微注塑成型技术研究进展
微孔发泡注塑成型工艺及其设备的技术进展

塑料工业CHINAPLASTICSINDUSTRY第49卷第2期2021年2月微孔发泡注塑成型工艺及其设备的技术进展∗任亦心1ꎬ刘君峰1ꎬ许忠斌1ꎬ∗∗ꎬ王金莲2ꎬ∗∗∗ꎬ虞伟炳3ꎬ应建华3(1.浙江大学能源工程学院ꎬ浙江杭州310027ꎻ2.杭州科技职业技术学院ꎬ浙江杭州311402ꎻ3.浙江赛豪实业有限公司ꎬ浙江台州318020)㊀㊀摘要:微孔发泡注塑技术是实现塑料轻量化设计的重要途径ꎮ在简要回顾微孔塑料发泡注塑成型工艺的基础上ꎬ重点介绍了微孔发泡注塑成型设备的发展动向ꎮ从注气㊁塑化㊁注射㊁模具和辅助系统等五个模块ꎬ分析总结工艺要求及多种国外产业端的先进设备特点和解决方案ꎮ文中重点论述多个成功应用的生产设备创新案例ꎬ并对微孔发泡注塑成型技术和设备的未来发展趋势进行展望ꎮ关键词:微孔泡沫塑料ꎻ注塑成型ꎻ设备ꎻ轻量化设计中图分类号:TQ320 66+2㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1005-5770(2021)02-0012-04doi:10 3969/j issn 1005-5770 2021 02 003开放科学(资源服务)标识码(OSID):TechnicalProgressofMicrocellularFoamInjectionMoldingProcessandEquipmentRENYi ̄xin1ꎬLIUJun ̄feng1ꎬXUZhong ̄bin1ꎬWANGJin ̄lian2ꎬYUWei ̄bing3ꎬYINGJian ̄hua3(1.CollegeofEnergyEngineeringꎬZhejiangUniversityꎬHangzhou310027ꎬChinaꎻ2.HangzhouPolytechnicꎬHangzhou311402ꎬChinaꎻ3.ZhejiangSaihaoIndustrialCo.ꎬLtd.ꎬTaizhou318020ꎬChina)Abstract:Microcellularinjectionmoldingwasanefficientandimportantapproachappliedinthelightweightplastics.Basedonabriefreviewofmicrocellularinjectionmoldingprocessꎬthedevelopmenttrendofthemoldingequipmentofmicroporousplasticfoaminjectionwasmainlyintroduced.Theprocessrequirementsandthecharacteristicsandsolutionsofvariousadvancedequipmentinforeignindustrieswereanalyzedandsummarizedfromfivemodulesꎬsuchasꎬgasinjectionꎬplasticizingꎬinjectionꎬmoldandauxiliarysystem.Manysuccessfulappliedproductionequipmentcaseswerediscussedꎬandthefuturedevelopmenttrendofmicrocellularfoaminjectionmoldingtechnologyandequipmentwasprospected.Keywords:MicroPorousFoamPlasticꎻInjectionMoldingTechnologyꎻEquipmentꎻLightweightDesign轻量化设计是未来塑料加工技术的趋势之一ꎮ塑料轻量化不仅有助于节省原料成本ꎬ对于汽车㊁航天航空等产业更意味着产品整体性能和竞争力的提升ꎮ微孔发泡注塑成型是在这个背景下发展起来的新技术ꎮ其最大的优势在于能进一步激发塑料轻量化的潜能ꎮ同时ꎬ该技术还可减少缩痕㊁翘曲变形和内应力区域[1]ꎬ降低锁模力和注塑压力ꎬ实现节能环保ꎮ特殊制备的微孔发泡塑料还可以根据产品需求具备一些功能特性ꎬ例如隔热[2]㊁隔声[3]㊁较低的介电常数等ꎮ近年来ꎬ国内外产业端的需求和环保政策的导向使发泡注塑成型技术成为领域内的研究热点ꎬ也促使该工艺不断发展和完善ꎮ但是微孔发泡注塑成型设备和工艺关键技术大多为国外大型公司如Trexel㊁Arburg㊁Engel等所垄断ꎬ在一定程度上制约了国内产业的发展ꎮ本文介绍了微孔发泡注塑成型的原理和工艺过程ꎬ结合国内外产业界具体的设备创新案例ꎬ就微孔发泡注塑设备的各个功能模块分别展开综述ꎬ并对今后微孔发泡注塑的发展趋势进行了展望ꎮ1㊀微孔发泡注塑成型工艺过程微孔发泡注射成型的原理是利用快速改变温度㊁压力等工艺参数的方法ꎬ使聚合物-熔体气体均相体系进行微孔发泡而成型制品[4]ꎮ以Trexel公司的MuCell技术为典例ꎬ微孔发泡注塑设备及其过程中对应的两相形态变化如图1所示ꎮ首先ꎬ由高压气瓶提供超临界流体(通常为氮气或二氧化碳ꎬ典型剂量为0 2%~1 0%)ꎬ在螺杆回收期间通过喷射器以精确的流率注入混合段机筒内已经熔化的聚合物中ꎻ在螺杆向前输送物料的同时ꎬ特殊设计的螺杆混合段元件把气体切碎㊁搅混ꎬ使其均匀溶解在聚合物熔体中ꎬ形成塑料熔体-气体均相体系ꎮ有些设备还会专门设置扩散室进一步均化ꎮ由于止回阀和封闭式射咀的存在ꎬ均相体系能在高压下保持不发生离析ꎬ这是均匀成核的条件ꎮ随后ꎬ该体系将通过封闭式射咀高速注入已充压缩气体的模腔ꎮ模腔内足够高的压力防止21∗国家自然科学基金资助项目(52073247)ꎬ浙江省教育厅一般科研项目(Y201941430)ꎬ浙江大学项目(校合-2020-KYY-533005-0041)∗∗通信作者xuzhongbin@zju edu cn㊀㊀∗∗∗通信作者wangjinlian83@126 com作者简介:任亦心ꎬ女ꎬ1998年生ꎬ本科ꎬ主要从事高分子成型加工方面的研究ꎮ第49卷第2期任亦心ꎬ等:微孔发泡注塑成型工艺及其设备的技术进展气泡在充模阶段生长ꎮ充模完成后ꎬ型腔内压力骤降ꎬ气体在聚合物中形成非常高的过饱和度ꎬ极不稳定ꎮ高能态分子聚合诱发形成泡核ꎮ随着外部压力继续减小ꎬ气泡迅速膨胀ꎬ直至模腔被充满㊁物料凝固ꎮ图1㊀微孔发泡注塑成型设备及工艺对应两相形态简图Fig1㊀Schematicillustrationofamicrocellularinjectionmoldingequipmentsetandthecorrespondingtwo ̄phasemorphology相对于普通注射成型ꎬ气体的加入导致了系统额外的可变工艺参数ꎬ因此微孔发泡注塑成型过程要复杂得多ꎮ许忠斌等[5]曾系统地分析了影响微孔塑料注射成型过程的重要工艺参数ꎬ包括注射压力㊁注射时间㊁熔体温度等ꎮKastner等[6]也曾就改变各个工艺参数进行过最终塑料制品力学性能的测试ꎮ微孔发泡过程工艺参数的复杂性要求设备的设计者必须深入了解原理ꎬ准确控制各部分参数ꎬ最大程度利用微孔发泡的优势而减少其负面影响ꎮ2㊀微孔发泡注塑成型设备典范2 1㊀注气系统注气系统即实现发泡剂注入聚合物体系的设备模块ꎮ不同的设备注气系统所在位置和注气形式各不相同ꎬ但均需要考虑能否精确控制注剂量㊁能否为后续的两相混合预留时间或提供基础ꎮ最后ꎬ注气系统的成本和可拆卸性也越来越成为重要的参考ꎮ注气系统所在位置主要可分为均化段机筒处和喷嘴处ꎮ注气系统接入均化段的机筒的典型案例有Trexel公司的MuCell注塑机ꎮ该系列注塑机将微孔发泡技术最早实现商用ꎮ早期的MuCell注塑机用泵通过旁路阀控制注入量ꎻ随后先后引入了阻力元件㊁歧管系统㊁伺服电机系统等ꎬ实现精准注气和同步计量ꎮ目前ꎬ最新T系列注塑机拥有对新用户友好的智能给料控制系统ꎬ仅要求操作员输入装料质量和超临界氮的百分比ꎮ其注气系统会根据螺杆位置信号的反馈自动控制单个或多个位置的注气喷嘴开闭ꎬ根据实际熔胶时间和压力降情况调节打气时间和流速ꎬ实现注气环节智能化ꎮ然而该技术对已有注塑机的机筒㊁螺杆改造程度大ꎬ对起始投入资金要求高ꎮ针对此ꎬTrexel公司在2019年塑料技术大会上发布了可代替端盖ꎬ用螺栓加装在标准化的螺杆/机筒上的新型螺杆尖端加料模块ꎬ如图2b所示ꎮ该技术使得新机不需要特殊的定制螺杆㊁机筒和止回环ꎬ能够方便地切换回传统注塑ꎬ灵活适应生产ꎮa-传统MuCell定制螺杆b-MuCell新型螺杆尖端加料模块c-Optifoam技术鱼雷体状注气喷嘴d-ProFoam技术及其颗粒锁e-IQFoam颗粒-SCF气体注气方式图2㊀微孔发泡注塑成型技术案例示意图Fig2㊀Casediagramsofmicrocellularinjectionmoldingtechnology注气位置同样在均化段的还有意大利NegriBossi公司在2017年法国国际塑料行业解决方案展览会上推出的泡沫微孔成型方案(FMC)ꎮ与MuCell不同ꎬFMC将气体从螺杆尾部引入螺杆内部的通道中ꎬ并通过螺杆均化段上的一系列 喷针 注入熔体聚合物ꎮ该方法无需对机筒进行更换ꎮ另一个常见的注气位置在喷嘴处ꎬ经典的工业案例有31塑㊀料㊀工㊀业2021年㊀㊀Sulzer化学技术公司和德国亚琛大学塑料加工研究所(IKV)的Optifoam以及Demag公司的Ergozell技术ꎮ如图2cOpti ̄foam[7]在注气时设计了一种鱼雷体状有环形间隙结构的喷嘴ꎮ该环形间隙由可通过气体的特殊烧结的金属制成ꎬ可将SCF由此注入聚合物流道ꎬ既使注入时气体与熔体之间的接触表面最大化ꎬ又可防止聚合物渗出流道ꎮ使用这个注气系统ꎬ只需更新传统注塑机的喷嘴即可ꎮ但相较于均化段注塑ꎬ该方法建议的注射速度更小ꎮ在注气形式上ꎬ除了上述的注入超临界流体外ꎬ一些公司和研究所还开发了不需使用超临界流体的微孔发泡技术来避免造价高昂的超临界流体控制系统ꎮ例如塑胶颗粒-气体的混合注气方式ꎮ如图2dꎬArburg和IKV开发的ProFoam技术[8-9]可以将自创的颗粒密封锁安装在任何常规注塑机的料斗和进料口之间ꎮ颗粒锁内的密封舱将颗粒聚合物从环境压力转移到发泡剂压力ꎬ在恒压储存仓中用气体浸渍ꎮ颗粒锁有专门的控制器ꎬ全过程仅新增一个发泡剂的压力参数ꎮ从整体上ꎬ该技术除了加入防气体流失的螺杆尾部额外密封外ꎬ无需干预原增塑单元ꎮ大众汽车公司构思并申请专利㊁预计近几年投产的IQFoam[10]采用类似的方式ꎬ如图2eꎬ通过调节阀门以及两个致动器ꎬ在中低压下将气体与颗粒一起引入塑化系统ꎮProTech公司在2018年国际塑料加工贸易展览会上首次展示的SomosPerfoamer制造解决方案也采取将粒料经过浸渍送入一台或多台注塑机内的类似做法ꎮ塑胶颗粒 气体的注气方式体现了工业生产中模块化思想ꎬ通过可拆卸的组件进行扩展ꎬ从而灵活适应生产需求ꎮ但是在如何加快这种形式的气固吸收㊁缩短间歇注入的周期的问题上还有研究的空间ꎮ目前研究领域也提出了诸多代替超临界流体实现发泡的想法ꎮYusa等[11]开发的微孔发泡技术将物理发泡剂通过喷射阀和特殊螺杆运动的配合直接从气瓶中注入到熔融聚合物中ꎮ该装置形态与MuCell装置类似ꎬ新增一个排气循环系统ꎬ在聚合物饱和时将气体回收ꎬ不饱和时再次注入气体ꎮ在此基础上ꎬWang等[12]实现了用空气作为发泡剂进行微孔塑料的制备ꎬ并验证得到相比于氮气和二氧化碳发泡剂更细腻均匀的微孔结构ꎬ具有较好的商业前景ꎮ2 2㊀塑化系统塑化系统是微孔发泡注塑机的核心组成部分ꎬ它是实现聚合物机械塑化㊁加热塑化和两相混合的场所ꎮ对于注气位置靠前的设备ꎬ往往会从优化螺杆的角度促进两相混合ꎮ专为微孔发泡而开发的螺杆主要需考虑:提高塑化能力和分散混合能力㊁降低熔体温度不均匀性㊁防止发泡熔体中气体溢出逆流等ꎮ例如ꎬTrexel为MuCell技术定制的螺杆具有长径比大的特点ꎬ塑化段后设置提高聚合物/气体混合效果的混炼元件ꎮ螺杆上的后止回阀和前止回阀使得混合段保持高压ꎬ防止混合物向进料区和喷嘴膨胀ꎮ对于注气位置偏后的设备ꎬ通过螺杆机械混合时间极短的工艺ꎬ例如Ergocell和Optifoam[13]ꎬ塑化系统会在螺杆到喷嘴之间专门设置混合室㊁扩散室等来强化气体在聚合物中的扩散和均化ꎮ其中ꎬOptifoam采取了高压静态混合室ꎬ使得两相混合更充分ꎮErgocell则采用动态混合室ꎬ由电机驱动旋转ꎬ连接气体计量模块ꎬ加在标准化的塑化装置前端ꎬ该设计使得注入气体的混合速度独立于螺杆转速ꎬ让塑化过程和两相混合过程分别控制在最优参数下ꎮ2 