热红外隐身

热红外隐身
热红外隐身

热红外隐身

王先锋 

摘要热红外探测器的高度发展,使人们越来越关注热红外隐身材料的研究。本文简要介绍了热红外隐身的基本原理,并从原理出发综述了实现热红外隐身的两种主要途径,最后简要分析了多波段隐身的兼容性问题。

关键词热红外隐身降温材料涂层多波段隐身

前言

隐身战斗机F-117A在两次海湾战争中出尽风头,它的英文名字是stealthy aircraft,又可译成隐形飞机。据报道,在第一次海湾战争中,参战的44架F-117A隐身战斗机先后执行了1600架次空袭任务,本身无一机损失,这一辉煌的战绩完全归功于隐身技术和隐身材料的使用。

许多军事目标(包括人),特别是运动目标,如坦克、军舰和导弹装载车等,都拥有大功率的动力源,运动时会产生强烈的热红外辐射。某些高速运动目标,如飞机、导弹等,在飞行过程中,它们的外壳与大气摩擦产生的热也是热红外辐射源。红外探测器就是利用目标自身产生的红外辐射来完成识别、跟踪、制导和攻击任务的。热红外隐身伪装技术是采用各种工程技术措施消除或降低目标的真实热红外辐射特征,或者改变目标的热红外辐射使其与背景的热红外辐射相适应的技术,以使红外探测设备不能或不易发现目标,或者缩短侦视距离来提高军事目标的战场生存能力[1]。

1热红外隐身的基本原理

一般来说,任何温度高于环境温度的物体都会成为红外辐射源,可由特殊仪器接受并检测出来。由于空气中存在二氧化碳、氧气、水等极性分子,处于极远红外区域的红外线被空气吸收,只有波长处于“大气窗口”,即0.76~1.5μm、3~5μm、8~14μm 区域的红外线才能在大气中无阻碍地传播[1]。其中3~5μm和8~14μm这部分红外线辐射来自目标和背景本身温度所引起的热辐射,故又称为热红外线辐射[2]。

从红外物理学可知,物体红外辐射能量由斯蒂芬-玻耳兹曼定律[3]决定:W=?σT4,式中,W是指物体的辐射发射量;?指物体的发射率;σ指斯蒂芬-玻尔兹曼常数;T是物体的绝对温度。由上式可见,物体辐射红外能量不仅取决于物体的温度,还决定于物体的发射率。这两个因素对辐射度效果的影响是不同的。在较高温度情况下,温度将是影响目标辐射度的主要因素;在较低温(与环境温度接近)情况下,发射率将是影响目标辐射度的主要因素。同时,由于背景的复杂性,单一降低目标的发射率并不能提供有效的热红外隐身,而只有使目标各个部位的发射率不同,让目标热像图形分割,消除目标热像的典型轮廓,才能降低热像仪的识别能力,取得良好的热红外隐身效果[1]。

2热红外隐身的实现途径

装备的红外隐身都涉及红外隐身材料问题。红外隐身材料具有隔断装备的红外辐射能力,同时在大气窗口波段内,具有低的红外发射率和红外镜面反射率。按照作用原理,红外隐身材料可分为控制发射率和控制温度两类[4]。

2.1 控制温度的红外隐身材料

由于目标的辐射强度与温度的四次方成正比,因此降温材料是降低目标热辐射的很有效的材料。控制温度的红外隐身材料包括隔热材料、吸热材料和高比辐射率聚合物。隔热材料用来阻隔装备发出的热量使之难以外传,从而降低装备的红外辐射强度,有微孔结构材料和多层结构材料两类。隔热材料可由泡沫塑料、粉末、镀金属塑料薄膜等组成。薄膜塑料能储存人体发出的热量,镀金属塑料薄膜能有效地反射人体发出的红外辐射。隔热材料的表面还可涂各种涂料以达到其他波段的隐身效果。利用某些无机

材料和金属在中、远红外的某些波长范围内有强的吸收能力,通过将两种以上具有不同波长吸收范围的化合物或单质利用分子间相互作用力进行异种分子的杂化,生产具有中、远红外隐身能力的杂化材料[5]。

吸热材料利用高焰值、高熔融热、高相变热储热材料的可逆过程,把热辐射源的温度一时间曲线拉平,有利于减少升温引起的红外辐射增强。而高比辐射率聚合物涂层用在武器系统中较多[3]。

2.2 控制发射率的热红外隐身材料

已有的低发射率材料主要有涂敷型和薄膜型两类,但因为薄膜型材料成本较昂贵,制作复杂,难以得到实际应用,因此目前国内外研究的重点主要在低发射率涂料方面,它由颜料、粘合剂和附加成分组成[6]。实现热红外隐身涂料的方法是采用低发射率粘合剂,添加各种颜料或填料制成涂料,在涂料底层掺入高反射微粒也能起到一定的发射率调节作用[1]。

2.2.1 颜料[2]

颜料是影响涂料隐身性能的基本因素之一,其选用应符合以下要求:

(1)在红外波段有较低的发射率或较高的透射率,其红外吸收峰不能在大气窗口内;

(2)在近红外波段具有较低的吸收率;

(3)能与雷达、可见光和近红外等波段的隐身要求兼容。

目前用于红外隐身涂料配方中的颜料主要有3种:金属颜料、着色颜料和半导体颜料。

有较高反射率的金属是热隐身涂料最常用和最重要的颜料种类。可用的有Al、Zn、Sn、Au、青铜等,实际选用集中于性能优良、价廉易得的Al。Tschulena研究了金属颜料粒子尺寸对?的影响后认为,粒子的直径应在0.1~100μm范围内。形状不同,粒子的尺寸范围也不同,鳞片状粒子的直径1~100μm,最佳厚度0.1~10μm;小棒状粒子的直径0.1~10μm,最佳长度1~100μm;球状粒子的平均直径在0.1~100μm[7]。对于前两者,直径/厚度(或长度)比越大,降低ε的效果越明显[1]。

热隐身涂料选用着色颜料(通常是非金属颜料)是为了满足可见光伪装的要求。选用着色颜料一般仅要求其不损害涂料的热隐身性能即可。着色填料有:金属氧化物和氢氧化物、硫化物、硒化物、无机盐和有机颜料等。着色颜料粒子大小对隐身性能影响很大,一般认为,其粒子尺寸应小于热红外波长,大于近红外波长,一般在0.5~3.0μm,这样颜料既具有良好的红外透明性,又具有一定的可见光和近红外反射。

金属颜料虽然有良好的红外反射性能,但不利于雷达隐身和可见光隐身伪装,而着色颜料一般难以调低涂料的ε值。这样便出现了半导体颜料。半导体颜料是一种新型的掺杂颜料。从理论上说,通过适当选择载流子密度N、载流子迁移率μ和载流子碰撞频率ωt等参数,可以使掺杂半导体在红外波段有较低的发射率,而在微波和毫米波段具有较高的吸收率,从而形成红外--雷达一体化材料。SnO2和In2O3是半导体材料中两个有代表性的品种。它们主要有以下特点:较低的红外发射率,符合红外隐身的要求;颜色偏淡,有良好的多频段隐身兼容基础;可通过掺杂控制红外反射率,改变发射率;有多种制备方法。由于以上特点,半导体材料具有非常大的应用潜力,前景广阔。

