古典概型练习题(有详细答案)

合集下载

高中数学必修二 10 1 3 古典概型 练习(含答案)

高中数学必修二  10 1 3 古典概型 练习(含答案)

10.1.3 古典概型一、选择题1.下列有关古典概型的四种说法:①试验中所有可能出现的样本点只有有限个;②每个事件出现的可能性相等;③每个样本点出现的可能性相等;④已知样本点总数为n,若随机事件A包含k个样本点,则事件A发生的概率()kP An=.其中所正确说法的序号是()A.①②④B.①③C.③④D.①③④【答案】D【解析】②中所说的事件不一定是样本点,所以②不正确;根据古典概型的特点及计算公式可知①③④正确.故选:D.2.某袋中有9个除颜色外其他都相同的球,其中有5个红球,4个白球,现从中任意取出1个,则取出的球恰好是白球的概率为( )A.15B.14C.49D.59【答案】C【解析】从9个球中任意取出1个,样本点总数为9,取出的球恰好是白球含4个样本点,故所求概率为49,故选:C.3.甲乙两人有三个不同的学习小组A,B,C可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为()A .13 B .14 C .15 D .16【答案】A【解析】依题意,基本事件的总数有339⨯=种,两个人参加同一个小组,方法数有3种,故概率为3193=. 4.齐王有上等、中等、下等马各一匹,田忌也有上等、中等、下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现在从双方的马匹中随机各选一匹进行一场比赛,若有优势的马一定获胜,则齐王的马获胜得概率为( )A .49B .59C .23D .79【答案】C【解析】设齐王上等、中等、下等马分別为,,A B C ,田忌上等、中等、下等马分别为,,a b c , 现从双方的马匹中随机各选一匹进行一场比赛,基本事件有:()()()()()()()()(),,,,,,,,,,,,,,,,,A a A b A c B a B b B c C a C b C c ,共9种,有优势的马一定获胜,齐王的马获胜包含的基本事件有:()()()()()(),,,,,,,,,,,A a A b A c B b B c C c ,共 6种,∴齐王的马获胜的概率为6293P ==,故选C. 5.(多选题)下列概率模型是古典概型的为( )A .从6名同学中选出4人参加数学竞赛,每人被选中的可能性大小B .同时据两枚质地均匀的骰子,点数和为6的概率C .近三天中有一天降雨的概率D .10人站成一排,其中甲,乙相邻的概率 【答案】ABD【解析】古典概型的特点:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等.显然A、B、D符合古典概型的特征,所以A、B、D是古典概型;C选项,每天是否降雨受多方面因素影响,不具有等可能性,不是古典概型.故选:ABD.6.(多选题)张明与李华两人做游戏,则下列游戏规则中公平的是()A.抛掷一枚质地均匀的骰子,向上的点数为奇数则张明获胜,向上的点数为偶数则李华获胜B.同时抛掷两枚质地均匀的硬币,恰有一枚正面向上则张明获胜,两枚都正面向上则李华获胜C.从一副不含大小王的扑克牌中抽一张,扑克牌是红色的则张明获胜,扑克牌是黑色的则李华获胜D.张明、李华两人各写一个数字6或8,两人写的数字相同则张明获胜,否则李华获胜【答案】ACD【解析】选项A中,向上的点数为奇数与向上的点数为偶数的概率相等,A符合题意;选项B中,张明获胜的概率是12,而李华获胜的概率是14,故游戏规则不公平,B不符合题意;选项C中,扑克牌是红色与扑克牌是黑色的概率相等,C符合题意;选项D中,两人写的数字相同与两人写的数字不同的概率相等,D符合题意.故选:ACD二、填空题7.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和大于9的概率是_______.【答案】1 6【解析】抛掷一个骰子两次,基本事件有36种,其中符合题意的有:()()()()()()4,6,5,5,,5,6,6,4,6,5,6,6共六种,故概率为61 366=.8.有红心1,2,3,4和黑桃5这五张扑克牌,现从中随机抽取两张,则抽到的牌均为红心的概率是_______.