《随机事件的概率》PPT课件(市高效课堂讲课比赛一等奖)

合集下载

随机事件的概率课件

随机事件的概率课件
方差
对于连续型随机变量X,其方差 D(X)表示X取值的离散程度,计算 公式为D(X)=∫(X−E(X))2f(x)dx, 其中f(x)是X的概率密度函数。
07
大数定律与中心极限定理
大数定律
大数定律定义
大数定律是指在大量重复实验中,某一事件发生的频率将 趋近于该事件发生的概率。
大数定律的数学表达
设随机事件A发生的概率为P,则当实验次数n趋于无穷时, 事件A发生的频率f趋近于概率P,即lim(n->∞) f(n)=P。
如果一个事件是完备的,那么它的概 率等于1,即$P(Omega) = 1$。
独立事件的概率乘法规则
如果两个事件是独立的,那么它们的 概率可以相乘,即$P(A cap B) = P(A) times P(B)$。
条件概率
条件概率的定义
在某个条件下,某个事件发生的概率称为条件概率。记作 $P(A|B)$,表示在事件B发生的条件下,事件A发生的概率。
3
离散型随机变量的概率
每个取值的概率通常由实验或经验数据得出,表 示为P(X=x),其中X是随机变量,x是取值。
几种常见的离散型随机变量的概率分布
二项分布
当一个随机事件只有两种可能的结果,且这两种结果发生的概率是 已知的,那么这个随机事件的概率分布就是二项分布。
泊松分布
当一个随机事件在单位时间内发生的次数是一个离散型随机变量时 ,这个随机变量的概率分布就是泊松分布。
独立事件的概率计算
01
独立事件
两个或多个事件的发生相互独立,一个事件的发生不影响另一个事件的
发生。
02
概率计算公式
对于独立事件 A 和 B,其概率计算公式为 P(A∩B) = P(A) * P(B),其中

随机事件的概率(1)(共27张PPT)

随机事件的概率(1)(共27张PPT)

0≤ ≤1.

(2)概率及其记法:对于给定的随机事件 A,如果随着试验次数的增
加,事件 A 发生的频率 fn(A)稳定在某个常数上,把这个常数记作 P(A),称
为事件 A 的概率,简称为 A 的概率.
一般来说,随机事件 A 在每次试验中是否发生是不能预知的,但是
在大量的重复试验后,随着试验次数的增加,事件 A 发生的频率会逐渐
录如下:
射击次数
100
120
150
100
150
160
150
击中飞碟数
81
95
123
82
119
127
121
击中飞碟的频率
(1)计算各次记录击中飞碟的频率;
(2)这个运动员击中飞碟的概率约为多少?
解:(1)射击次数 100,击中飞碟数是 81,故击中飞碟的频率是
81
=0.810,同理可求得题表中的频率依次是
(5)从分别标有号码 1,2,3,4,5 的 5 个号签中任取一个,得到 4 号签;
(6)导体通电后,发热;
(7)三角形的内角和为 360°;
(8)某电话机在 1 分钟内收到 4 次呼叫.
解:(1)(6)是必然事件;(3)(7)是不可能事件;(2)(4)(5)(8)是随机事件.
目录
退出
4.某人射击 10 次,击中靶心 8 次,则击中靶心的概率为 0.8.这种说法
件的是(
)
A.③
B.①
C.①④
D.④
解析:①是不可能事件,②是不可能事件,③是随机事件,④是必然事
件.
答案:D
目录
退出
2.某市统计近几年新生儿出生数及其中男婴数(单位:人)如下:

新人教版高中数学《随机事件的概率》PPT优秀课件1

新人教版高中数学《随机事件的概率》PPT优秀课件1
随机事件A的概率范围?
必然事件与不可能事件可看作随机事件的两种特殊情况. 因此,随机事件发生的概率都满足:0≤P(A)≤1
(2)在标准大气压下 且温度低于0℃时,冰融化
是不可能事件
新人教版高中数学《随机事件的概率 》PPT优 秀课件 1
新人教版高中数学《随机事件的概率 》PPT优 秀课件 1
新人教版高中数学《随机事件的概率 》PPT优 秀课件 1
是随机事件
新人教版高中数学《随机事件的概率 》PPT优 秀课件 1 新人教版高中数学《随机事件的概率 》PPT优 秀课件 1
新人教版高中数学《随机事件的概率 》PPT优 秀课件 1
新人教版高中数学《随机事件的概率 》PPT优 秀课件 1
概率的定义
对于给定的随机事件A,如果随着试验 次数的增加,事件A发生的频率fn(A)稳定 在某个常数上,把这个常数记做P(A), 称为事件A的概率,简称为A的概率。
如:P(正面向上)=0.5
实心铁块丢入水中,铁块浮起 在00C下,这些雪融化
新人教版高中数学《随机事件的概率 》PPT优 秀课件 1
新人教版高中数学《随机事件的概率 》PPT优 秀课件 1
转盘转动后,指针指 向黄色区域
这两人各买1张彩票, 她们中奖了
在条件S下,可能发生也可能不发生的事件,
叫做相对于条件S的随机事件.
确定事件与随机事件统称为事件, 一般用大写字母A,B,C,……表示.
频率( m n
新人教版高中数学《随机事件的概率 》PPT优 秀课件 1
新人教版高中数学《随机事件的概率 》PPT优 秀课件 1
掷硬币试验
从这次试验,我们可以得到 一些什么启示?
1、每次试验的结果我们都无法预知,正面朝上 的频率要在试验后才能确定。 2、随着试验次数的增加,频率的值越来越接近 常数0.5。

人教版数学第三章1《随机事件的概率》配套教学(共29张PPT)教育课件

人教版数学第三章1《随机事件的概率》配套教学(共29张PPT)教育课件























































































































































若条件改变,事件的预知性改变吗?
必然事件 不可能事件

《随机事件的概率》PPT课件 (公开课获奖)2022年华师大版 (1)

《随机事件的概率》PPT课件 (公开课获奖)2022年华师大版 (1)

(3
2 D.3
13.如图,在 4×4 正方形网格中,任选取一个白色的小正方形并
涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是( A )
1
1
1
A.6
B.4
C.3
1 D.12
二、填空题(每小题 4 分,共 8 分) 14.在英语句子“Wish you success!”(祝你成功!)中任选一个字
1
1
1
1
A.6
B.4
C.3
D.2
9.(8 分)有一只跳蚤在一个有 24 个黑色格子,76 个白色格子 的棋盘上自由地跳动,它最终停留在黑色格子上的概率是多少?停 留在白色格子上的概率是多少?
解:265
19 25
一、选择题(每小题 4 分,共 16 分)
10.某次抽奖活动中,中奖的概率是14,那么它表示的意义是(C )
可以用类似于 分数约分的方法
来计算。
解:(1) (x5y)6÷x2 = x30y6÷x2
=
x5y x2
=
xx xxxxx y xxxx
= x·x·x·y
把除法式子写成分数形式,
把幂写成乘积形式, 约分。
省略分数及其运算, 上述过程相当于:
(1)(x5y) ÷x2 =(x5÷x2 )·y
=x 5 − 2 ·y
A.抽 4 张奖券就有一张中奖 B.抽出 3 张奖券后,第四张奖券一定中奖 C.在这次抽奖活动中,平均每 4 张奖券有 1 张中奖 D.100 张奖券中一定有 25 张中奖 11.做重复实验:抛掷同一枚啤酒盖 1 000 次,经过统计得“凸 面向上”的概率约为 0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹
1、用字母表示幂的运算性质:

随机事件的概率(共48张PPT)

随机事件的概率(共48张PPT)
死于车祸:危险概率是1/5000 染上爱滋病:危险概率是1/5700 被谋杀:危险概率是1/1110 死于怀孕或生产(女性):危险概率是1/4000 自杀:危险概率分别是1/20000(女性)和1/5000 因坠落摔死:危险率是1/20000
死于工伤:危险概率是1/26000 走路时被汽车撞死:危险概率是1/40000
问题1. 你是彩民吗?你买的彩票一定能中奖吗?
在现实生活中,有很多问题我们很难给予准确无误的回答,因为在客
观世界中,有些事情的发生是偶然的,有些事情的发展是必然的, 而且偶然和必然之间往往存在某种内在联系.
①从一个只装有红球的盒子里摸出一个红球
②人总有一天会死去
③投一枚骰子(点数为1—6)投出7点 ④人可以一生都不喝水
1.概率的正确理解
事实上,我们在连续投掷两次硬币时,可能出现3种结果:
1
(25%)
2
(50%)
且每中情况都是随机出现的
3
(25%)
Ex1.如果某种彩票的中奖概率为 1 ,那
1000
么买1000张这种彩票一定能中奖吗?请说 明理由.(假设该彩票有足够多的张数)
不一定,每张彩票是否中奖是随机的, 1000张 彩票中有几张中奖当然也是随机的.买1000 张这种彩票的中奖概率约为:1000,即有 63.2%的可能性中奖,但不能肯定中奖.
2. 游戏的公平性
在一场乒乓球比赛前,必须要决定由 谁先发球,并保证具有公平性,你知道裁 判员常用什么方法确定发球权吗?其公平 性是如何体现出来的?请你举出几个公平 游戏的实例.
裁判员拿出一个抽签器,它是-个像大硬币似的 均匀塑料圆板,一面是红圈,一面是绿圈,然后 随意指定一名运动员,要他猜上抛的抽签器落到 球台上时,是红圈那面朝上还是绿圈那面朝上。 如果他猜对了,就由他先发球,否则,由另一方