2.2.2 粘合剂

为了不使自身成为辐射源,选用的粘合剂必须有较低的红外吸收率。因此,适宜的粘合剂应是对红外辐射高透明或高反射的材料。

低发射率红外涂料粘合剂应具备两个必要条件:一是要有红外波段高透明或低吸收性能;二是要有良好的物理机械性能[8]。可供热隐身涂料选用的聚合物范围较广,如烯烃类:聚乙烯、聚乙烯与乙烯乙酸酯的共聚物、聚乙烯与乙烯醇缩醛的共聚物、聚乙烯与聚四氟乙烯的共聚物、聚乙烯与聚苯乙烯的共聚物;橡胶类:环状橡胶、丁基橡胶、硅橡胶;其他有醇酸树脂、硅醇酸树脂、聚氨酯。与有机粘合剂相比,无机粘合剂红外性能比较简单,红外吸收率也较低,但物理机械性能和施工性能较差[1]。

3多波段隐身的兼容性[9-10]

可见光隐身技术要求目标在0.38~0.76μm波段能够与背景融合,具有与背景相似的反射特性;红外隐身技术主要包括大气的3个红外窗口的隐身,对于1~2.7μm近红外波段要求其反射特性与背景一致,对于3~5μm和8~14μm中远红外波段,则要求其辐射性能与背景一致;雷达隐身技术包含的波段最宽,目前最主要的隐身内容是厘米波与毫米波的隐身,主要是降低目标的反射率,其中毫米波隐身还涉及被动毫米波隐身问题,要求目标的毫米波辐射性能要与背景一致;激光隐身技术主要是针对1.06μm和10.6μm等激光工作波长,要求其具有很低的反射率,美军认为,激光隐身应使0.3~10.6μm波段的反射率小于5%。

10.6μm激光是继1.06μm激光后第二应用广泛的激光波长,它与8~14μm热红外隐身也是矛盾的,报道最多的关于解决该矛盾的方法是光谱挖孔,其次是利用动态热辐射理论解决这个问题。

按经典热辐射理论,在平衡状态下无法找到在同一波段内发射率和反射率都很低的材料,但是大多数隐身目标系统并不能称为平衡辐射状态的系统,如行进中的坦克,其发动机所耗能量的很大一部分将转化为热能,这部分热能除通过强制的对流和热传导排出外,有一部分依赖于表面散热。为了保证坦克系统的正常工作,一定的表面散热能力将成为不导致升温的关键,这样,坦克将处于动态平衡状态。因此,研究动态热辐射理论,建立起非平衡状态下的隐身机理将有助于同一波段内红外与激光复合隐身的研究。

所谓光谱挖孔理论,是指某些晶体材料由于强弱振子介电耦合原因能够在某一波长如10.6μm处具有强吸收性能,从光谱曲线上看,就像在某一波长处挖了一个孔,利用这类材料实现10.6μm激光和8~14μm 波段热红外隐身,这在理论上是可行的,但在工艺实施上存在着许多困难。

再一种方法就是利用激光隐身要求的是平均低反射率以及红外隐身要求的是低、中、高发射率组成红外迷彩的问题,将高发射率的激光隐身涂料作为红外隐身涂料的组成部分,通过综合设计实现二者的隐身兼容。

结语

随着热红外探测技术的发展,探测的精度和距离越来越大,国内外都在积极开展热红外隐身技术的研究。在传统的降温和降低发射率的理论上研究新的降温隔热材料(如:相变材料)以及新型控温涂层将是以后研究的主要方向,在热红外隐身的基础上,实现多波段隐身也必将成为以后隐身技术研究的热点。

参考文献

[1]. 穆武第, 程海峰, 唐耿平等. 热红外隐身伪装技术和材料的现状与发展[J]. 材料导报. 2007, (01): 114-117.

[2]. 杜永, 邢宏龙, 陈水林. 热红外隐身涂料的研究进展[J]. 涂料工业. 2007, (03): 51-55.

[3]. 张辉, 张建春. 热红外隐身技术与人体伪装[J]. 上海纺织科技. 2003, (02): 48-50+45.

[4]. 付伟. 红外隐身原理及其应用技术[J]. 红外与激光工程. 2002, (01): 88-93.

[5]. 王顺奎. 热红外隐身涂料的研究与应用简况[J]. 红外与激光技术. 1993, (01): 1-5+22.

[6]. 游毓聪, 杜仕国, 施冬梅等. 热红外隐身材料的发展状况[J]. 河北化工. 2006, (03): 6-8+24.

[7]. 李新华, 孟晓雄, 陈雷等. 热红外隐身涂料研究进展[J]. 涂料工业. 1989, (06): 43-46+44.

[8]. 杜永, 李梅, 邢宏龙. 热红外隐身涂料粘合剂的制备[J]. 山西化工. 2006, (06): 1-3+7.

[9]. 王自荣, 孙晓泉, 余大斌. 多波段隐身兼容中的几个矛盾问题的分析[J]. 现代防御技术. 2004, (06): 65-68.

[10]. 田乃林. 红外隐身方法与材料的发展[J]. 化工进展. 2002, (04): 283-286.

热红外隐身技术

人体热红外隐身技术 摘要:通过人体红外辐射特征的理论分析,结合热像仪探测原理及热红外隐身机理,探讨 了实现人体热红外隐身的技术途径。研究表明,人体红外隐身应主要控制8~14 μm 波段 的红外辐射能量,降低服用柔性材料红外发射率及应用温控纤维/织物柔性材料,是实现人 体热红外隐身的重要技术途径。本文通过阅读大量文献,从理论分析与实践的角度分析了热 红外隐身的原理及实现的途径,以及现价段的研究状况。最后描述了今后热红外隐身的发展 方向。 关键词:人体;热红外;隐身技术;相变材料; 伪装网; 涂层; 1 引言 热红外隐身技术是指对目标 3~5 μm 及8~14 μm 红外波段特征信号进行伪装、减缩和控制,以降低中远红外侦察装备对目标的探测和识别能力[1~3]。提高单兵行动的隐蔽性 和突防性,是现代高技术战争呈现的一大特点,随着先进的侦察探测技术如热像仪的出现, 单兵的生存力和战斗力受到严重威胁,热成像技术在军事领域的快速渗透,使各种军事目标 的生存也受到严重威胁,为此,以降低和消弱敌方热红外探测设备效能为目的的热红外伪装 技术受到各国军方的广泛关注。热红外隐身服的研究方向目前主要有(1)冷却目标;(2) 改变目标的辐射性能;(3)采取条状覆盖层“混杂”辐射法;(4)应用防红外涂层。国外开 展对人体热红外隐身的研究起始于上世纪 90 年代初,美国1994 年开始实施“单兵热成像 防护”的专门计划,发展能迷惑热探测器的隐身作战服,目前其研究水平处于领先地位。目 前国外可见光/近红外迷彩服用材料研究及应用技术较为成熟,因此热红外隐身服已发展成 为单兵隐身的研究重点。美、英、法、德、俄等国,在其各自的21 世纪单兵综合作战系统 计划中,均将单兵热红外隐身技术列为研究重点,并已陆续试装具有防热红外侦察仪器探测 性能的隐身服用材料,国内在该方面的研究则刚刚起步。 本文在查阅大量文献的基础上, 通过人体热红外隐身原理及热像仪探测机理的分析,结合部 分探索性试验,探讨适宜的人体热红外隐身技术途径。并针对目前热红外伪装技术的不足以 及今后的发展方向,介绍三种新机理型热红外伪装体系。 2 人体红外辐射特征分析 人体自身是一个红外辐射源。皮肤的红外发射率很高,接近黑体,并且与种族、肤色和个性无关,如表1所示。人体裸露皮肤温度通常为32℃~33℃。若将人体看作黑体,并假设 其红外辐射面积0.6m2,可通过斯蒂芬-玻尔兹曼定律、维恩定律等红外辐射理论计算出有关 人体红外辐射特征数据,如表2 所示。 表1 人体的红外辐射特征 波段范围/μm <5 5~9 9~16 >16 在总辐射能量中的分量/% 1 20 38 41 表2 人体红外外辐射特征值 人体总辐出度 490.66W?m-2 光谱辐出度峰值 33.96W?m-2?μm-1 平均辐射强度 93.76W?sr-1 峰值波长 9.5 μm 3~5 μm 波段的辐出度 6.87W?m-2,占总能量的1.4% 8~14 μm 波段的辐出度 184.49W?m-2,占总能量的37.6% 表观温差是热像仪探测和识别目标的主要依据[9]。夏季环境下,某些目标与背景的温差值 如表3 所示。 表3 典型目标夏季野外平均温差值

