比方法,对已有产品加以改进,然后进行试验、试生产。

基于ANSYS重型商用车驱动桥壳有限元分析

基于ANSYS重型商用车驱动桥壳有限元分析

基于ANSYS重型商用车驱动桥壳有限元分析
姜武华;李强
【期刊名称】《机械》
【年(卷),期】2007(034)011
【摘要】驱动桥是汽车中的重要部件,应具有足够的强度和刚度,针对某重型商用车后驱动桥出现局部开裂现象,首先在UG中建立了该桥壳几何模型,然后在Hyper Mesh软件中进行网格划分,最后将其导入到ANSYS有限元分析软件中加载和约束,对该商用车后驱动桥壳进行了有限元分析计算,并提出改进方案.
【总页数】3页(P38-40)
【作者】姜武华;李强
【作者单位】合肥工业大学,机械与汽车工程学院,安徽,合肥,230009;合肥工业大学,机械与汽车工程学院,安徽,合肥,230009
【正文语种】中文
【中图分类】U443
【相关文献】
1.基于CATIA和ANSYS的货车驱动桥壳有限元分析 [J], 梁洪明;王靖岳;李学明
2.基于CATIA与ANSYS的汽车驱动桥壳有限元分析 [J], 周裕民;刘鑫
3.基于CATIA与ANSYS的汽车驱动桥壳有限元分析 [J], 周裕民;刘鑫;
4.基于ANSYS Workbench的汽车驱动桥壳有限元分析 [J], 王曼
5.基于ANSYS的汽车驱动桥壳有限元分析 [J], 吕婧;王磊;杜兆阳
因版权原因,仅展示原文概要,查看原文内容请购买。

基于ANSYS的汽车驱动桥壳的有限元分析

基于ANSYS的汽车驱动桥壳的有限元分析

有限元分析最基本的研究方 动桥壳应有足够的强度和刚度且质
1 ) 牵引力或制动力最大时,
法就是“结构离散→单元分析→整 量小,并便于主减速器的拆装和调 桥壳钢板弹簧座处危险断面的弯曲
体求解”的过程。经过近 50 年的 整。由于桥壳的尺寸和质量比较 应力σ和扭转切应力τ分别为:
发展,有限元法的理论日趋完善, 大,制造较困难,故其结构型式应
Digital Design
数字化设计
桥壳承受此力与车轮重力之差,受
力如图 1 所示。
基于 ANSYS 的汽车驱动桥壳
的有限元分析
图1 驱动桥壳的受力简图
□ 武汉理工大学汽车工程学院 杨波 罗金桥
桥壳强度计算可简化成三种典 型的工况,只要在这三种载荷计算工
况下桥壳的强度得到保证,就认为该
桥壳在汽车行驶条件下是可靠的。
包含许多复杂曲面,而一般有限元 软件所提供的几何建模工具功能相 当有限,难以快速方便地对其建 模。因此,针对较复杂的结构,可
集中点)的真实应力值。使用有限 以先在三维 CAD 软件(如在 UG 中)
元法对驱动桥壳进行强度分析,只 建立几何模型,然后在有限元分析
3 ) 当汽车通过不平路面时, 危险断面的弯曲应力为:
四、计算结果
在有限元模型中,驱动桥壳
栏目主持:苏 向 鹏 本 文 索 引 号:1 0 8 投稿信箱: s u x p @ i c a d . c o m . c n
汽车驱动桥壳是汽车上的主 要承载构件之一,其作用主要有:
刚度,且便于主减速器的装配、调 整和维修,因此普遍应用于各类汽 车上。但是由于其形状复杂,因此 应力计算比较困难。根据汽车设计 理论,驱动桥壳的常规设计方法是 将桥壳看成一个简支梁并校核几种 典型计算工况下某些特定断面的最 大应力值,然后考虑一个安全系数 来确定工作应力,这种设计方法有 很多局限性。因此近年来,许多研 究人员利用有限元方法对驱动桥壳 进行了计算和分析。本文中所研究 的对象是在某型号货车上使用的整 体式桥壳。