随机事件的概率 共99页PPT资料

随机事件的概率 共99页PPT资料

( A 1 A 2 ) A 3 ( A 1 A 2 ) A 3 ( A 1 A 2 ) A 3
第二节 随机事件的概率
一、频率与概率 二、概率的性质 三、等可能概型(古典概型) 四、几何概型
一、频率与概率
概率 在一次试验中A发 事生 件的可能性大小的
量度称为事 A的件概率。
例1 设 A 、B为两事件, 且设P(B)0.3,P(AB)0.6求 P( AB)
解 P (A B ) P { A ( B ) } P (A A ) B P (A ) P (A )B 而 P (A B ) P (A ) P (B ) P (A )B 所以 P (A B ) P (B ) P (A ) P (A )B 于是 P(AB)0.60.30.3
P(A)1P(A)
证明 性质6
性质6(加法公式) 对任意两个事A、 件B有
P (A B ) P (A ) P (B ) P (A )B
证明: 因为 ABA(BA)B 且 A (B A) B ,A B B 故由性质2和性质3得:
P ( A B ) P ( A ) P ( B A ) P ( B A ) P ( B ) P ( A ) B
n
n
因此 1P ( )P ( { i}) P { i}n P { i}
从而
P{i }
1 n
i 1
i 1
(i1,2, ,n)
若事A件 含有 k个基本事件
即 A {i1 } {i2 } {ik}
这里 i1,i2,ik是1, 2, n中某 k个不同的数,
E 2 A{HH ,TT} B{HH ,HT }
AB{TT}
AB

高一数学3-1-1随机事件的概率市公开课一等奖课件名师大赛获奖课件

高一数学3-1-1随机事件的概率市公开课一等奖课件名师大赛获奖课件

(2)随机事件:在条件S下可能 发生 也可能 不发生 的事 件,叫做相对于条件S的随机事件,简称为随机事件.
(3)事件:确定 事件和 随机事件统称为事件,一般用大写 字母A,B,C…表示.
(4)分类:
事件确定事件不 必可 然能 事事 件件 随机事件
[破疑点] 随机事件和确定事件都是相对的,如果改变 条件,那么随机事件有可能变成确定事件,确定事件也有可 能变成随机事件.
(2)解此类题目的步骤是:先利用频率的计算公式依次计 算出各个频率值,然后根据概率的定义确定频率的稳定值即 为概率.
某公司在过去几年内使用了某种型号的灯管1 000 支,该公司对这些灯管的使用寿命(单位:时)进行了统计,统 计结果如下表所示:
分 [0, [900, [1 100, [1 300, [1 500, [1 700, [1 900, 组 900) 1 100) 1 300) 1 500) 1 700) 1 900) +∞)

48 121
208
223
193
165
42



(1)将各组的频率填入表中; (2)根据上述统计结果,估计灯管使用寿命不足1 500小时 的概率. [分析] 要估计灯管使用寿命不足1 500小时的概率,需 先求出灯管使用寿命在[0,1 500)的频数,再应用公式fn(A)=nnA 求解.
[思路]
随机试验中条件和结果的判断
学法指导 如何分析试验结果: (1)首先要准确理解随机试验的条件、结果等有关定 义,并能使用它们判断一些事件,指出试验结果,这是后续 学习求事件的概率的前提和基础.
(2)在写试验结果时,一般采用列举法写出,必须首先明 确事件发生的条件,根据日常生活的经验,按一定的次序 ——列举,才能保证没有重复,也没有遗漏.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教 师 寄 语
3.1.1 随机事件的概率
缺乏意志的人,一切都感到困难; 没有头脑的人,一切都感到简单.
试试并非受罪,问问并不吃亏;
善于发问的人,知识越来越丰富.
中奖条件
奖项 一等 奖 二等 奖 三等 奖
红色球号码
●●●●●● ●●●●●● ●●●●● ●●●●● ●●●● ●●●● ●●● ●● ● ● ● ● ● ● ●
256 0.512 随1.0 n的增大 , 频率 f 呈现出稳定性 247 0.494 25 0.50 1
0.4 0.8
18 27
0.36
0.502 251 262 0.524 波动最小
0.54
258
0.516
例如,历史上曾有人做过抛掷硬币的大量重复 试验,结果如下表 : 抛掷次数( ) 正面向上次数 m (频数n ) 2048 4040 12000 24000 30000 72088 1061 2048 6019 12012 14984 36124
游戏规则
“双色球”是我国福利彩票, 彩票投注区分为红色球号码区 和蓝色球号码区.
每注投注号码由6个红色球 号码(号码顺序不限)和1个 蓝色球号码组成.红色球号码从 1--33中选择;蓝色球号码从1-16中选择.
蓝色球 号码