3㊀注射装置在微孔发泡技术的注射环节ꎬ压降速率的增加会使得熔体成核速率提高ꎬ泡核均含气量减少ꎮ因此注射时的压降速率是得到均匀尺寸及分布的微孔的关键加工参数ꎮ提高压降速率的方式有提高注射速度㊁缩小喷嘴尺寸和延长喷嘴通道等ꎮ例如ꎬMuCell注塑机喷嘴大小相较等效实心注塑缩小了九成ꎻ微孔发泡注塑机的塑化系统和注塑系统的动力装置也通常是分离的ꎬ分别提供较高的分散混合能力和注射速率ꎮ由于熔体黏度降低ꎬ微孔发泡注射装置的注射压力相比于传统注塑可降低40%~50%ꎮ注射喷嘴通常选择封闭式喷嘴以防止气体泄漏和提前发泡ꎮ2 4㊀模具装置模具系统是塑料发泡成型的场所ꎬ同时具有了监控和调整塑料发泡过程的功能ꎮ为防止充模时期的预发泡ꎬ用于微孔发泡注塑的模具中通常会注入压缩气体ꎮ当塑料熔体被高速注入模腔时ꎬ该部分气体产生反压阻碍压降ꎮ因此微孔发泡的模具系统需具备高效排气进气系统ꎬ以便产生均匀的充模流场ꎮ由于注射速度高ꎬ连接流道和型腔的浇口截面积相对较大ꎮ对于传统注塑过程ꎬ模腔压力已被广泛应用作为监控成型过程的参量ꎮ但微孔发泡注塑中ꎬ在充模即将结束时压力就已经比较低的情况下ꎬ发泡过程的模腔压力很可能无法单独作为有用的反馈量ꎮ针对此ꎬBerry等[13]的研究提出可以通过快速响应热电偶和传统的压力传感器的结合来监控㊁预测微孔发泡成型的效果ꎮ另一方面ꎬ由于聚合物发泡会自主膨胀压实型模腔ꎬ几乎不需要保压的过程ꎬ微孔发泡技术有着更节能省时的优点ꎮ2 5㊀液压系统液压系统起到支持以上系统实现低注射压力㊁高注射速率的作用ꎬ并且能在螺杆停止转动和注射开始前维持机筒内压力ꎬ固定螺杆和防止预发泡ꎮ液压系统与注塑设备是相对独立的体系ꎬ在这里不做具体展开ꎮ2 6㊀辅助系统通过微孔发泡注塑制作的产品在表面性能和力学性能可能有缺陷ꎮ针对这个问题ꎬ常采用共注射模塑㊁快速热循环㊁绝缘涂层法㊁气体对压和芯背膨胀法等[14-18]加以改善ꎬ注塑机中会相应增加辅助系统ꎮ共注射模塑是传统的改善产品表面的方式ꎬ在微孔发泡中也有运用ꎮ实心-微孔材料共注射成型设备能够解决产品表面缺陷的问题ꎮ它增设了固体表层塑料的注射筒ꎮ在加工时ꎬ先注射实心塑料作为表皮ꎬ然后注射发泡塑料作为制品芯部ꎬ最后以实心材料封口[14]ꎻ循环加热法能提高模具和聚合物熔体之间的界面温度以保证表面的质量ꎬ同时避免长时间升温41第49卷第2期任亦心ꎬ等:微孔发泡注塑成型工艺及其设备的技术进展影响成核发泡ꎬ减少能耗浪费ꎮChen等[15]采用电磁感应加热与水冷相结合的方法ꎬ实现了快速的㊁仅限于模具表面的温度控制ꎬ可消除涡流痕迹ꎮ薄膜绝缘涂层法[16]则是通过在模具的内表面添加不同厚度的聚四氟乙烯隔热薄膜ꎬ将界面温度保持在熔融温度以上ꎻ气体对压法即将模腔内气压升高ꎬ使得聚合物在填充过程中被限制发泡ꎮ一旦模腔被完全填充ꎬ表面层冷却ꎬ再减压发泡[17]ꎮ该方法还能用来控制核的生长ꎮMuCell的经典设备中应用了气体对压法ꎻ芯背膨胀法[18]在对压法的基础上发展ꎬ以高注射速度将聚合物注入腔体厚度可变的精密机械ꎬ形成固体外层 皮肤 后ꎬ模具扩张厚度ꎬ压力突然下降诱导零件内部产生泡孔ꎬ逐渐达到更低的密度ꎮ该工艺能使制品减少表面漩涡痕迹ꎬ表层变薄ꎬ制品密度更低ꎮ此外ꎬ由于总厚度的增加ꎬ也改善了包括抗弯刚度在内的部分力学性能ꎮ3㊀展望微孔发泡注塑成型技术和设备在未来会呈现如下发展趋势:1)设备复杂性降低ꎮ许多大型注塑设备企业开始涉足这一市场ꎬ他们迫切需要解决的是如何将微孔发泡技术与客户已有的普通注塑机进行适配ꎬ实现低成本的更新改造ꎮ设备研发整体朝着降低发泡设备复杂性的方向发展ꎮ2)智能化提升ꎮ随着仿真软件和人工智能技术的发展ꎬ更加智能㊁操作友好的控制系统会集成到微孔发泡注塑机中ꎮ能进行状态监测㊁仿真计算㊁智能控制及可视化呈现的辅助模块在未来也适合应用于更为复杂的微孔发泡注塑过程ꎬ在气泡形态稳定性的控制㊁表面缺陷处理上有所突破ꎮ3)关注环保领域ꎮ作为一种绿色塑料加工技术ꎬ微孔发泡还可能进一步与塑料循环利用相结合ꎮ例如对废弃塑料制品粉碎㊁再造粒和再发泡ꎻ或采用三明治结构将回收的废弃塑料发泡作为内芯等ꎮ4)关注功能材料领域ꎮ对于微孔发泡塑料功能的深入研究会让微孔发泡技术潜在的应用场景进一步拓宽ꎬ特别是在对声学㊁热学㊁减震等有要求的特殊场景中ꎮ目前ꎬ几乎所有领先的微孔发泡注塑设备厂商都是国外的企业ꎮ国内微孔发泡领域主要集中在对原料工艺方面的研究ꎬ在设备和产业化方面还处于起步阶段ꎮ为实现国内微孔发泡塑料技术革新ꎬ还需通过产学研结合ꎬ不断优化过程设备ꎬ早日实现我国塑料产业的高端化㊁智能化升级ꎮ参㊀考㊀文㊀献[1]KRAMSCHUSTERAꎬCAVITTRꎬERMERDꎬetal.Quantitativestudyofshrinkageandwarpagebehaviorformicrocellularandconventionalinjectionmolding[J].Pol ̄ymerEngineering&Scienceꎬ2005ꎬ45(10):1408-1418.[2]ZHAOJCꎬZHAOQLꎬWANGLꎬetal.DevelopmentofhighthermalinsulationandcompressivestrengthBPPfoamsusingmold ̄openingfoaminjectionmoldingwithin ̄situfibrillatedPTFEfibers[J].EuropeanPolymerJournalꎬ2018ꎬ98:1-10.[3]NEYCIYANIBꎬKAZEMINAJAFISꎬGHASEMII.In ̄fluenceoffoamingandcarbonnanotubesonsoundtransmis ̄sionlossofwoodfiber ̄lowdensitypolyethylenecomposites[J].JournalofAppliedPolymerScienceꎬ2017ꎬ134(29):45096.[4]李从威ꎬ周南桥ꎬ王全新.微孔发泡注射成型设备及技术研究进展[J].工程塑料应用ꎬ2008ꎬ36(10):76-80.LICWꎬZHOUNQꎬWANGQX.Developmentofmi ̄crocellularinjectionmoldingtechnology[J].EngineeringPlasticsApplicationꎬ2008ꎬ36(10):76-80. [5]许忠斌ꎬ吴舜英ꎬ黄步明ꎬ等.微孔塑料注射成型机理及其技术发展动向[J].