医用红外热像仪

医用红外热像仪 红外热像仪发展综述与M301医用红外热像仪的优势 红外热像技术被应用到医学领域已有40多年历史,自从1956年英国医生Lawson 用红外热像技术诊断乳腺癌以来,医用红外热像技术逐步受到人们的关注。红外热像技术在我国起步较晚,1976年上海率先试制成功第一台样机,但由于成像质量差及热像规律复杂,进展较慢。近5年来,随着光电技术、计算机多媒体技术,尤其是半导体技术的发展,使热像仪的分辨能力、清晰度达到了临床需求的水平,成为国际上新的研究热点。 一、红外探测技术的进展及红外热像仪的分类 红外探测器是热成像技术的核心,探测器的技术水平决定了热成像的技术水平。探测器从早期的单元发展到多元,从多元发展到焦平面经历了一个缓慢的过程。通过光学机械扫描,用单元红外探测器就能获得目标的热图象,用多元红外探测器可以提高系统的性能。在红外技术、材料技术和微电子技术等的推动下,红外探测器迅速向焦平面组件(FPA)方向发展。FPA有两大特征:一是探测元数量很大,达到10³-10 个探测元,以至于可以直接放在望远镜的焦面上面而无须光机扫描结构;二是探测器信号的读出、处理工作由与探测器芯片互连在一起的集成电路完成。红外热像仪按其采用的探测技术和致冷方式有以下三种类型: 1、单元光机扫描型采用单元红外探测技术和液氮致冷,结构简单,属早期产 品,目前国内使用的大多数医用红外热像仪都是该种类型。 2、电致冷型热像仪采用焦平面红外探测技术和司特令内循环致冷成像,但噪声大、易磨损、寿命短、致冷器更换成本高,一般应用于军事方面。 3、非致冷焦平面阵列型采用目前世界先进的非致冷焦平面阵列技术,可批量 生产,成本和组件的复杂性大大降低,可靠性提高,扫描速度快,无噪声,可长期连续工作,体积小,重量轻,携带方便,是理想的发展目标。 二、 M301型医用红外热像仪的优势(相对于液氮致冷型或单元光机扫描型) 1、技术的先进性 A、探测器红外探测器是热成像技术的核心,探测器的技术水平决定了热成像 的技术水平。M301型采用的是目前国际上最先进的非致冷焦平面阵列红外探测器技术,该技术只有美国、以色列、法国掌握,因此红外探测器芯片必须从国外进口,而该技术主要应用于军事方面,属出口管制范畴,获取芯片有一定难度,重庆伟联科技有限公司是通过法国国防部许可将之应用于民用市场的进口单位。而液氮致冷型产品采用的是单元光机扫描方式,需灌液氮,技术含量相对较低,因此这两种产品在本质上有很大差别,液氮致冷型属早期的初级技术产品,M301型属先进的高精尖端产品。 B、芯片像素 M301型产品的像素为320×240,相当于76800个像素;而液氮 致冷型产品的像素为256×256,相当于65536个像素,因此, M301型产品的成像清晰度更高。 C、成像速度 M301型产品的成像速度快,为每秒50幅,基本上是实时成像; 而液氮致冷型产品成像速度慢,需逐行扫描,每5秒钟才形成一幅图象,两者相差250倍,因此M301型产品的诊断效率更高。如果红外热像仪的响应时间不够会降低测量精度,从而会影响到从热图上获得的信息量,并最终影响诊断的结果。 D、空间分辨率 M301型产品的空间分辨率为0.9-1毫弧度;而液氮致冷型的空

红外隐身原理及其应用技术

课程(论文)题目:红外隐身原理及其应用技术 内容: 1 背景 光电隐身技术可分为可见光隐身、红外隐身和激光隐身三大类。光电隐身起源于可见光隐身,成熟于红外隐身,发展于激光隐身。而现代红外隐身技术经历了探索时期(2 0世纪60年代以前)、技术全面发展时期(20世纪60~70 年代)和应用时期(20世纪80年代至今)。红外隐身技术于20世纪70年代末基本完成了基础研究和先期开发工作,并取得了突破性进展,已由基础理论研究阶段进入实用阶段。从20世纪80年代开始,国外陆海空三军研制的新式武器已经广泛采用了红外隐身技术。 红外隐身技术通过降低或改变目标的红外辐射特征,实现对目标的低可探测性。这可通过改进结构设计和应用红外物理原理来衰减、吸收目标的红外辐射能量,使红外探测设备难以探测到目标。 2 红外隐身原理 概述 从红外物理学可知, 物体红外辐射能量由斯蒂芬-玻耳兹曼定律决定: 式中W——物体的总辐射出射度; σ——玻耳兹曼常数; ε——物体的发射率; T——物体的绝对温度。 温度相同的物体,由于发射率的不同,在红外探测器上会显示出不同的红外图像。鉴于一般军事目标的辐射都强于背景,所以采用低发射率的涂料可显著降低目标的红外辐射能量。另一方面,为降低目标表面的温度,红外伪装涂料在可见光和近红外还具有较低的太阳能吸收率和一定的隔热能力,以使目标表面的温度尽可能接近背景的温度,从而降低目标和背景的辐射对比度,减小目标的被探测概率。 红外侦察系统能探测目标的最大距离R为: 式中J——目标的辐射强度; ——大气透过率; N A——光学系统的数值孔径; ——探测器的探测率; ω——瞬时视场; ——系统带宽; ——信号电平; ——噪声电平。 红外隐身的主要目的是减少公式中第一项的各项取值,也就是说,目标的红外隐身应包括三方面内容,一是改变目标的红外辐射特性,即改变目标表面的发射率;二是降低目标的红外辐射强度,即通常所说的热抑制技术;三是调节红外辐射的传播途径(包括光谱转换技术)。 改变目标红外辐射特性采用的技术 (1) 改变红外辐射波段改变红外辐射波段,一是使目标的红外辐射波段处于红外探测器的响

最新隐形材料的原理及其应用

隐形材料 定义: 旨在降低武器装备的雷达、红外、可见光或声波等可探测信号特征、使之难以被探测、识别、跟踪或攻击的一种特殊用途材料。 所属学科: 航空科技(一级学科);航空材料(二级学科) 简介:隐身材料是隐身技术的重要组成部分,在装备外形不能改变的前提下,隐身材料(stealth material)是实现隐身技术的物质基础。武器系统采用隐身材料可以降低被探测率,提高自身的生存率,增加攻击性,获得最直接的军事效益。因此隐身材料的发展及其在飞机、主战坦克、舰船、箭弹上应用,将成为国防高技术的重要组成部分。对于地面武器装备,主要防止空中雷达或红外设备探测、雷达制导武器和激光制导炸弹的攻击;对于作战飞机,主要防止空中预警机雷达、机载火控雷达和红外设备的探测,主动和半主动雷达、空对空导弹和红外格斗导弹的攻击。 浅谈隐形材料 隐身材料按频谱可分为声、雷达、红外、可见光、激光隐身材料。按材料用途可分为隐身涂层材料和隐身结构材料。这里便着重介绍几类重要的隐身材料。 雷达隐身涂料技术:为了减少雷达截面,常用的隐身技术途径有三类:即外形设计技术、吸收材料技术和加载对消技术。 下面主要介绍相关的雷达隐身涂料技术: 涂敷型吸波涂料:实质上是一种高分子复合涂料。它是以高分子溶液或乳液为基料,及波刘和其它附加成分分散加入其中而制成。如美国研制的系列铁氧体吸波涂料,主要成分是俚镉、镍镉和锂锌铁氧体,它在厘米波段到分米波段,可使雷达波反射衰减达20DB。因此,研制开发“轻、薄、宽”的吸波涂料是今后主要发展方向。(例如B-2战略隐形轰炸机上就是用了一种基于环氧树脂的“先进高频材料”隐身涂料)目前国外