汽车驱动桥桥壳的有限元分析及结构优化

汽车驱动桥桥壳的有限元分析及结构优化

汽车驱动桥桥壳的有限元分析及结构优化赵丽娟【摘要】以有限元静态分析为基础,将CAD软件Pro/e和有限元分析软件ANSYS 结合起来,完成了从驱动桥壳三维建模到有限元分析的整个过程,得出了驱动桥壳在4种典型工况下的应力分布,计算证明,该桥壳满足强度要求,可以认为它在汽车各种行驶条件下是可靠的.在此基础上,对其进行结构优化,优化结果表明,桥壳质量有了明显的减少,最大等效应力接近许用应力,大大提高了材料的利用率,且应力分布更加合理.其中,总结了使用以上软件建立模型及有关分析和优化工况的规范化步骤,以达到提高工作效率的目的,得到了有益于工程实际的结论.【期刊名称】《汽车零部件》【年(卷),期】2012(000)007【总页数】5页(P66-69,77)【关键词】驱动桥桥壳;ANSYS;静力分析;结构优化【作者】赵丽娟【作者单位】辽宁曙光汽车集团股份有限公司,辽宁丹东118001【正文语种】中文0 引言作为主减速器、差速器和半轴的装配基体,驱动桥壳是汽车的主要零件之一,非断开式驱动桥的桥壳起着支承汽车荷重的作用,并将载荷传给车轮。

作用在驱动车轮上的牵引力、制动力、横向力,也是经过桥壳传到悬挂及车架或者车厢上的。

因此,驱动桥壳不仅是承载件还是传力件,它的使用寿命直接关系到汽车的有效使用寿命。

所以,合理地设计驱动桥壳,使其在动载荷下具有足够的强度、刚度和良好的动态特性,减少桥壳的质量,有利于降低动载荷,提高汽车行驶平顺性和舒适性。

根据汽车设计理论,为保证车桥工作的安全性和可靠性,驱动桥壳设计时应满足应力和变形要求,局部应力集中不应导致桥壳的断裂或塑性变形。

因此对驱动桥壳进行应力、变形分析,提高工作可靠性具有非常重要的意义。

但汽车驱动桥壳形状复杂,且汽车的行驶条件千变万化,利用传统方法很难精确计算桥壳各处的应力及变形大小。

然而利用有限单元方法对其进行计算和分析可以得到较为准确的分析结果。

下面即采用工程通用有限元分析软件ANSYS,对某重型货车整体式桥壳进行应力场和位移场分析,并对其进行合理优化。

终极版:关于轻型汽车驱动桥壳有限元分析

终极版:关于轻型汽车驱动桥壳有限元分析

摘要作为汽车的主要承载件和传力件,驱动桥壳承受了载货汽车满载时的大部分载荷,而且还承受由驱动车轮传递过来的驱动力、制动力、侧向力等,并经过悬架系统传递给车架和车身。