四 等 奖 五 等 奖 六 等 奖
你中奖了吗?
学习目标
(1)结合实例了解必然事件,不可能事件,随机事件的概念; ( 2 )通过抛币试验了解随机事件的发生在大量重复试验下,呈 现规律性,从而理解频率的稳定性及概率的统计定义; (3)结合概率的统计定义理解频率与概率的区别和联系.
0 .4995 0.5011
德 . 摩根
蒲 丰
皮尔逊
皮尔逊




结论:
随机事件A在一次试验中是发 生是不能预知的,但是在大量重复实 验后,随着次数的增加,事件A发生 的频率会逐渐稳定在某个常数上.
3、概率的定义
对于给定的随机事件A,如果随着试实验次数的增 加,事件A发生的频率fn(A)稳定在区间[0,1]中的某个 常数上,把这个常数称为事件A的概率,记作P(A), 简称为A的概率. 我来理解概率的定义:
(1)频率m/n总在P(A)附近摆动,当n越大时,摆动幅度越 小 ; (2)概率的范围是 [0,1] ,不可能事件的概率为 0 ,必然事件 (0,1) 为 1 ,随机事件的概率 ; (3)概率从数量上反映了一个事件发生的可能性的大小. 概率越大,表明事件A发生的频率越 大,它发生的可能性 越 大 ;概率越小 ,它发生的可能性也越 小 . (4)大量重复进行同一试验时,随机事件及其概率呈现出规律性
m 频率( ) n
0.5181 0.5069 0.5016 05005 0.4996 0.5011
当抛掷硬币的次数很多时,出现正面的频率值 是稳定的,接近于常数0.5,在它左右摆动.
历史上一些著名的抛币试验结果表
抛掷次数 正面朝上次数 频率 2048 1061 0.5181 4040 2048 0.5069 12000 6019 0.5016 24000 12012 0.5005 30000 14984 72088 36124
思考
频率是否等同于概率呢?
4、概率与频率的关系:
(1)随着试验次数的增加,频率会越来越接近 概率; (2)频率本身是随机的,在试验前不能确定; (3)概率是一个确定的数,是客观存在的,与 每次试验无关; (4)概率是频率的稳定值,而频率是概率的近 似值. 因此在实际中我们求一个事件的概率时, 有时通过进行大量的重复试验,用这个事件 发生的频率近似地作为它的概率.
这些事件发生与否,各有什么特点呢?
(1)“地球不停地转动” 必然发生
必然发生 (2)“木柴燃烧,产生能量” (3)“在常温下,石头在一天内风化” 不可能发生
(4)“某人射击一次,中靶”可能发生也可能不发生
可能发生也可能不发生 (5)“掷一枚硬币,出现正面”
(6)“在标准大气压下且温度低于0℃时,雪融化” 不可能发生
(5)、某射手在同一条件下进行射击,结果如下: 射击次数n 击中靶心的次数 m 10 20 8 19 50 100 200 500 44 92 178 455
击中靶心的频率m/n 0.8 0.95 0.88 0.92 0.89 0.91
(1)计算表中击中靶心的各个频率;
(2)这个射手射击一次,击中靶心的概率约为多少?
做7 遍, 观察正面出现的次数及频率.
试验 序号
n5
n 50
f
0.4 0.6 0.2
nH
nH
2
f
n 500 f nH
0.502 0.498
1 2 3 4 5 6 7
2 3 1 5 1 2 4
0.44 251 22 1 25 0.50 249 在 处波动较大 21 0.42
在 处波动较小 24 0.48 2 0.2
(1)必然事件、不可能事件、随机事件
随机事件:在一定条件下可能发生也可能不 发生的事件叫随机事件。 必然事件: 在一定条件下必然要发生的事件 叫必然事件。 不可能事件: 在一定条件下不可能发生的事 件叫不可能事件。 确定事件和随机事件统称为事件,一般 用大写字母A,B,C…表示。
思考生活中事件归属?小组展示结果
0.9
6. (1)事件的分类:必然事件、不可能事件和随机事件; (2)随机事件概率的定义; (3)频率与概率的关系; (4)统计的思想方法—试验、观察、探究、归纳和总结.
7.课后作业
(1)课本138页,练习 3; (2)思考题: ①随堂练习5中该射手击中靶心的概率是0.9,那么他射击 10次,一定能击中靶心9次吗? ②随机事件的概率,一般可以通过大量的重复试验求得其 近似值.那么,对于某些随机事件,比如:“抛掷一枚硬币, 正面朝上”,能否不通过重复试验,只从理论上的分析得出随 机事件的概率呢?
2.试验、观察和归纳
(1)试验目的
让我们来做抛掷硬币试验
探究随机事件“抛掷一枚硬币,正面朝上”发生的可能性大小;
(2)试验要求 每人做 10次 抛掷硬币试验,记录正面朝上的次数,并计算正面 朝上的比例,然后各组长进行统计将试验结果填入下表中: 【规则(1)硬币统一(1角硬币);(2)垂直下抛;(3)离桌面高度大约为30cm.】
学习重点、难点
重点:理解频率的稳定性及概率的统计定义. 难点:频率与概率的区别和联系.
问题情境
木柴燃烧,能产生热量吗?
明天,地球还会转动吗?
煮熟的鸭子,能跑了吗?
一天内,在常温下,石头会被风 化掉吗?
试分析:“从一堆牌中任意抽一张 抽到红牌”这一事件的发生情况?
必然发生
必然不会发生
可能发生, 也 可能不发生
C
A
(3)、下列事件: ① a,b∈R且a<b,则a-b∈R; ②小华将一石块抛出地球; ③掷一枚硬币,正面向上; ④掷一颗骰子出现点8. 其中是不可能事件的是 A、①② B、②③ C、②④