红外热成像技术在医疗领域中的应用

热成像技术在医疗领域中的应用 一、医用热像图的理论基础 热成像技术(Thermography)又称温差摄影,是利用红外辐射照相原理研究体表温度分布状态的一种现代物理学检测技术。与精密的解剖学相比,热成像系统在反映人体生理的改变以及新陈代谢的进程方面有着独一无二的特性。 人是恒温动物,能维持一定的体温。用物理学的观点来看,人体就是一个自然的生物红外辐射源。它不断地向周围空间发散红外辐射能。当人体患病或某些生理状况发生变化时,这种全身或局部的热平衡受到破坏或影响,于是在临床上表现为组织温度的升高或降低。因此测定人体温度的变化,也就成为临床医学诊断疾病的一项重要指标。 医用热成像技术就是采用焦平面热探测器阵列(或光机扫描)将红外辐射能量转为电子视频信号,经过处理后形成被测物体的红外热图像,这种图像可在彩色监视器上显示,同时可送入计算机进行相应的数据处理,或存贮在硬盘或软盘上,也可由打印机打印成照片。红外热像图的诊断原理正是利用红外辐射能照相来研究体表温度分布状态,并将病变时的人体热像和正常生理状态下的人体热像进行比较,从而为某些疾病的诊断提供客观依据。 红外热成像探测的是人体自身皮肤辐射出的红外线,检查时既无创伤,又无不适,快速方便。它是绝对被动和不伤害人体的,这一点对于诊断工具来说,是非常重要的。 二、医用热像仪的应用领域 从热像仪的工作原理可知,热像仪探测的是人体表面的热辐射,皮肤是一个良好的红外辐射体,其比辐射率可达0.99以上,所以,体内器官的温度差异是可以经过热传导至体表从而被热像仪探测到的;同时,当体内深层器官的病变严重时,在体表也能探测到温度的差异,因此,医用热像仪不仅能诊断体表或接近体表的一些疾病,如皮肤、乳房、甲状腺肿瘤、血管疾病、关节病变等,而且对深层器官疾病的病变也起到很好的临床诊断作用。 医用热像技术用于临床诊断已有几十年历史,现已成为了诊断浅表肿瘤、血管疾病和皮肤病症等的有效工具。现就几个典型病症的诊断来进行简要的介绍。 1

雷达与红外兼容隐身材料的研究及进展

雷达与红外兼容隐身材料的研究及进展 哈恩华,黄大庆,王智勇,何 山,丁鹤雁 (北京航空材料研究院,北京100095) 摘要 雷达与红外兼容隐身材料在军事领域具有广阔的应用前景。综述了对雷达与红外兼容隐身材料的研究状况及应用,详细分析了粘结剂对材料隐身性能的影响以及半导体填料对实现雷达与红外兼容隐身的可能性。 关键词 雷达与红外兼容隐身材料 粘结剂 掺杂半导体 Development in Radar Absorbing Materials with Infrared Camouflage H A Enhua,HU ANG Daqing,WANG Zhiyong,HE Shan,DING Heyan (Beijing Institut e o f A eronautical M aterials,Beijing100095) Abstract R radar absorbing materials w ith infr ared camouflag e w ill hav e bro ad applicat ion pro spect in many militar y fields.I n this paper,the present research situat ion and applicatio ns o f these ty pes o f stealth mater ials ar e re v iew ed.T he effect of binder o n camouflage pr operties is ana lyzed theor etically.T he possibility o f doped semiconductor materia ls being tailor ed to radar and infr ared camo uf lag e is also discussed. Key words r adar&infr ared stealth materials,binder,doped semico nducto r 0 前言 随着现代军事侦察技术的发展,对隐身技术的要求也越来越高,单一频段隐身技术已远不能满足现代战争需求,未来隐身材料必须具有宽频特性。目前雷达在各种探测器中仍占主导地位,而红外技术在侦察、捕获目标和制导技术方面也已得到广泛的应用,因此,雷达和红外隐身的兼容性将是今后研究的主要方向之一。 雷达隐身是通过减弱、抑制、吸收、偏转雷达回波强度,降低雷达散射截面积,使其在一定范围内难以被敌方雷达识别和发现的技术。根据雷达系统工作原理,雷达最大探测距离R max 为[1]: R m ax=[P t G t2 2 /(4 )3P min]1/4(1)式中:P t为雷达发射功率,G t为发射天线的最大增益, 为雷达工作波长, 为被探测目标的雷达散射截面积,P min为雷达接收机最小可检测信号功率。雷达吸波材料是雷达隐身技术中十分关键的技术之一。通过雷达吸波材料可以将入射电磁波能量转换成热能或产生干涉从而吸收衰减入射电磁波来降低目标的雷达散射截面积。 鉴于一般情况下目标的红外辐射强度都高于环境背景,红外隐身的目的主要就是降低目标红外辐射强度。公式(2)给出了点源红外探测系统能探测目标的最大距离R max与目标辐射强度的关系[2]。 R max=(J )1/2[ /2(N A)D*]1/2 [1/( f)1/2(V s/V n)]1/2(2)式中:J为目标的辐射强度, 为大气透过率,N A为光学系统的数值孔径,D*为探测器的探测率, 为瞬时视场, f为系统带宽,V s为信号电平,V n为噪声电平。而目标的辐射强度J正比于目标的辐射出射度M(M= T4, 为物体的发射率; 为玻耳兹曼常数;T为物体的绝对温度)。因此,红外隐身材料一是通过改变目标的红外辐射特性来降低目标表面发射率;二是通过在可见光和近红外具有较低的太阳能吸收率和一定的隔热能力来降低目标表面的温度,以降低目标辐射强度,从而减小目标的被探测概率。 由于雷达吸波材料与红外隐身材料的隐身机理不同,使得它们的性能要求相互制约。雷达吸波材料要求高吸收率,低反射率;而红外隐身材料要求低吸收率,高反射率。要使同一种材料同时满足以上两种要求,实现起来有相当的困难。近年来,国内外科研人员一直在致力于解决这个难题。本文中我们对这一领域的研究及应用状况进行了综述,并着重分析了粘结剂对红外隐身性能的影响以及掺杂半导体填料满足雷达与红外兼容隐身的可能性。 1 研究状况及应用 雷达波与红外兼容主要包括毫米波与红外兼容和厘米波与红外兼容。毫米波与红外兼容隐身材料主要用于导弹和地面武器装备的隐身;厘米波和红外兼容隐身材料主要用于军用飞行器的隐身。实现雷达和红外兼容目前有两条技术途径:一是研制一种雷达波高吸收、热红外低辐射的隐身材料;二是分别研制高性能雷达波吸收和热红外低辐射材料,然后通过结构设计将其复合起来,复合后其雷达波吸收性能和热红外低辐射性能仍能保持不变或变化不大[3]。 国内有多家单位在开展毫米波和红外兼容隐身材料的研究。王智勇等[4]在毫米波吸波材料上涂覆一层红外涂料,在一定的厚度范围内,可以同时兼顾两种性能,且雷达波吸收性能基本不变。研究表明,涂层的厚度对谐振点吸收率及吸收频宽的影响是完全一致的。只是随红外涂层厚度的增加,谐振峰向低频平移,同时也能保证原涂层的红外辐射性能不变,如图1所示。谢国华等[5]用红外低发射率涂料与吸波材料料复合制成双层材料,外层是红外低发射率涂料,其发射率范围为0.23~ 0.54,内层吸波材料分别用涂覆型吸波材料(发射率为0.81)或 325 雷达与红外兼容隐身材料的研究及进展/哈恩华等 哈恩华:男,1974年生,硕士,工程师,主要从事隐身材料研究 T el:010 ******** E mail:haenhua@https://www.360docs.net/doc/9016749598.html,