轻工机械ꎬ2003(4):24-28.XUZBꎬWUSYꎬHUANGBMꎬetal.Mechanismandtechnologicaldevelopmenttrendofinjectionmoldingofmi ̄crocellularplastics[J].LightIndustryMachineryꎬ2003(4):24-28.[6]KASTNERCꎬSTEINBICHLERGꎬKAHLENSꎬetal.Influenceofprocessparametersonmechanicalpropertiesofphysicallyfoamedꎬfiberreinforcedpolypropyleneparts[J].JournalofAppliedPolymerScienceꎬ2019ꎬ136(14):47275.[7]SASANHN.OptifoamTM theflexiblesolutionforfoaminjectionmolding[M]//RapraTechnology.BlowingA ̄gentsandFoamingProcesses.Hamburg:iSmithersRapraPublishingꎬ2004:64.[8]MICHAELIWꎬKRUMPHOLZTꎬOBELOERD.Pro ̄foam anewfoamingprocessforinjectingmolding[C]//Proceedingsofthe66thannualtechnicalconferenceofthesocietyofplasticsengineers.Milwaukee:Wisconsinꎬ2008:1019-1023.[9]GAUBH.Profoam ̄cost ̄efficientprocessformanufacturingfoamedlightweightparts[J].ReinforcedPlasticsꎬ2017ꎬ61(2):109-112.[10]GÓMEZ ̄MONTERDEJꎬHAINJꎬS NCHEZ ̄SOTOMꎬetal.Microcellularinjectionmolding:Acomparisonbe ̄tweenMuCellprocessandthenovelmicro ̄foamingtech ̄nologyIQFoam[J].JournalofMaterialsProcessingTechnologyꎬ2019ꎬ268:162-170.[11]YUSAAꎬYAMAMOTOSꎬGOTOHꎬetal.Anewmi ̄crocellularfoaminjection ̄moldingtechnologyusingnon ̄su ̄percriticalfluidphysicalblowingagents[J].PolymerEn ̄gineering&Scienceꎬ2017ꎬ57(1):105-113. [12]WANGLꎬHIKIMAYꎬOHSHIMAMꎬetal.Develop ̄mentofasimplifiedfoaminjectionmoldingtechniqueanditsapplicationtotheproductionofhighvoidfractionpoly ̄(下转第67页)51第49卷第2期倪金平ꎬ等:阻燃玻璃纤维增强PA6的紫外光稳定性PlasticsApplicationꎬ2019ꎬ47(11):149-155. [10]武海花.抗老化助剂对尼龙6耐老化性能的影响[J].工程塑料应用ꎬ2017ꎬ45(7):124-148.WUHH.Effectsofanti ̄agingadditivesonanti ̄agingre ̄sistanceofPA6[J].EngineeringPlasticsApplicationꎬ2017ꎬ45(7):124-128.[11]姜建洲ꎬ虞鑫海.应用于PA6工程塑料的氮系阻燃剂的研究现状[J].合成技术及应用ꎬ2014ꎬ29(3):9-12.JIANGJZꎬYUXH.Researchprogressofnitrogen ̄con ̄tainingflameretardantsappliedinPA6engineeringplastic[J].SyntheticTechnologyApplicationꎬ2014ꎬ29(3):9-12.[12]王良民ꎬ王龙礼ꎬ刘文哲ꎬ等.含溴阻燃PBT的阻燃性及紫外光稳定性[J].塑料工业ꎬ2020ꎬ28(8):47-51.WANGLMꎬWANGLLꎬLIUWZꎬetal.Flamere ̄tardancyandultravioletstabilityofbromineflameretardedPBTcomposites[J].ChinaPlasticsIndustryꎬ2020ꎬ28(8):47-51.[13]姚培培ꎬ李琛ꎬ肖生苓.紫外老化对聚苯乙烯泡沫性能的影响[J].化工学报ꎬ2014ꎬ65(11):4620-4626.YAOPPꎬLICꎬXIAOSL.Effectofultravioletagingonpropertiesandstructureofpolystyrene[J].CIESCJournalꎬ2014ꎬ65(11):4620-4626.(本文于2020-11-05收到)㊀(上接第15页)propylenefoams[J].Industrial&EngineeringChemistryResearchꎬ2017ꎬ56(46):13734-13742.[13]BERRYM.Appliedplasticsengineeringhandbook:Mi ̄crocellularinjectionmolding[M]Bedford:WilliamAn ̄drewPublishingꎬ2011.[14]TURNGLSꎬKHARBASH.Developmentofahybridsolid ̄microcellularco ̄injectionmoldingprocess[J].In ̄ternationalPolymerProcessingꎬ2004ꎬ19(1):77-86. [15]CHENSCꎬLINYWꎬCHIENRDꎬetal.Variablemoldtemperaturetoimprovesurfacequalityofmicrocellularinjectionmoldedpartsusinginductionheatingtechnology[J].AdvancesinPolymerTechnology:JournalofthePolymerProcessingInstituteꎬ2008ꎬ27(4):224-232.