【答案】3 5【解析】五张扑克牌中随机抽取两张,有:12、13、14、15、23、24、25、34、35、45共10种,抽到2张均为红心的有:12、13、14、23、24、34共6种,所以,所求的概率为:63105=故答案为:35. 9.从2、3、8、9任取两个不同的数值,分别记为a 、b ,则为整数的概率= .【答案】16【解析】:从2,3,8,9中任取两个数记为,a b ,作为作为对数的底数与真数,共有2412A =个不同的基本事件,其中为整数的只有23log 8,log 9两个基本事件,所以其概率21126P ==. 10.一个口袋内装有大小相同的红球、白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出红球的概率为________. 【答案】0.2【解析】∵A =“摸出红球或白球”与B =“摸出黑球”是对立事件,且P(A)=0.58,∴P(B)=1-P(A)=0.42,又C =“摸出红球或黑球”与D =“摸出白球”是对立事件,且P(C)=0.62,∴P(D)=0.38. 设事件E =“摸出红球”,则P(E)=1-P(B ∪D)=1-P(B)-P(D)=1-0.42-0.38=0.2. 三、解答题11.某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y.奖励规则如下:①若3xy ≤,则奖励玩具一个;②若8xy≥,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(Ⅰ)求小亮获得玩具的概率;(Ⅰ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.【答案】(Ⅰ)516.(Ⅰ)小亮获得水杯的概率大于获得饮料的概率.【解析】(Ⅰ)两次记录的所有结果为(1,1),(1,,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.满足xy≤3的有(1,1),(1,,2),(1,3),(2,1),(3,1),共5个,所以小亮获得玩具的概率为5 16.(Ⅰ)满足xy≥8的有(2,4),(3,,3),(3,4),(4,2),(4,3),(4,4),共6个,所以小亮获得水杯的概率为6 16;小亮获得饮料的概率为5651161616 --=,所以小亮获得水杯的概率大于获得饮料的概率.12.某单位N名员工参加“社区低碳你我他”活动.他们的年龄在25岁至50岁之间.按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.下表是年龄的频率分布表.(1)求正整数a ,b ,N 的值;(2)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少? (3)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率. 【答案】(1)25,100,250; (2)1人,1人,4人; (3)815. 【解析】 (1)由频率分布直方图可知,[25,30)与[30,35)两组的人数相同,所以25a =. 且0.08251000.02b =⨯= 总人数252500.025N ==⨯ (2)因为第1,2,3组共有2525100150++=人,利用分层抽样在150名员工中抽取6人,每组抽取的人数分别为:第1组的人数为2561150⨯=, 第2组的人数为2561150⨯=,第3组的人数为10064150⨯=, 所以第1,2,3组分别抽取1人,1人,4人.(3)由(2)可设第1组的1人为A ,第2组的1人为B ,第3组的4人分别为1C ,2C ,3C ,4C 则从6人中抽取2人的所有可能结果为:()A B ,,()1A C ,,()2A C ,,()3A C ,,()4A C ,,()1B C ,,()2B C ,,()3B C ,,()4B C ,,()12C C ,,()13 C C ,,()14C C ,,()()2324 C C C C ,,,,()34C C ,共有15种.其中恰有1人年龄在第3组的所有结果为:()1AC ,,()2A C ,,()3A C ,,()4A C ,,()1B C ,,()2B C ,,()3B C ,,()4B C ,,共有8种.8 15.所以恰有1人年龄在第3组的概率为。