红外隐身技术在军事中的应用

红外隐身技术在军事中的应用 摘要:在现代军事中,随着现代军用红外探测和图像处理技术日益发展,其技术的精准性也随着现代军事的发展而更加精确,已成为军事探测和制导武器非常重要的使用手段,从而对军事设施和武器装备的威胁也越来越大。因此红外隐身技术也成为军事战争中提高目标隐身能力和战斗力的重要技术因素。 关键词:隐身技术军事 上个世纪,红外隐身技术经历了三个发展时期,分别为探索时期、技术全面发展时期和应用时期。80年代开始,红外隐身技术已经在先进国家研制的新型飞机、舰船和坦克装甲车辆等得到了广泛采用。 一、红外隐身技术原理 通过降低或改变目标的红外辐射特征来实现降低目标的可探测性称之为红外隐身技术。它是通过更改结构的设计和应用红外物理原理来衰减吸收目标红外辐射的能量,从而实现目标的低可探测性。 根据斯特藩-玻尔兹曼定律可知,物体辐射红外能量不仅取决于物体温度,还取决于物体的比辐射率。温度相同的物体,引起比辐射率的不同导致探测器上将显示出不同的红外图像。鉴于一般军事目标的辐射都强于背景,所以采用低比辐射率的涂料可显著降低目标的红外辐射能量。另一方面,为降低目标表面温度,热红外伪装涂料在可见光和近红外还具有较低的太阳能吸收率和一定的隔热能力,以使目标表面温度尽可能接近背景温度,从而降低目标和背景的辐射对比度,减小目标的被探测概率。 二、红外隐身技术在飞机上的应用 1.发动机喷管采用碳纤维增强的碳复合材料或陶瓷复合材料,喷口安放在机体上方或喷管向上弯曲,利于弹体遮挡红外挡板,在喷口附近安装排气挡板或红外吸收装置,或使飞机采用大角度倾斜的尾翼等遮挡红外辐射;在尾喷管内部表面喷涂低发射率涂料;采用矢量推力二元喷管、S形二元喷管等降低排气温度冷却速度,从而减少排气红外辐射;在燃料中加入添加剂,以抑制和改变喷焰的红外辐射频带,使之处于导弹响应波段之外。 2.采用散热量小的发动机。隐身飞机大多采用涡轮风扇发动机,它与涡轮喷气发动机相比,飞机的平均排气温度降低2000C~2500C,从而使飞机的红外隐身性能得到大大改善。用金属石棉夹层材料对飞机发动机进行隔热,防止发动机热量传给机身。 3.在飞机表面涂覆红外涂料,在涂料中加隔热和抗红外辐射成份,以抑制飞机表面温度和抗红外辐射。采用闭合回路冷却系统,这是在隐身飞机上普遍采用的措施,它能把座舱和机载电子设备等产生的热传给燃油,以减少飞机的红外辐射,或把热在大气中不能充分传热的频率下散发掉。 4.用气溶胶屏蔽发动机尾焰的红外辐射。如将含金属化合物微粒的环氧树脂、聚乙烯树脂等可发泡高分子物质,随气流一起喷出,它们在空气中遇冷便雾化成悬浮泡沫塑料微粒;或将含有易电离的钨、钠、钾、铯等金属粉末喷入发动机尾焰,高温加热形成等离子区;或在飞机尾段受威胁时喷出液态氮,形成环绕尾焰的冷却幕。上述三种方法可有效屏蔽红外辐射,同时还能干扰雷达、激光和可见光侦察设备。 5.降低飞机蒙皮温度。可采用局部冷却或隔热的方法来降低蒙皮温度;也可

医用红外热像仪及其应用

医用红外热像仪及其应用 关键词:红外热像仪 原理 王泽普 张德欣 王志敏 本文作者王泽普先生,北京市光电子技术研究所所长、高级工程师;张德欣先生,华北光电技术研究所研究员;王志敏女士,高级工程师。 一 医用红外热像仪的工作原理 凡是温度高于绝对零度的物体均发射出红外辐射。人的体温37℃,人体皮肤的发射率0.98,可近似为一种300K 的黑体。当室温低于体温时,人体即通过皮肤发射出肉眼看不见的红外辐射能量,该能量的大小及分布与温度成正比。当人体某些部位患病时,通常存在温度的变化,有的温度升高(如炎症,肿瘤等),有的温度降低(如脉管炎,动脉硬化等)。借助于红外成像技术可以清晰地、准确地、及时地发现人体由于不同原因而引起的微小的温度变化。其原理概述如下。 1. 温度、波长和能量之间的关系 这就是著明的普朗克定律,它表示当温度变化时,红外辐射的能量及波长的相应变化规律。表示如下: W λ(T)=)1(/51 2?T C e C λλε (1) 式中,W λ(T)—在某绝对温度T 下的光谱辐射能量,W ?cm -2?μm -1;ε—物体表面的发射率;C 1—常数;C 2—常数;λ—波长,μm ;T —绝对温度,K 。 如图1所示,给出500K 、600K 、700K 、800K 、900K ,五个温度下,波长从0~18μm 的光谱能量曲线。从图1可以看出:曲线下的面积为该温度下的总能量,随温度的增加而迅速增加;峰值波长随温度的增加向短波移动。人体的温度是恒定的,约为37℃,皮肤的温度约为34℃,其红外峰值波长为9.4μm 。 2. 总能量和光谱带内的能量关系 对图1曲线下的面积进行积分即可得出绝对温度T 下的总能量。斯蒂芬?玻耳兹曼定律表示如下: W 0(T)=εσT 4 (2) 式中,W 0(T)—绝对温度T 下的总能量,W ?cm -2;;ε—物体发射率;σ—常