[16]LEEJꎬTURNGLS.Improvingsurfacequalityofmicro ̄cellularinjectionmoldedpartsthroughmoldsurfacetem ̄peraturemanipulationwiththinfilminsulation[J].Poly ̄merEngineering&Scienceꎬ2010ꎬ50(7):1281-1289. [17]CHENSCꎬHSUPSꎬLINYW.Establishmentofgascounterpressuretechnologyanditsapplicationtoimprovethesurfacequalityofmicrocellularinjectionmoldedparts[J].InternationalPolymerProcessingꎬ2011ꎬ26(3):275-282.[18]WANGGLꎬZHAOJCꎬWANGGZꎬetal.Strongandsuperthermallyinsulatingin ̄situnanofibrillarPLA/PETcompositefoamfabricatedbyhigh ̄pressuremicrocel ̄lularinjectionmolding[J].ChemicalEngineeringJournalꎬ2020ꎬ390:124520.(本文于2020-11-09收到)㊀(上接第23页)reductionforAu(III)forcatalyticapplication[J].Pol ̄ymerꎬ2014ꎬ55(20):5211-5217.[16]吴蒙华ꎬ李智ꎬ夏法锋ꎬ等.纳米Ni ̄Al2O3复合层的超声-电沉积制备[J].功能材料ꎬ2004ꎬ35(6):776-778.WUMHꎬLIZꎬXIAFFꎬetal.StudyonthepreparationofnanoNi ̄Al2O3compositelayerbyultrasonic ̄electrodepositingmethod[J].JournalofFunctionalMate ̄rialsꎬ2004ꎬ35(6):776-778.[17]SHANMUGAMSꎬSANETUNTIKULJꎬMOMMATꎬetal.EnhancedoxygenreductionactivitiesofPtsupportedonnitrogen ̄dopedcarbonnanocapsules[J].ElectrochimicaActaꎬ2014ꎬ137:41-48.[18]EREꎬÇELIKKANH.Anefficientwaytoreducegrapheneoxidebywatereliminationusingphosphoricacid[J].RSCAdvancesꎬ2014ꎬ4(55):29173-29179.[19]MITRAMꎬMAHAPATRAMꎬDUTTAAꎬetal.Car ̄bohydrateandcollagen ̄baseddoubly ̄graftedinterpenetratingterpolymerhydrogelviaN ̄HactivatedinsituallocationofmonomerforsuperadsorptionofPb(II)ꎬHg(II)ꎬdyesꎬvitamin ̄Cꎬandp ̄nitrophenol[J].JournalofHazardousMaterialsꎬ2019ꎬ369:746-762. [20]KONGASSERIAꎬSOMPALLINꎬMODAKVꎬetal.Solid ̄stateionrecognitionstrategyusing2Dhexagonalme ̄sophasesilicamonolithicplatform:Asmarttwo ̄in ̄oneap ̄proachforrapidandselectivesensingofCdandHgions[J].MicrochimicaActaꎬ2020ꎬ187(7):1-13. [21]MADHESANTꎬMOHANAJA.Poroussilicaandpolymermonolitharchitecturesassolid ̄stateopticalchemosensorsforHgions[J].AnalticalandBioanalyticalChemistryꎬ2020ꎬ412:7357-7370.(本文于2020-10-19收到)76。
PLA医美微针高速注塑成型技术的研究

PLA医美微针高速注塑成型技术的研究摘要:PLA医美微针注塑成型技术的研究旨在研究PLA材料的性能和PLA医美微针制造的工艺流程,并探究其在医美领域的应用前景。
通过对PLA材料的分析和实验,得出其高生物可降解、低毒性、低过敏性的优点,因此能够在医美微针制造中广泛应用。
同时,通过研究微针注塑成型工艺流程、模具设计及其制造、成型参数等方面,得出了一套完整的PLA医美微针注塑成型技术,并用实例进行了验证。
研究表明,PLA医美微针注塑成型技术具有简单、快速、成本低等优点,并在医美领域具有广阔的应用前景。
关键词:PLA材料;微针注塑成型;工艺流程;医美领域;应用前景PLA医美微针高速注塑成型技术的研究一、前言随着人们生活质量的提高和美容意识的增强,医美行业的发展越来越迅速。
微针注射治疗成为医美行业的重要手段之一,可以有效改善皮肤质量、淡化皱纹、改善皮肤色素等。
随着PLA材料在生物医学领域中的广泛应用,PLA材料制作微针注射器也成为研究热点。
本文旨在探究PLA医美微针注塑成型技术的研究现状和未来发展趋势,对PLA材料的性质和工艺流程进行详细分析和论述,为医美行业的发展提供一定的参考和借鉴价值,也有助于推动PLA材料的应用和开发。
二、PLA材料的分析和实验PLA,全称聚乳酸(Poly Lactic Acid),是一种重要的生物可降解高分子材料,由乳酸单体经过聚合得到。
PLA具有优异的物理性质和生物相容性,在医疗器械、药物缓释、绷带等生物领域得到广泛应用。