因此,驱动桥壳的研究对于整车性能的控制是很重要的。

本文以轻型载货汽车驱动桥壳为研究对象,详细论述了从UG软件中的参数化建模,到ANSYS中有限元模型的建立、边界条件的施加等研究。

并且通过对桥壳在四种主要工况下的静力分析和模态分析,直观地得到了驱动桥壳在各对应工况的应力分布及变形情况。

从而在保证驱动桥壳强度、刚度与动态性能要求的前提下,为桥壳设计提出可行的措施和建议。

AbstractAs the mainly carrying and passing components of the vehicle, the automobile drive axle housing supports the weight of vehicle, and transfer the weight to the wheel. Through the drive axle housing, the driving force, braking force and lateral force act on the wheel transfer to the suspension system, frame and carriage.This article studies based on light truck driver axle of QX1060, discusses in detail from the UG software parametric modeling, establish of ANSYS FEM model, and the boundary conditions imposed, etc. And through drive axle housing of the four main conditions of static analysis and modal analysis, it can access the stress distribution and deformation in the corresponding status of drive axle directly. Thus, under the premise of ensuring the strength of drive axle housing, stiffness and dynamic performance requirements, the analysis can raise feasible measures and recommendations in drive axle housing design.Keywords:Finite element method,UG,ANSYS Workbench,Drive axle housing,Static analysis,Modal analysis目录摘要 (I)Abstract........................................................................................................................ I I 1 绪论. (1)1.1 课题来源及意义 (1)1.2 国内外研究现状 (1)1.3 ANSYS软件介绍 (4)1.3.1 概述 (5)1.3.2 ANSYS的主要模块及功能 (5)1.3.3 ANSYS的主要技术特点 (6)1.3.4 ANSYS Workbench简介 (7)1.4 CAD/CAE在汽车设计中的应用 (8)1.5 课题研究内容 (8)2驱动桥壳的CAD建模 (10)2.1 驱动桥壳的结构特点 (10)2.2 UG软件介绍及参数化建模思想 (10)2.2.1 UG软件介绍 (10)2.2.2 UG参数化建模思想和一般模块介绍 (11)2.3 驱动桥壳的建模及简化处理 (14)2.3.1 驱动桥壳三维的建模 (14)2.3.2 驱动桥壳的模型简化处理 (16)3 驱动桥壳静力分析 (18)3.1 静力分析概述 (18)3.2 驱动桥壳静力分析典型工况 (18)3.3 建立驱动桥壳有限元模型 (20)3.3.1 几何模型的导入 (20)3.3.2 生成桥壳有限元模型 (21)3.4 驱动桥壳各工况静力分析 (23)3.4.1 冲击载荷工况 (23)3.4.2 最大驱动力工况 (25)3.4.3 最大制动力工况 (28)3.4.4 最大侧向力工况 (30)4 驱动桥壳的模态分析 (34)4.1 模态分析理论 (34)4.2 建立模态分析有限元模型 (35)4.3 驱动桥壳模态分析 (36)4.3.1 自由模态分析 (37)4.3.2 约束模态分析 (41)4.3.3 模态分析总结 (47)5 课题总结与展望 (48)5.1 课题总结 (48)5.2 研究展望 (49)参考文献 (50)致谢 (52)附录Ι:电子文档清单 (53)1 绪论1.1 课题来源及意义本课题来源于湖北汽车工业学院汽车工程系,是汽车设计与分析计算的子课题之一,是后续专业课程的基础,为轻型载货汽车的驱动桥壳设计提供参考。

基于ansys的汽车驱动桥壳有限元分析

基于ansys的汽车驱动桥壳有限元分析

基于ansys的汽车驱动桥壳有限元分析摘要:建立了基于 ANSYS 的汽车驱动桥壳的参数化有限元模型,在最大垂向力工况下对桥壳进行静力分析,得到桥壳的应力和位移分布规律。

对桥壳进行模态分析,得到桥壳1至6 阶固有振动频率。

最后采用目标驱动优化方法对桥壳进行以轻量化为目标的优化。

有限元分析和试验验证结果表明,优化后桥壳轻量化效果明显,应力与变形符合要求。

关键词:驱动桥壳;静力分析;模态分析;疲劳寿命;优化前言汽车轻量化是实现节能减排的重要手段和方法,汽车轻量化实质上是零部件轻量化。

一方面节约原材料,降低生产成本;另一方面降低燃油消耗,减少排放。

目前国内对汽车零部件的设计已经从主要依靠经验逐渐发展到应用有限元方法进行强度计算和分析阶段。

只有结构优化方法能够解决汽车生产过程中的高性能、低成本与轻量化的矛盾。

驱动桥壳是汽车的主要承载件和传力件,作为主减速器、差速器和半轴的装配基体,并将载荷传给车轮。

作用在驱动车轮上的牵引力、制动力和横向力,也是经过桥壳传到悬挂及车架或车厢上的。

因此,驱动桥壳的使用寿命直接影响汽车的有效使用寿命。

本文中采用有限元法对威铃轻型货车后驱动桥壳(假定为整体成形桥壳,非冲焊桥壳,忽略焊接的影响)在最大垂向力工况下进行强度刚度校核,模态分析,在此基础上进行疲劳寿命预测,找出驱动桥壳的潜在危险位置。

在保证满足桥壳强度刚度的条件下,对桥壳进行优化,实现桥壳轻量化。

最后对轻量化的结果进行模拟验证,从而确定了较合理的设计方案,由此提高了产品性能,节省了材料,提高了驱动桥壳的设计水平,减少了实际试验研究的费用和时间,为企业对桥壳改进和新产品开发提供理论指导。