隐身材料红外光谱特性评价方法改

隐身材料红外光谱特性评价方法 华兰冀克俭周彤邓卫华 (中国兵器工业集团第五三研究所,济南250031) 摘要:对隐身材料光红外谱特性评价方法展开了综述。分别介绍了近红外分光光度计光谱反射率测定方法、热红外成像技术、热红外发射率测定方法以及高光谱成像方法。通过人工绿与自然绿色物体的光谱反射率实验提出了近红外隐身材料与实际地物背景存在的差异及其需要改进的技术。 关键词:隐身材料红外光谱特性评价 红外隐身技术主要是通过降低或改变目标的红外辐射特征来实现目标对红外系统的低可探测性,具体措施包括改进热结构设计、对主要发热部件进行强制冷却、表面涂覆红外隐身涂料、使用红外伪装网和遮障等。随着红外隐身技术的发展与应用,对各种红外隐身技术的隐身效果评价方法研究已成为军事红外技术中新的研究热点。 在各国军事领域中,对红外隐身技术的研究已经开展了约30年,现有研究成果主要集中在利用红外成像系统对目标及背景进行探测,形成红外热图像,并通过人眼对目标进行发现或识别以得出主观结论的经验方法、测定红外隐身材料热辐射特性的算术方法以及基于红外目标可探测性模型的计算机模型方法。以上方法均有其优缺点,但目前尚未有一种适合于军事工程应用并能客观、准确、简便、快速地评价红外隐身效果。 1 隐身材料光谱特性评价方法 1.1 野外条件下近红外伪装检测 现有的近红外伪装检测器材在野外条件下有一定的局限性,基于对自然绿色与人工绿色的光谱差异进行的分析,结合绿色检验镜的检测原理,赵会超等〔1〕在绿色检验镜光谱透射特性检测原理的基础上提出了在野外条件下窄波滤光片的近红外伪装检测方法,验证了其检测效果,探讨了其在军事上的应用。 由于自然绿在近红外区反射很大,而一般的人工绿则反射很小。因此提出采用窄波滤光片的方法。根据自然绿色和人工绿色的光谱反射曲线的不同,在滤光片的制作中选择一系列的波段,做成不同波段的滤光片,然后对人工绿色和自然背景进行照相,通过对比其效果来进行检测。检测近红外伪装效果是使其在数码相机上成像,通过观察照片效果就可以很明显地看出目标在近红外区的反射情况。 1.2 热红外照相机 热红外伪装材料是指用于减弱武器系统热红外特征信号,以达到伪装技术要求的材料。热红外伪装材料具有阻隔武器装备热红外辐射的能力,同时在大气窗口波段内具有低的红外发射率。按照作用原理,红外隐身材料可分为控制发射率和控制温度两类。军事伪装通常采用迷彩变形方法,三色或四色迷彩涂料具有不同的热红外发射率,使目标在热图中呈现灰度不同的斑点,从而分割目标外形,造成敌方识别困难。

医用红外热成像系统技术应用

医用红外热成像系统

前言 随着我国经济的快速发展,人民生活水平的提高以及健康意识的不断加强,人们对于体检的早期、快速、准确、方便、无创有了更高的要求。开创绿色健康检查评估也是各个医疗机构及体检中心的一个新兴项目,并且有了快速的发展和进步。中国健康体检产业无疑是当前的朝阳产业,得到了国家卫生部及中华医学会等有关部门和领导的大力支持和肯定。 医用红外热成像技术无疑是医疗影像领域的一支奇葩。由于它是被动接收检查者自身的热量,因为没有辐射,又被行业中称为“绿色检查”。如今,数字式医用红外热像仪已与B超、MRI、CT、X线等组成了现代医学影像体系。 目前,医用红外热成像技术主要用于医疗机构和体检中心的健康普查、疾病的初筛、肿瘤的早期预警、心脑血管疾病、疼痛、神经疾病、中医“治未病”等方面。做到了疾病的早期发现和疗效评估作用,为现代医学作出了杰出的贡献。 医用红外热像仪技术 一、医用红外热像仪发展综述 红外热像技术被应用到医学领域已有40多年历史,自从1956年英国医生Lawson 用红外热像技术诊断乳腺癌以来,医用红外热像技术逐步受到人们的关注。 中华医学会成立了中华医学会红外热像分会,并将红外热成像技术列入医科大学课程 2011年红外热成像被中华医学会疼痛分会列入二级以上挂牌医院五项基本设备之一,同年被国家卫生部中医药管理局列入二级及三级中医院设备配置标准案中的医院共有诊断设备之一。 2012年中国中医药管理局将红外热成像正式列入中医医院诊疗配置表中,成为中医医院必备的仪器。

二、红外热像诊断技术的基本原理 任何温度大于绝对零度(-273.1 5℃)的物体都要向外辐射能量,而人体所辐射电磁波的波长主要是在远红外区域,其波长范围为4~14μm,峰值为9.34μm,故利用波长为8~14μm的红外探测器可以方便地检测到人体辐射的红外线。通过接收人体辐射的红外线,利用影像光学和计算机技术,将人体表面的不同温度分布以黑白或伪彩色图像显示并记录下来。利用人体红外辐射成像原理,研究体表温度分布状态的一种现代物理学检测技术。 三、红外热像诊断技术的临床应用 (一)红外热像与望诊 1.红外热像与面诊。 将面部划分为10个区域,分别对应不同脏腑,研究发现面部各脏腑反应区温度存在一定差别,表明正常人面部不同部位皮肤的红外辐射量是不同的。面部红外热图目、鼻、唇、额、颊、颏等区域的热值数据进行分析,发现平和体质人群面部热结构是两目温度最高,左右额头温度次之,鼻子温度最低,右面颊略高于左侧,嘴唇和下颏温度与额头接近,且偏颇体质或疾病状态人群面部热结构出现热秩序紊乱,其寒热偏离规律与中医理论吻合。 2.红外热像与舌诊 望舌是中医望诊中不可缺少的一部分,红外热像的引入拓展了中医学望舌的范围,使得舌温也可以视觉化。阴虚组舌尖、舌边、舌中的即刻温度均大于正常舌;阴虚组舌尖、舌边的延时后温度也大于正常组。阴虚证、阳虚证、气滞血瘀证、气血两虚证、湿热证5个病症与中医辨证理论吻合。 (二)红外热像与中医辨证 1.红外热像辅助脏腑辨证 正常情况下,机体的代谢状况和热分布情况是有一定规律的,当机体的脏腑代谢水平出现异常时,就可能导致疾病的发生。红外热图上显示的脏腑热能量高低,直接反映的是相应脏腑功能状态。肝气郁结证红外热图显示肝区可见多个团片状异常热分布,额头热像呈M型;心脾两虚证热图显示鼻区低热,心区低热,脐周为凉区;脾胃虚寒证热图显示胃区低热,大腹低热,唇低热;肺燥证热图显示胸廓出口、肺部、口唇高热;肾阴不足热图显示手心、面部热,腰椎两侧热。将脏腑经络等在红外热图中进行定位,并根据热力学理论进行能量差异计算,通过比较正常人体热结构特征,研