为了研究PLA材料在医美微针制造中的应用,对PLA材料进行了性能测试。
测试结果表明,PLA材料具有以下优点:1.高生物可降解性:PLA材料是可生物降解的高分子,可以在生物环境中自行降解,不会污染环境。
2.低毒性:PLA材料不含有害物质,没有毒性和副作用,是无害的生物材料。
3.低过敏性:PLA材料的生物相容性良好,不会引起过敏反应。
三、微针注塑成型工艺流程微针注塑成型是PLA医美微针制造的重要工艺,其步骤主要包括:1.模具设计:模具设计是微针注塑成型的关键,模具的大小、形状和尺寸对微针的制作起着决定性作用。
微注塑成型技术开发

微注塑成型技术开发微注塑成型技术开发微注塑成型技术是一种高精度、高效率的塑料成型技术,广泛应用于电子、医疗、汽车等领域。
随着科技的不断进步,微注塑成型技术的开发也变得日益重要。
微注塑成型技术采用了微型注射模具和微型注射机,可以将塑料材料注射到微型模具中进行成型。
与传统的注塑成型技术相比,微注塑成型技术具有更高的精度和更小的尺寸限制。
它可以生产出更精细、更复杂的塑料零件,满足了现代产品对尺寸精度和外观要求的提高。
微注塑成型技术的开发对于工业生产具有重要意义。
首先,它可以大幅提高生产效率。
微型注射机的高速喷射和高压注射使得每个周期的成型时间大大缩短,从而提高了生产效率。
其次,微注塑成型技术可以减少废品率。
由于微注塑成型技术的精度更高,零件的尺寸和外观更加稳定,从而减少了废品的产生。
此外,微注塑成型技术还可以降低生产成本。
由于微注塑成型技术采用了微型模具和微型注射机,所需的原材料和能源消耗都大大减少,从而降低了生产成本。
微注塑成型技术的开发面临着一些挑战。
首先,微注塑成型技术的研发需要具备高水平的技术和设备。
微型注射机和微型模具的研发需要投入大量的资金和人力。
其次,微注塑成型技术的应用领域有限。
目前,微注塑成型技术主要应用于电子、医疗、汽车等高精度领域,但在其他领域的应用还比较有限。
最后,微注塑成型技术的市场需求有待提升。
虽然微注塑成型技术具有很多优势,但其市场需求仍然相对较小,需要进一步推广和应用,才能实现技术的商业化。
总之,微注塑成型技术的开发对于提高塑料成型的精度和效率具有重要意义。
虽然面临一些挑战,但随着科技的不断进步和市场需求的增长,相信微注塑成型技术将会有更广阔的应用前景。
通过不断的研发和创新,我们可以进一步提高微注塑成型技术的性能,推动其在工业生产中的广泛应用。
注塑成型可视化技术的最新研究进展及前景

注塑成型可视化技术的最新研究进展及前景摘要:本文概述了注塑成型可视化模具设计的影响因素。
并详细论述了注塑成型可视化的发展历程及最新研究进展。
最后对注塑成型可视化技术的发展前景进行了预测。
优化可视化模具,加强与CAE技术的结合,扩展应用范围等成为未来研究者的主要任务。
关键词:注塑成型;可视化;模具设计;研究现状随着市场需求的多样化,对塑料制品表面质量的要求也越来越高。
因此,采用各种方法试图准确找出塑料加工过程中缺陷产生的原因成为当前注塑行业研究的重点之一。
而注塑成型可视化技术能够如实反映具体过程,使注塑过程由“暗箱操作”变为“阳光工程”,对于找出塑件缺陷原因,减少模具设计的盲目性具有重要的作用。
1 注塑成型可视化模具的设计注塑成型可视化技术实质上就是将可实时监测或可全程再现型腔内熔体流动规律的系统加入到常规注射成型设备中,从而实现对注塑成型过程的“可视化”和“可重复化”。
在注塑成型可视化技术的部件中,注塑成型可视化模具占核心地位。
根据可视化工作原理图,设计出一套切实可行的可视化模具是注塑成型可视化的关键。
根据以往的可视化实验模具的设计经验可知,在设计和制造可视化实验装置的过程中,需要综合考虑的因素很多。
其中最主要的因素是可视化窗口的材料和结构的选择。
同时,由于可视化窗口主要是由透明玻璃构成,因此,玻璃的正确选择是注塑成型可视化实验成败的重要因素。
具体来讲,主要表现在以下三个方面:1)玻璃强度问题。
普通注塑机的注射压力通常是150MPa,较大的压力使充模过程中玻璃受力不均匀;同时,由于玻璃的刚性大、抗冲击能力弱,当成型过程中型腔内塑料熔体压力急剧增大时,易导致玻璃破碎。
2)玻璃加工问题。
玻璃的加工难度比金属大得多,设备对于玻璃的加工精度要求很高;同时,如果玻璃的形状复杂,加工难度将大幅度上升。
因此,在设计可视化模具时应尽量避免使用形状复杂的玻璃。
3)影像的采集问题。
为了实现充模成型过程中的可视化,需要进行较复杂的光路设计,通常是在改造普通注塑模具的基础上进行,实现起来比较困难。
微注塑成型技术研究进展

微注塑成型技术研究进展摘要:微注塑成型与传统成型有很大的区别,其对成型材料、成型工艺及成型设备等方面都提出了不同要求。
现有很多成熟的注射成型技术和理论并不适用于微注塑成型,必须在理论和实践上对微注塑成型的特点进行系统和彻底的研究与探讨。
关键词:微注塑成型工艺CAE软件微注塑成型技术始于20世纪80年代末,是一门新兴先进制造技术。
在微注塑成型过程中,由于微制品的尺寸、体积和重量的微小使得与传统注射成型有很大的区别,微制品结构在普通工艺条件下容易出现填充不满的现象。
熔体在微型腔中的流动变得复杂。
因此若能够对微注塑成型过程进行数值模拟,预测熔体在型腔内流动行为,从而科学地选择制品、模具设计以及工艺条件的最佳方案,成为提高微制品成型的重要手段。
一、微注塑概念到目前为止,对于微注塑成型技术还没有准确统一的定义,但多数研究者都是从成型微小尺寸与微小体积塑件开始研究的。
Kukla C等[1]从微型塑件的角度,给出了微注塑成型技术的概念。
即微注塑成型技术应能够成型以下类型的塑件:1.塑件的整体结构尺寸微小2.表面具有微细结构的塑件3.微型精密塑件二、研究进展微注塑成型技术同传统注塑成型技术相比在工艺条件的设置上有很大差别,如果仍采用普通注塑成型过程时的模具温度和注射压力,通常会导致微小模具结构的型腔充填不足。
然而目前关于微注塑成型工艺条件的具体研究尚未获得一致的结果。
在Piotter V.[2]等的研究中,使用由LIGA工艺成型的微结构模具型腔进行注塑成型试验,指出必须通过提高模具温度才能保证微型塑件的成型质量。
对于无定形塑料(如PMMA,PC,PSU等),模具温度要高于其玻璃态转变温度;对于半结晶形塑料(如POM,PA等),模具温度通常要达到其结晶温度。