1 最大垂向力工况静力分析对4. 5t 江淮威铃轻型货车桥壳进行静力分析,桥壳尺寸参数如下:壁厚8mm,轮距1600mm,板簧距890mm。

在ANSYS DesignModeler中建立参数化模型(壁厚为设计变量),在保证有限元分析精度的条件下,忽略一些无关紧要的结构,如放油孔、加油孔和螺栓孔等,保留对有限元分析有影响的部分,如凸包、固定环、轴头和钢板弹簧座等,建立实体模型;导入ANSYS Workbench后划分网格(无需定义单元类型),施加载荷和约束,求解后得到桥壳的mises应力分布云图和等效位移分布云图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于ANSYS的汽车驱动桥壳的有限元分析
有限元法是一种在工程分析中常用的解决复杂问题的近似数值分析方法,以其在机械结构强度和刚度分析方面具有较高的计算精度而得到普遍应用,特别是在材料应力、应变的线性范围更是如此。

在汽车设计领域,无论是车身、车架的计算仿真,还是发动机的曲轴以及传动系统的计算均使用到该方法。

有限元分析最基本的研究方法就是“结构离散→单元分析→整体求解”的过程。

经过近50年的发展,有限元法的理论日趋完善,已经开发出了一批通用和专用的有限元软件。

ANSYS是当前国际上流行的有限元分析软件,广泛地应用于各行各业,是一种通用程序,可以用它进行所有行业的几乎任何类型的有限元分析,如汽车、宇航、铁路、机械和电子等行业。

ANSYS软件将实体建模、系统组装、有限元前后处理、有限元求解和系统动态分析等集成一体,最大限度地满足工程设计分析的需要。

通过结合ANSYS软件,能高效准确地建立分析构件的三维实体模型,自动生成有限元网格,建立相应的约束及载荷工况,并自动进行有限元求解,对模态分析计算结果进行图形显示和结果输出,对结构的动态特性作出评价。

它包括结构分析、模态分析、磁场分析、热分析和多物理场分析等众多功能模块。

汽车驱动桥壳是汽车上的主要承载构件之一,其作用主要有:支撑并保护主减速器、差速器和半轴等,使左右驱动车轮的轴向相对位置固定;同从动桥一起支撑车架及其上的各总成质量;汽车行驶时,承受由车轮传来的路面反作用力和力矩并经悬架传给车架等。

驱动桥壳应有足够的强度和刚度且质量小,并便于主减速器的拆装和调整。

由于桥壳的尺寸和质量比较大,制造较困难,故其结构型式应在满足使用要求的前提下应尽可能便于制造。

驱动桥壳分为整体式桥壳,分段式桥壳和组合式桥壳三类。

整体式桥壳具有较大的强度和刚度,且便于主减速器的装配、调整和维修,因此普遍应用于各类汽车上。

但是由于其形状复杂,因此应力计算比较困难。

根据汽车设计理论,驱动桥壳的常规设计方法是将桥壳看成一个简支梁并校核几种典型计算工况下某些特定断面的最大应力值,然后考虑一个安全系数来确定工作应力,这种设计方法有很多局限性。

因此近年来,许多研究人员利用有限元方法对驱动桥壳进行了计算和分析。

本文中所研究的对象是在某型号货车上使用的整体式桥壳。

一、驱动桥壳强度分析计算
可将桥壳视为一空心横梁,两端经轮毂轴承支撑于车轮上,在钢板弹簧座处桥壳承受汽车的簧上载荷,而沿左右轮胎中心线,地面给轮胎以反力(双胎时则沿双胎中心),桥壳承受此力与车轮重力之差,受力如图1所示。

图1 驱动桥壳的受力简图
桥壳强度计算可简化成三种典型的工况,只要在这三种载荷计算工况下桥壳的强度得到保证,就认为该桥壳在汽车行驶条件下是可靠的。

1)牵引力或制动力最大时,桥壳钢板弹簧座处危险断面的弯曲应力σ和扭转切应力τ分别为:
式中:
——地面对车轮垂直反力在桥壳板簧座处断面引起的垂直平面的弯矩,;(b为轮胎中心平面到板簧座之间的横向距离)
——牵引力或制动力(一侧车轮上的)在水平面内引起的弯矩,;
——牵引或制动时,上述危险断面所受转矩,;
——分别为危险断面垂直平面和水平面弯曲的抗弯截面系数及抗扭截面系数,之间的关系如表1所示。

2)当侧向力最大时,外轮和内轮上的垂直反力和,以及桥壳内、外板簧座处断面的弯曲应力、之间的关系,分别为:

3)当汽车通过不平路面时,危险断面的弯曲应力为:
式中k为动载荷系数。

对于轿车,k取1.75;对于货车,k取2.0;对于越野车,k 取2.5。

桥壳的许用弯曲应力为300MPa~500MPa,许用扭转切应力为150MPa~400MPa。

可锻铸铁桥壳取较小值,钢板冲压焊接桥壳取较大值。

上述桥壳强度的传统计算方法,只能算出某一断面的应力平均值,而不能完全反映桥壳上应力及其分布的真实情况。

因此,它仅用于对桥壳强度的验算,或用作与其他车型的桥壳强度进行比较,而不能用于计算桥壳上某点(例如应力集中点)的真实应力值。

使用有限元法对驱动桥壳进行强度分析,只要计算模型简化得当,受力约束处理合理,就可以得到比较详细的应力与变形的分布情况,这些都是上述传统计算方法所难以办到的。

二、实现方法
一般来说,在整个有限元求解过程中最重要的环节是有限元前处理模型的建立。

这一般包括几何建模、定义材料属性和实常数(要根据单元的几何特性来设置,有些单元没有实常数)、定义单元类型,网格划分、添加约束与载荷等。

由于汽车零部件结构形状较为复杂,包含许多复杂曲面,而一般有限元软件所提供的几何建模工具功能相当有限,难以快速方便地对其建模。

因此,针对较复杂的结构,可以先在三维CAD软件(如在UG中)建立几何模型,然后在有限元分析软件ANSYS中通过输入接口读入实体模型,最后在ANSYS中完成其分析过程。

三、有限元计算模型的建立
被分析汽车的参数为:汽车的名义装载量m1=4.0t,满载轴荷时后桥负荷m2=6.0t,车轮中心线至钢板弹簧座中心距离b=370mm,两钢板弹簧座中心间的距离s=1004mm,桥壳本身的重力G0=931.6N,桥壳设计的安全系数为7,弹簧上表面面积5000mm2,由此可得到面载荷为5.88MPa。

根据国家标准,当承受满载轴荷时,桥壳最大变形量不能超过1.5mm/m;承受2.5倍满载轴荷时,桥壳不能出现断裂和塑性变形。

所以垂直方向的载荷取满载轴荷的2.5倍,即5.88×2.5=14.78MPa。

首先在UG中建立起驱动桥壳的三维模型。

在建立桥壳的有限元模型时,先对驱动桥壳实体做必要的简化。

对主要承载件,均保留其原结构形状,以反映其力学特性,对非承载件进行了一定程度的简化。

简化结果如图2所示。

图2 桥壳的三维模型
然后将模型导入到ANSYS中,对其进行网格划分,划分网格时选用具有较高的刚度及计算精度的四面体10节点92号单元,这样将该零件划分为60183个节点,29805个单元,如图3所示。

图3 桥壳的有限元模型
该驱动桥壳的本体材料为8mm厚的09SiVL钢板,从材料手册中查出其弹性模量E=5MPa,泊松比μ=0.3,材料密度为7850。

计算桥壳的垂直静弯曲刚度和静强度的方法是:将后桥两端固定,在弹簧座处施加载荷,将桥壳两端车轮中心线处全部约束,然后在弹簧座处施加规定载荷。

四、计算结果
在有限元模型中,驱动桥壳在2.5倍满载轴荷工况下,应力及位移云图分别如图4、图5所示,最大位移为0.469E-03m,最大应力为2185MPa,出现在半轴套管约束处。

在不考虑由于约束影响造成的局部过大应力的情况下,应力较大值分布在钢板弹簧座的两侧,约为240MPa,远小于材料的许用应力=510MPa~610MPa。

所以,该桥壳是符合结构强度要求的。

图4 2.5倍满载荷条件下的Mises应力云图
图5 2.5倍满载荷条件下的Mises位移云图
五、结束语
通过建立汽车零部件、结构或系统的有限元计算模型,或利用UG等CAD软件建立3D参数化模型进行转化,在CAE软件中进行仿真分析和计算,可以降低设计开发成本,减少试验次数,缩短设计开发周期,提高产品质量,使得汽车在轻量化、舒适性和操纵稳定性方面得到改进和提高,具有非常重大的实际意义。

相关文档
最新文档