红外隐身技术与发展

红外隐身技术总结 红外隐身技术于20 世纪70 年代末基本完成了基础研究和先期开发工作,并取得了突破性进展,已有基础理论研究阶段进入实用阶段。从20 世纪80 年代开始,国外研制的新式武器已广泛采用了红外隐身技术。 本文对常用军用装备的红外隐身技术的途径和方法进行分析,并展望了红外隐身技术的发展趋势。 1 红外隐身采用的技术现状 红外隐身技术通过降低或改变目标的红外辐射特征,实现对目标的低可探测性的。这可通过改变结构设计和应用红外物理原理来衰减,吸收目标的红外辐射能量,使红外探测设备难以探测到目标。 目前红外隐身技术主要采用三种途径: 1. 1 降低目标的红外辐射强度 众所周知红外辐射强度与平均发射率和温度的四次方的乘积成正比。因此降低目标表面的辐射系数和表面温度是降低目标红外辐射强度的主要手段。它主要是通过在目标表面涂敷一种低发射系数的材料和覆盖一层绝热材料的方法来实现的,即包括隔热、吸热、散热和降热等技术。从而减少目标被发现和跟踪的概率。 几何形状的设计对被动探测没有什么影响,但是红外吸波涂层对降低热发射率具有很大作用。热发射率包括两部分:热反射率和热发射率。前者指材料在红外光源照射下反射红外线的强度,后者指一定温度下材料的红外本征辐射强度。低发射率的材料一般反射率较高;低反射率的材料则发射率较高。理论上,红外吸波涂层也可用雷达吸波涂层移相对消的原理来降低反射率,但这要求微米级甚至亚微米级涂层,工艺上制造比较困难。在实际中降低温度比降低热发射率容易,同时降低温度的效果也很明显。一般采用的方法是: ①尽量减少目标的散热。如减少目标中部件的摩擦;目标的部件采用低散热量材料。②采用热屏蔽的方法来遮挡目标内部发出的热量。尽可能地降低目标的红外辐射强度。③采用隔热层和空气对流的方法,降低目标发动机中的排气管的温度。同时将热量从目标表面传给周围的空气。 1. 2 改变目标红外辐射的大气窗口 主要是改变目标的红外辐射波段。我们知道大气的红外窗口有以下三个波段:1~2. 5μm、3~5μm 和8~14μm。红外辐射在这三个波段外基本上是不透明的。根据这个特点,可采用改变己方的红外辐射波段至对方红外探测器的工作波段之外,使对方的红外探测器探测不到己方的红外辐射。具体做法是改变红外辐射波长的异型喷管或在燃料中加入特殊的添加剂;用红外变频材料制作有关的结构部件等。调节红外辐射的传输过程是改变目标红外辐射特性的手段之一,具体做法是在某些特定的结构上改变红外辐射的方向。例如在具有尾喷口的飞行器的发动机上安装特定的挡板来阻挡和吸收飞行器发出的红外辐射;或改变辐射方向。 1. 3 采用光谱转换技术 采用特定的高辐射率的涂料将其涂敷在飞行器的部件上,以改变飞行器的红外辐射的相对值和相对位置;或使飞行器的红外图像成为整个背景红外图像的一部分;或使飞行器的红外辐射位于大气窗口之外而被大气吸收,从而使对方无法识别,达到隐身的效果。 2 红外隐身材料 2. 1 红外低辐射材料 用于热隐身材料应具有以下基本特征:具有符合要求的热红外发射率或较强的控温能力;具有合理的表面结构;具有较低的太阳能吸收率;能与其它频段的隐身要求兼容,为此进行的多种

红外热像仪在医疗领域的应用

红外热像仪在医疗领域的应用 标签:红外应用疾病诊断温度 人体是一个天然红外辐射源,它不断地向周围空间发散红外辐射能。其红外辐射波波段在5-50um之间,峰值在8-13um附近。当人体患病时,人体的全身或局部的热平衡受到破坏,在临床上多表现为人体组织温度的升高或高低。因此测定人体体温的变化是临床医学诊断疾病的一项重要指标。 红外热像仪可以显示和记录人体的温度分布,并将病变时的人体热像和正常生理状态下的人体热像进行比较,通过比较差别来判断病理状态,与精密的解剖学相比,热成像系统在反映人体体温的改变以及新陈代谢的进程方面有着常规检测手段无法替代的特性。 医用红外热成像技术检查应用的是人体自身皮肤辐射出的红外线,是绝对被动和不伤害人体的,其用于临床诊断有几十年的历史,现已用于多种疾病的诊断。 针对红外热像仪在医用红外热像仪的应用情况主要作以下简要介绍: 代谢性疾病(糖尿病)的诊断 糖尿病是典型的一种代谢功能性疾病,和人体体温有着密切的联系,使用医用红外热像仪诊断糖尿病显然比平常的血糖值化验方法更可靠。糖尿病的代谢功能异常多发生在微循环部位,通过使用施加温度负荷的方法,可以在短时间内诱发异常的功能状况,将体内的代谢功能异常状况通过温度变化诱发到体表。当然,体表温度也受到各种周围环境的影响,因此测量过程中要对环境和测量结果进行正确处理,以得出正确的代谢性疾病结论数据。 乳腺瘤的早期诊断 一般来说,健康妇女两侧乳房的热像图是对称的,任何乳房热图的不对称性往往与疾病和细胞活性有关,更多地可能与肿瘤有关。恶性肿瘤周围血管丰富,细胞反应活跃,其温度大多高于正常组织。实验表明,肿瘤组织代谢旺盛,供血丰富,热量从局部向外辐射。使用热像仪探测乳腺癌优势明显。

热红外隐身

热红外隐身 王先锋  摘要热红外探测器的高度发展,使人们越来越关注热红外隐身材料的研究。本文简要介绍了热红外隐身的基本原理,并从原理出发综述了实现热红外隐身的两种主要途径,最后简要分析了多波段隐身的兼容性问题。 关键词热红外隐身降温材料涂层多波段隐身 前言 隐身战斗机F-117A在两次海湾战争中出尽风头,它的英文名字是stealthy aircraft,又可译成隐形飞机。据报道,在第一次海湾战争中,参战的44架F-117A隐身战斗机先后执行了1600架次空袭任务,本身无一机损失,这一辉煌的战绩完全归功于隐身技术和隐身材料的使用。 许多军事目标(包括人),特别是运动目标,如坦克、军舰和导弹装载车等,都拥有大功率的动力源,运动时会产生强烈的热红外辐射。某些高速运动目标,如飞机、导弹等,在飞行过程中,它们的外壳与大气摩擦产生的热也是热红外辐射源。红外探测器就是利用目标自身产生的红外辐射来完成识别、跟踪、制导和攻击任务的。热红外隐身伪装技术是采用各种工程技术措施消除或降低目标的真实热红外辐射特征,或者改变目标的热红外辐射使其与背景的热红外辐射相适应的技术,以使红外探测设备不能或不易发现目标,或者缩短侦视距离来提高军事目标的战场生存能力[1]。 1热红外隐身的基本原理 一般来说,任何温度高于环境温度的物体都会成为红外辐射源,可由特殊仪器接受并检测出来。由于空气中存在二氧化碳、氧气、水等极性分子,处于极远红外区域的红外线被空气吸收,只有波长处于“大气窗口”,即0.76~1.5μm、3~5μm、8~14μm 区域的红外线才能在大气中无阻碍地传播[1]。其中3~5μm和8~14μm这部分红外线辐射来自目标和背景本身温度所引起的热辐射,故又称为热红外线辐射[2]。 从红外物理学可知,物体红外辐射能量由斯蒂芬-玻耳兹曼定律[3]决定:W=?σT4,式中,W是指物体的辐射发射量;?指物体的发射率;σ指斯蒂芬-玻尔兹曼常数;T是物体的绝对温度。由上式可见,物体辐射红外能量不仅取决于物体的温度,还决定于物体的发射率。这两个因素对辐射度效果的影响是不同的。在较高温度情况下,温度将是影响目标辐射度的主要因素;在较低温(与环境温度接近)情况下,发射率将是影响目标辐射度的主要因素。同时,由于背景的复杂性,单一降低目标的发射率并不能提供有效的热红外隐身,而只有使目标各个部位的发射率不同,让目标热像图形分割,消除目标热像的典型轮廓,才能降低热像仪的识别能力,取得良好的热红外隐身效果[1]。 2热红外隐身的实现途径 装备的红外隐身都涉及红外隐身材料问题。红外隐身材料具有隔断装备的红外辐射能力,同时在大气窗口波段内,具有低的红外发射率和红外镜面反射率。按照作用原理,红外隐身材料可分为控制发射率和控制温度两类[4]。 2.1 控制温度的红外隐身材料 由于目标的辐射强度与温度的四次方成正比,因此降温材料是降低目标热辐射的很有效的材料。控制温度的红外隐身材料包括隔热材料、吸热材料和高比辐射率聚合物。隔热材料用来阻隔装备发出的热量使之难以外传,从而降低装备的红外辐射强度,有微孔结构材料和多层结构材料两类。隔热材料可由泡沫塑料、粉末、镀金属塑料薄膜等组成。薄膜塑料能储存人体发出的热量,镀金属塑料薄膜能有效地反射人体发出的红外辐射。隔热材料的表面还可涂各种涂料以达到其他波段的隐身效果。利用某些无机