而且在多数情况下,塑料熔体在注射机喷嘴处的温度经常要达到材料允许的成型温度的上限。
同时他们还认为在微结构模具注射成型中,只有预先将模腔内的气体排净,才能实现微结构塑件的完全充填。
注塑模具成型工艺国内外研究现状及发展趋势

注塑模具成型工艺国内外研究现状及发展趋势一、介绍注塑模具是一种用于塑料制品生产的关键工具,具有至关重要的作用。
注塑模具成型工艺则是指利用注塑机将熔融状态的塑料料料塑料注入到模具中,在一定的温度和压力下使其固化、冷却并获得所需形状的过程。
随着塑料制品行业的快速发展,注塑模具成型工艺也得到了广泛的运用。
为了更好地了解和掌握注塑模具成型工艺的国内外研究现状及发展趋势,本文将进行深入的探讨。
二、国内注塑模具成型工艺的研究现状目前,国内在注塑模具成型工艺的研究方面取得了一定的成果。
以下是对一些主要研究方向的总结和回顾。
1. 材料选择和优化材料选择和优化是注塑模具成型工艺中的重要环节之一。
国内的研究者通过对不同材料的性能和工艺要求进行分析,选取了适合注塑模具成型的材料,并进行了相关优化研究。
一些研究者通过改善材料的热导率和耐腐蚀性能,提高了注塑模具的成型效率和寿命。
2. 设计和制造技术在注塑模具成型工艺的研究中,设计和制造技术起着关键的作用。
国内的研究者通过引进先进的设计和制造技术,提高了注塑模具的精度和可靠性。
采用CAD/CAM技术和快速成型技术,可以加快模具的设计和制造过程,减少错误率和成本,并提高生产效率。
3. 成型工艺参数优化成型工艺参数优化是国内注塑模具成型工艺研究的热点之一。
研究者通过对成型工艺参数(如温度、压力、速度等)的优化调整,实现了产品质量和生产效益的提高。
通过调节注射速度和压力,研究者成功地解决了注塑过程中的热应力和缩水问题,提高了产品的成型精度和表面质量。
4. 模具运行监测和控制模具运行监测和控制是提高注塑模具成型工艺稳定性和生产效率的重要手段。
国内的研究者通过引入传感器和监测技术,实现了对注塑模具运行状态的实时监测和控制。
利用温度传感器和压力传感器,可以监测和控制注塑过程中的温度和压力变化,防止模具因过热或过压而损坏,提高注塑模具的使用寿命。
三、国际注塑模具成型工艺的研究进展国际上,注塑模具成型工艺的研究也取得了一系列进展。
塑料加工成型技术研究进展

塑料加工成型技术研究进展【摘要】本文旨在探讨塑料加工成型技术研究的进展,通过数字化设计与仿真技术在塑料成型中的应用、先进材料在塑料加工中的应用、一体化制造技术的发展、绿色制造技术的推广以及新型成型工艺对塑料加工技术的影响等方面进行分析。
对塑料加工成型技术研究的未来发展方向、重要意义以及面临的挑战与机遇进行探讨。
本文旨在全面总结当前塑料加工成型技术的最新进展,为该领域的研究和应用提供参考借鉴。
【关键词】塑料加工成型技术研究进展,数字化设计与仿真技术,先进材料,一体化制造技术,绿色制造技术,新型成型工艺,未来发展方向,重要意义,挑战与机遇。
1. 引言1.1 塑料加工成型技术研究进展近年来,随着数字化设计与仿真技术的不断成熟和广泛应用,塑料成型工艺的设计和优化变得更加高效和精准。
先进材料的应用也为塑料加工技术带来了全新的发展机遇,提升了塑料制品的性能和功能。
一体化制造技术的发展,让塑料加工过程更加智能化和自动化,提高了生产效率和产品质量。
随着绿色制造理念的普及和推广,绿色制造技术在塑料加工领域的应用也越来越受到重视。
新型成型工艺的出现对塑料加工技术产生了深远影响,为塑料制品的设计和生产提供了更多可能性。
塑料加工成型技术的研究进展为塑料产业的发展注入了新的活力和动力,同时也带来了更多的挑战和机遇。
未来,塑料加工成型技术仍将持续深化和完善,为塑料产业的可持续发展开辟新的道路。
2. 正文2.1 数字化设计与仿真技术在塑料成型中的应用数字化设计和仿真技术在塑料加工成型中扮演着至关重要的角色,它们的应用不仅可以提高生产效率,降低成本,更可以改善产品质量,加快产品研发周期,提升市场竞争力。
数字化设计技术通过CAD软件等工具,实现了产品设计的数字化,不仅可以快速进行二维和三维设计,还可以进行虚拟仿真,预测产品在加工过程中的表现,减少设计中的错误和不确定性,提高设计的准确性和可靠性。
仿真技术则可以通过模拟各种加工工艺对产品的影响,包括注塑、吹塑、挤出等过程的模拟,可以优化模具设计,预测产品在成型过程中可能出现的缺陷,如气泡、翘曲等,以及优化成型工艺参数,提高产品的成型质量和生产效率。
微型注塑机未来发展与技术革新

微型注塑机未来发展与技术革新发布时间:2010-1-20 17:26:56 来源:互联网文字【大中小】随着科学技术的进步,产品不断向微型化方向发展,因而产生了新世纪产业需求的微机电系统技术。
2002年全世界在这一领域创造出450亿美元的产值,其主要产品在光电通讯、影像传输、生化医疗、信息存储、精密机械等应用领域扮演着重要角色。
为了能够生产具有实用价值的微细组件,许多新兴制造技术随之产生,包括光刻,电铸及脱模技术(LIGA)、紫外光蚀刻技术(UV)、放电加工(EDM)、微注射成型、精密磨削和精密切削等。
其中,微注射成型技术以容易实现低成本大规模生产具有精密微细结构零件的优点成为世界制造技术的研究热点之一。
成品质量以毫克为计算单位,成品几何尺寸以微米为度量单位的微注射成型技术,始于20世纪80年代末,是一门新兴先进制造技术,同传统的、常规的注射成型技术相比,其对成型材料、成型工艺及成型设备等方面都提出了不同要求。
许多现有的、成熟的注射成型技术和理论并不适用于微注射成型技术,必须在理论和实践上对微注射成型工艺的技术特点进行系统和彻底的研究与探讨。
1 微注射成型机的特殊要求微注射成型技术发展之初,并未有专用注射成型机用于微型零件制造。
生产实际中,通常采用传统的中、大型注射成型机配合多模腔模具设计实现零件制备,这不仅对模具的流道平衡设计要求很高,而且零件的成型品质也难以控制。
因此,需要专用的注射成型机适应零件微型化和高精度的要求,与传统注射成型技术相比,微注射成型技术对生产设备有许多特殊要求,主要表现为以下几个方面:(1)高注射速率:微注射成型零件质量、体积微小,注射过程要求在短时间内完成,以防止熔料凝固而导致零件欠注,因此成型时要求注射速度高。