D、①④
C)
(4)、随机事件在n次试验中发生了m次,则( C) (A) (C) 0<m<n 0≤m≤n (B) 0<n<m (D) 0≤n≤m
3.试验结果与其他同学比较,你的结果和他们一致吗?为什么? 因为“抛掷一枚硬币,正面朝上”这个事件是一个随机事件, 在每一次试验中,它的结果是随机的,所以10次的试验结果也是 随机的,可能会不同. 4. 如果我们来做大量的重复抛掷硬币的试验,正面朝上的频率值 会有什么规律吗?
实验 有人将一枚硬币抛掷 5 次、50 次、500 次, 各
5、随堂练习:
(1)、下列事件: ①口袋里有伍角、壹角、壹元的硬币若干枚,随机地摸出一 枚是壹角; ②在标准大气压下,水在90℃沸腾; ③射击运动员射击一次命中10环; ④同时掷两颗骰子,出现的点数之和不超过12. 其中是随机事件的有 ( ) A、① B、①② C、①③ D、②④ (2)、下列事件: ①如果a、b∈R,则a+b=b+a; ②“地球不停地转动”; ③明天泰安下雨; ④没有水份,黄豆能发芽; 其中是必然事件的有 ( ) A、①② B、①②③ C、 ①④ D、②③
在三类事件中,必然事件和不可能事件,它的发生与 否是很容易确定的,事先就知道它发生或者不发生;而随 机事件的发生具有不确定性,可能发生,也可能不发生. 那么,它发生的可能性有多大呢?对于随机事件,知道它 发生的可能性大小是非常重要的,能为我们的决策提供关 键性的依据. 那么,如何才能获得随机事件发生的可能性 大小呢? 最直接的方法就是试验(观察)(一次试验,就是将事件 的条件实现一次)
组别 1 2 3 4 5 6 班级
实验次数 正面朝上的次数 正面朝上的比例
2、思考与讨论:
1.以上试验中,正面朝上的次数nA叫做频数 ,事件A出现的次数nA n f n ( A) A n 与总实验次数n的比例叫做事件A出现的 频率fn(A) . 即 . 2. 必然事件的频率为 1 ,不可能事件的频率为 0 值范围是[0,1] .(为什么?) ,频率的取
相关文档
最新文档