隐身技术

隐身技术科技前沿 【摘要】隐身技术是当今世界战略防御中十分重要的一项科学技术。文章粗略的介绍了隐身技术、隐身材料的分类、原理,以及现在的发展应用,以及未来的发展。 【关键词】隐身技术,隐身材料,分类,战略,应用,前景。 【引言】在如今的科技领域,隐身技术和隐身材料发展越来越受到各国重视,隐身武器也是不断出现。隐身技术到底是怎样的,在这里就来粗浅研究一下。 【正文】 1.隐身技术 1.1隐身技术定义 隐形技术俗称隐身技术,准确的术语应该是“低可探测技术”。即通过研究利用各种不同的技术手段来改变己方目标的可探测性信息特征,最大程度地降低对方探测系统发现的概率,使己方目标,己方的武器装备不被敌方的探测系统发现和探测到。 1.2隐身技术分类 隐身技术包括:雷达隐形、红外隐形、磁隐形、声隐形和可见光隐形等。 1.3隐身技术的主要技术途径 采用独特的外形设计和吸波、透波材料,以降低飞机对雷达波的反射;降低飞机发动机喷气的温度或采取隔热、散热措施,减弱红外辐射。 雷达波吸收技术 雷达是利用无线电波发现目标及位置的装置,其工作原理是雷达的发射机不断产生高频脉冲形成微波波束,当波束遇到目标物时,其中一小部分反射回来被吸收后,就会显示目标物的距离、方向、高度及图像等。雷达为了能发现目标,要求有强的目标反射,而回波强度将取决于目标尺寸与工作波长之比。如何使雷达失去监视作用呢?一方面采用散射、干涉等手段破坏雷达所发散的波束,如通过设计飞机独特外形使电磁波散射。另一方面采用能够吸收雷达波的复合材料和吸波涂料等隐身材料。 红外控制技术 该技术是为了逃避红外传感器发现目标,采用的主要方法是降低飞机的红外辐射。具体措施为,降低发动机的喷口排气温度和改变喷口方向,使发动机排气更干净,烟道气更淡;采用喷气或气动雾化式装置,使燃油充分燃烧,以减少红外喷泄;在燃油中加入添加剂如二茂铁及其衍生物,提高燃烧速度,充分利用热能,减少排气中的红外辐射;在飞机表面涂盖放射性同位素如钋等,使放射出的高能粒子在飞机周围形成等粒子屏以达到屏蔽和吸收红外辐射等。 2.隐身材料 2.1隐身材料定义 隐身材料可以降低被探测率,提高自身的生存率,是隐身技术的重要组成部分。

射频隐身性能测试评估技术研究

射频隐身性能测试评估技术研究 摘要:文章从无源探测的角度介绍了机载射频信号的快速扫描、判断分析,特征信息测量的探测方法;给出了利用信号特征信息与模板库信号进行匹配识别方法;提出了用联合截获概率来评估射频隐身性能评估方法。 关键词:无源探测;射频隐身;匹配识别 1 引言 飞行器射频隐身技术是指机载雷达、通信导航识别(CNI)、数据链等机载电子设备抵御射频无源探测、跟踪、识别的隐身技术,以减少射频无源探测系统对飞机的作用距离及跟踪制导精度,从而提高飞机的突防能力、生存能力和作战效能。无源探测设备通过截获载体平台自身携带的辐射信号进行检测、处理、识别,估计出目标信号的到达方向,进行目标探测和跟踪,确定平台的位置信息。 美国在1979-1980年就完成了第一个射频隐身的飞行试验测试,仅滞后美国第一架隐身飞行器F-117的验证机“海弗蓝”首飞一年多时间[1]。美国目前已经全面掌握了射频隐身技术,为新一代战斗机F-22和F-35研制了射频隐身性能良好的机载雷达、通信导航识别等电子设备,各类机载电子设备辐射能量的自适应控制技术、射频隐身波形设计技术等

射频隐身技术[1]。国内目前在通信侦察和雷达侦察系统等方面的研究均已取得了很大的进展,但对于综合一体化射频隐身研究处于演示验证阶段。为了更好地研究、更有效地运用射频隐身技术和装备,就必须对其效能进行合理的、有效的评估。 如何进行军机射频隐身性能测试评估,目前尚无一个统一、全面的衡量标准,因此需要进行深入研究。文章从无源探测的角度分析给出了机载射频信号快速扫描、判断分析,特征信息测量的方法,从军机射频隐身性能飞行试验的角度给出了用联合截获概率来评估射频隐身性能的方法。 2 测试原理及方法 射频隐身技术的目的是降低平台被无源探测设备侦测的概率,即截获接收机是射频信号威胁的主要来源。截获接收机的基本功能有两个方面:探测截获和分类识别。因此,这两个基本功能也就成为射频隐身测试技术的基本出发点。 2.1 测试原理 射频信号监测的原理是通过对空间信号进行搜索、检测、截获、测量和识别,获取信号的特征参数和类别,将特征参数与模板库信号进行匹配识别,对有用信号分类后保留分析,必要时进行监听、监视,并对其实施监管,对无用的信号的剔除信号的搜索是寻找信号的过程,在搜索的同时对信号实施检测,检测就是发现信号。判断有无信号的依据通

红外热像仪对于医学的重要价值

热像仪技术用于医用临床诊断已有几十年的历史,使用范围也在不断扩大,现已可用于多种疾病的诊断。医用热像仪已成为诊断浅表肿瘤、血管疾病和皮肤病症等的有效工具,红外热成像技术能够进行非接触式的、高分辨率的温度成像,能够生成高质量的图像,可提供测量目标的众多信息,弥补了人类肉眼的不足。 1、工作原理:人体是一个天然红外辐射源。人体皮肤的红外辐射波段为3-50mm。当人体患病时,人体的热平衡受到破坏,因此测定人体温度的变化是临床医学诊断疾病的一项重要指标。根据人体表面温度分布、红外线辐射量大小、肢体血液量的多少,可得到人体各部位、各器官的热像图。医生结合临床,从而了解了人体病理、生理变化,不仅可以诊断体表病变,也能诊断体内深层病变,还可揭示某些疾病的发生、发展与结果。 2、医用红外热像技术的应用 红外热像仪应用于临床诊断涉及多领域、多学科。随着红外热像技术的不断发展,当代红外热像仪已成功用于神经学、血管功能障碍、风湿性疾病、组织移

植、是乳腺癌、皮肤科、眼科及外科等。 (1)乳腺瘤的早期诊断 乳腺检查是较早开始使用热像仪的。一般来说健康的妇女,两侧乳房的热图是对称的,如果乳房热图出现不对称,往往与疾病和细胞活性有关,更多地与肿瘤有关。恶性肿瘤的周围血管丰富,其温度大多高于正常组织。医学研究表明,大多数乳腺癌的热图像具有明显的不对称性,患侧的乳房热图像呈明显的局域性热区,乳晕周围也明显出现高温。由于肿瘤组织代谢旺盛,供血丰富,其热量势必从局部向外辐射,使用热像仪探测乳腺癌有其独特的优势。 (2)皮肤损伤病症的诊断 红外热图一般反映皮肤本身温度的分布,很适合热像仪的应用领域。比如皮肤冻伤,用热像仪就很容易查出冻伤面积。这是因为冻伤部位坏死,无血供应,其温度会比周围皮肤低。再说皮肤烧伤,热像仪不但可准确诊断烧伤面积内血管损坏的程度,判定烧伤度数,识别可存活皮肤面积、确定需植皮的面积,且在治

相关文档
最新文档