传统的液压驱动式注射成型机的注射速度为200mm/s,电气伺服马达驱动式注射成型机的注射速度为600mm/s,而微注射成型工艺通常要求聚合物熔体的注射速度达到 800mm/s以上,利用聚合物熔体的剪切变稀原理,以高注射速度降低熔体的黏度,使其顺利充填微尺度型腔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微注塑成型技术研究进展
摘要:微注塑成型与传统成型有很大的区别,其对成型材料、成型工艺及成型设备等方面都提出了不同要求。
现有很多成熟的注射成型技术和理论并不适用于微注塑成型,必须在理论和实践上对微注塑成型的特点进行系统和彻底的研究与探讨。
关键词:微注塑成型工艺CAE软件
微注塑成型技术始于20世纪80年代末,是一门新兴先进制造技术。
在微注塑成型过程中,由于微制品的尺寸、体积和重量的微小使得与传统注射成型有很大的区别,微制品结构在普通工艺条件下容易出现填充不满的现象。
熔体在微型腔中的流动变得复杂。
因此若能够对微注塑成型过程进行数值模拟,预测熔体在型腔内流动行为,从而科学地选择制品、模具设计以及工艺条件的最佳方案,成为提高微制品成型的重要手段。
一、微注塑概念
到目前为止,对于微注塑成型技术还没有准确统一的定义,但多数研究者都是从成型微小尺寸与微小体积塑件开始研究的。
Kukla C等[1]从微型塑件的角度,给出了微注塑成型技术的概念。
即微注塑成型技术应能够成型以下类型的塑件:
1.塑件的整体结构尺寸微小
2.表面具有微细结构的塑件
3.微型精密塑件
二、研究进展
微注塑成型技术同传统注塑成型技术相比在工艺条件的设置上有很大差别,如果仍采用普通注塑成型过程时的模具温度和注射压力,通常会导致微小模具结构的型腔充填不足。
然而目前关于微注塑成型工艺条件的具体研究尚未获得一致的结果。
在Piotter V.[2]等的研究中,使用由LIGA工艺成型的微结构模具型腔进行注塑成型试验,指出必须通过提高模具温度才能保证微型塑件的成型质量。
对于无定形塑料(如PMMA,PC,PSU等),模具温度要高于其玻璃态转变温度;对于半结晶形塑料(如POM,PA等),模具温度通常要达到其结晶温度。
而且在多数情况下,塑料熔体在注射机喷嘴处的温度经常要达到材料允许的成型温度的上限。
同时他们还认为在微结构模具注射成型中,只有预先将模腔内的气体排净,才能实现微结构塑件的完全充填。
Kukla C.等也指出,微注射成型过程模具的温度和普通注塑加工相比必须提高,他们通过采用一种被称为“变温工艺”的技术,来控制模具温度。
同时提出,模具间隙在5μm量级时不需要预先排气,只有当模具间隙小于此值或有盲孔等结构时才需要主动排气。
Eberle H.与合作者Zumtobel的研究[3]是将上述变温工艺进行了改进,即只对微型模具的型腔部分实施温度控制,使成型周期进一步缩短,从改进前的最短周期90s降低到15s,大大提高了微型注塑成型的生产效率。
Yu L.Y.等[4]对用不同方法加工的模具镶件,包括CNC加工的钢材料、环氧树脂、光刻和电铸的镍模具零件进行了测试,其特征尺寸从5微米到几百微米不等。
使用PMMA和光学质量级的PC材料,对模具镶件在不同的条件下进行了
试验,结果发现注射速度和模具温度严重影响微结构的复制精度。
Shen Y.K.等针对厚度为20μm,半径为150μm的圆柱齿轮在不同的注射时间、模具温度、注射温度和注射压力条件下进行了数值模拟试验,给出的结论同样是模具温度要高于塑料的玻璃化转变温度才能达到完全充满。
Zhao J.等在Microsystem50型微注塑机上进行了一系列微型齿轮的成型试验和数值模拟,所用材料为POM,采用Taguchi试验分析方法,得出的结论是计量精度和保压时间是影响微型塑件成型质量的决定性因素,同时模具温度也要高于普通注塑成型时的模具温度。
J.Pfather等人通过实验发现在截面尺寸相对较大的微流道中,流体的运动规律与Navier-strokes方程相吻合,而当微流道尺寸降至0.8 时,试验结果偏离方程的计算结果。
Dong等利用自制的实验装置研究了表面张力,惯性力在微尺度流动中起主导作用的条件,结果表明当入口压力较大时,惯性力作用强,而表面张力则作用较弱.当流道截面尺寸为0.02×0.1mm时,表面张力对微流体流动起到阻碍作用,导致流体无法完成在微流道中的完全流动。
Yao D.G.等对聚合物熔体在微通道中的流动问题进行了理论分析和模拟,模拟是基于宏观的2.5维方法。
该研究最终显示,只有当模具微观尺度降至几个微米或更小时,熔体的微观充模流动行为才会显著地区别于宏观的充模流动。
YULY.Lee LY.Koelling Kw指出由于速率和压力场在宏观和微观区域显著不同,热传导系数和壁面滑移在微观模拟应该加以考虑,实体流模型更接近实验观察,中面流和实体流模拟的区别在于在宏观结构和微观结构的结合处,三种速度分量共同存在,因此中面流不能很好处理厚度显著不同的结合处的模拟。
三、结论
综合上述研究发现,尽管各研究者所用研究方法与试验条件不同,得出的结论也不尽一致,但有一点结论是共同的,即在微注塑成型中,模具温度在注射充模阶段应比普通注塑成型时的温度要高。
注射充模完成后,为了缩短加工周期需将模具快速冷却。
但对不同的材料或塑件,模具应达到的具体温度水平还没有形成统一的认识。
参考文献
[1][美]乔治.埃姆.卡尼亚达克斯,[美]埃里.柏斯考克,微流动——基础与模拟[M],化学工业出版社,2006.
[2]宋满仓,张巧丽,王敏杰,赵丹阳,微成型领域的关键技术,中国塑料,2003,17(9):6-10.
[3]Yu L.Y.,Koh C.G.,Lee L.J.et al. Experimental investigation and numerical simulation of injection molding with micro-features. Polymer Engineering and Science,2002,42 (5):871-888.
[4] Zhao J.,Mayes R.H.,Chen G.. et al. Effects of process parameters on the micro molding process. Polymer Engineering and Science,2003,43 (9):1542-1554.
李金展,安阳工学院,本科,商丘工学院机械工程学院教师。