古典概型练习题(有详细问题详解)

古典概型练习题(有详细问题详解)

古典概型练习题1.从12个同类产品(其中10个正品,2个次品)中任意抽取3个,下列事件是必然事件的是A.3个都是正品B.至少有一个是次品 ( )C.3个都是次品D.至少有一个是正品2.给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件②“当x为某一实数时可使20x<”是不可能事件③“明天要下雨”是必然事件④“从100个灯泡中取出5个,5个都是次品”是随机事件. 其中正确命题的个数是 ( )A. 0B. 1C.2D.33.从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,这个两位数大于40的概率为A. 15B.25C.35D.45( )4.袋中有3个白球和2个黑球,从中任意摸出2个球,则至少摸出1个黑球的概率为A. 37B.710C.110D.310( )5.从标有1,2,3,4,5,6,7,8,9的9纸片中任取2,那么这2 纸片数字之积为偶数的概率为( )A. 12B.718C.1318D.11186.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为( )A.715B.815C.35D. 17.下列对古典概型的说法中正确的个数是 ( )①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③基本事件的总数为n,随机事件A包含k个基本事件,则()kP An=;④每个基本事件出现的可能性相等;A. 1B. 2C. 3D. 48.从装有2个红球和2个白球的口袋中任取两球,那么下列事件中互斥事件的个数是( )⑴至少有一个白球,都是白球;⑵至少有一个白球,至少有一个红球;⑶恰有一个白球,恰有2个白球;⑷至少有一个白球,都是红球.A.0B.1C.2D.39.下列各组事件中,不是互斥事件的是 ( )A.一个射手进行一次射击,命中环数大于8与命中环数小于6B.统计一个班数学期中考试成绩,平均分数不低于90分与平均分数不高于90分C.播种菜籽100粒,发芽90粒与发芽80粒D.检查某种产品,合格率高于70%与合格率为70% 10.一个均匀的正方体的玩具的各个面上分别标以数1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不小于4,则()A.A与B是互斥而非对立事件B.A与B是对立事件C.B与C是互斥而非对立事件D.B与C是对立事件11.下列说法中正确的是 ( )A.事件A 、B 至少有一个发生的概率一定比A 、B 中恰有一个发生的概率大B.事件A 、B 同时发生的概率一定比A 、B 中恰有一个发生的概率小C.互斥事件一定是对立事件,对立事件也是互斥事件D.互斥事件不一定是对立事件,而对立事件一定是互斥事件12.有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上1,2,3,现任取3面,它们的颜色与均不相同的概率是 ( )A.13B.19C.114D.12713.若事件A 、B 是对立事件,则P(A)+P(B)=________________.14.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________。

古典概型 最新同步练习(含详解)

古典概型 最新同步练习(含详解)

古典概型 同步练习一、选择题1.鞋柜里有3双不同的鞋,从中取出一只左脚的,一只右脚的,恰好成双的概率为( )A.23B.13C.35D.25解析:鞋柜里有3双不同的鞋,从中取出一只左脚的,一只右脚的,共有9种取法,恰好成双的取法共有3种,故恰好成双的概率为39=13,故选B.答案:B2.甲乙两名同学分别从“象棋”“文学”“摄影” 三个社团中随机选取一个社团加入,则这两名同学加入同一个社团的概率是( )A.14B.13C.12D.23解析:由题意,甲乙两名同学各自等可能地从“象棋”“文学”“摄影” 三个社团中选取一个社团加入,共有3×3=9种不同的结果,这两名同学加入同一个社团有3种情况,则这两名同学加入同一个社团的概率是39=13.故选B.答案:B3.小亮、小明和小红约好周六骑共享单车去森林公园郊游,他们各自等可能地从小黄车、小蓝车、小绿车这3种颜色的单车中选择1种,则他们选择相同颜色自行车的概率为( )A.13B.19C.23D.49解析:由题意,小亮,小明和小红各自等可能地从小黄车、小蓝车、小绿车这3种颜色的单车中选择1种有27种不同的结果,他们选择相同颜色自行车有3种不同的结果,故他们选择相同颜色自行车的概率为327=19,故选B.答案:B4.若从数字0,1,2,3,4,5中任取三个不同的数作为二次函数y =ax 2+bx +c 的系数,则与x 轴有公共点的二次函数的概率是( )A.15B.12C.1350D.1750解析:实验发生包含的事件是从0,1,2,3,4,5中任取三个不同的数作为二次函数的系数,对应二次函数共有C 15A 25=100个,满足条件的事件是与x 轴有公共点的二次函数,需满足b 2≥4ac ,当c =0时, a ,b 只需要从1,2,3,4,5中任选2个数字即可,对应的二次函数共有A 25个;当c ≠0时,若b =3,此时满足条件的(a ,c )取值有(1,2),(2,1),共2种情况;当b =4时,此时满足条件的(a ,c )取值有(1,2),(1,3),(2,1),(3,1),共4种情况;当b =5时,此时满足条件的(a ,c )取值有(1,2),(1,3),(1,4),(2,3),(2,1),(3,1),(4,1),(3,2), 共8种情况.∴共有20+2+4+8=34种情况满足题意,∴概率为34100=1750,故选D.答案:D5.用3种不同颜色给甲、乙两个小球随机涂色,每个小球只涂一种颜色,则两个小球颜色不同的概率为( ) A. 3 B.12 C.23 D.58解析:三种不同的颜色分别用A ,B ,C 表示,随机事件所包含的基本事件有:(A ,A ),(A ,B ),(A ,C ),(B ,A ),(B ,B ),(B ,C ),(C ,A ),(C ,B ),(C ,C ),共9个,其中表示两个小球颜色不同的有6个,则两个小球颜色不同的概率为P =69=23,故选C.答案:C6.袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( )A .乙盒中黑球不多于丙盒中黑球B .乙盒中红球与丙盒中黑球一样多C .乙盒中红球不多于丙盒中红球D .乙盒中黑球与丙盒中红球一样多解析:若乙盒中放入的是红球,则须保证抽到的两个均是红球;若乙盒中放入的是黑球,则须保证抽到的两个球是一红一黑,且红球放入甲盒;若丙盒中放入的是红球,则须保证抽到的两个球是一红一黑,且黑球放入甲盒;若丙盒中放入的是黑球,则须保证抽到的两个球都是黑球.由于抽到两个红球的次数与抽到两个黑球的次数应是相等的,故乙盒中红球与丙盒中黑球一样多,选B.答案:B7.有4张卡片(除颜色外无差别),颜色分别为红、黄、蓝、绿,从这4张卡片中任取2张不同颜色的卡片,则取出的2张卡片中含有红色卡片的概率为( )A.12B.35C.13D.56解析:有4张卡片(除颜色外无差别),颜色分别为红、黄、蓝、绿,从这4张卡片中任取2张不同颜色的卡片,基本事件总数n =C 24=6,取出的2张卡片中含有红色卡片包含的基本事件个数m =C 11C 13=3,∴取出的2张卡片中含有红色卡片的概率为P =m n =36=12.故选A. 答案:A8.一批产品共50件,其中5件次品,45件正品,从这批产品中任取2件,则出现次品的概率为( )A.2245B.949C.47245 D .以上都不对解析:因为一批产品共50件,其中5件次品,45件合格品,所以从这批产品中任意抽2件,基本事件总数n =C 250=1 225,其中出现次品的对立事件是取到两件正品,所以出现次品的概率为P =1-C 245C 250=47245,故选C. 答案:C9.已知一袋中有标有号码1、2、3的卡片各一张,每次从中取出一张,记下号码后放回,当三种号码的卡片全部取出时即停止,则恰好取5次卡片时停止的概率为( )A.585B.1481C.2281D.2581解析:根据题意可知,取5次卡片可能出现的情况有35种;由于第5次后停止抽取,所以前四次抽卡片时有且只有两种编号,且第五次是剩下的那种编号,所以总的可能有C 23(24-2)种.所以恰好第5次后停止取卡片的概率为P =C 23(24-2)35=1481.本题选择B 选项.答案:B10.6件产品中有4件合格品,2件次品。

人教版高中数学必修第二册10.1.3 古典概型 同步练习(含答案)

人教版高中数学必修第二册10.1.3 古典概型 同步练习(含答案)

人教版高中数学必修第二册10.1.3古典概型同步练习一、选择题(本大题共8小题,每小题5分,共40分)1.下列试验中,是古典概型的为()A.种下一粒花生,观察它是否发芽B.在正方形ABCD内任意确定一点P,观察点P是否与正方形的中心O重合C.从1,2,3,4四个数中任取两个数,求所取两数之一是2的概率D.在区间[0,5]内任取一个实数,求该实数小于2的概率2.甲、乙、丙3人站成一排,则甲恰好站在中间的概率为()A.13B.12C.23D.163.有两张卡片,一张的正、反面分别写着数字0与1,另一张的正、反面分别写着数字2与3,将两张卡片排在一起组成一个两位数,则所组成的两位数为奇数的概率是()A.16B.13C.12D.384.每年的3月5日为学雷锋纪念日,某班有青年志愿者5名,其中男生3人,女生2人,现需选出2名青年志愿者到社区做公益宣传活动,则选出的2名青年志愿者性别相同的概率为()A.35B.25C.15D.3105.某学校食堂推出两款优惠套餐,甲、乙、丙三位同学选择同一款套餐的概率为()A.110B.18C.14D.126.若从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,则这个两位数大于40的概率为()A.45B.35C.25D.157.A,B,C三人同时参加一场活动,活动前A,B,C三人都把手机存放在了A的包里.活动结束后B,C两人去拿手机,发现三人手机外观看上去都一样,于是这两人每人随机拿出一部,则这两人中只有一人拿到自己手机的概率是()A.12B.13C.23D.168.有两人从一座6层大楼的底层进入电梯,假设每个人自第二层开始在每一层离开电梯是等可能的,则这两人在不同层离开电梯的概率是()A.16B.15C.45D.56二、填空题(本大题共4小题,每小题5分,共20分)9.抛掷一枚质地均匀的骰子,则落地时,向上的点数是2的倍数的概率是.10.从编号分别为1,2,3,4的4张卡片中随机抽取一张,放回后再随机抽取一张,则第二次抽得的卡片上的数字能被第一次抽得的卡片上的数字整除的概率为.11.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为.12.从数字1,2,3,4中,若是有放回地取出两个数字,则其和为奇数的概率为;若是不放回地取出两个数字,其和为奇数的概率为.三、解答题(本大题共2小题,共20分)13.(10分)5张奖券中有2张是有奖的,先由甲抽1张,然后由乙抽1张,抽后不放回,求:(1)甲中奖的概率P(A);(2)甲、乙都中奖的概率P(B);(3)只有乙中奖的概率P(C);(4)乙中奖的概率P(D).14.(10分)质量监督局检测某种产品的三个质量指标x,y,z,用综合指标Q=x+y+z核定该产品的等级.若Q≤5,则核定该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:产品编号A1A2A3A4A5质量指标(x,y,z)(1,1,2)(2,1,2)(2,2,2)(1,3,1)(1,2,3)产品编号A6A7A8A9A10质量指标(x,y,z)(1,2,2)(2,3,1)(3,2,1)(1,1,1)(2,1,1)(1)利用上表提供的样本数据估计该批产品的一等品率;(2)在该样品的一等品中,随机抽取2件产品,设事件B为“在取出的2件产品中,每件产品的综合指标均满足Q≤4”,求事件B的概率.15.(5分)某城市有连接8个小区A,B,C,D,E,F,G,H和市中心O的整齐方格形道路网,每个小方格均为正方形,如图L10-1-3所示,某人从道路网中随机地选择一条最短路径,由小区A前往小区C,则他不经过市中心O的概率是()图L10-1-3A.13B.23C.14D.3416.(15分)随着甜品的不断创新,现在的甜品无论是造型还是口感都十分诱人,有颜值、有口味、有趣味的产品更容易得到甜品爱好者的喜欢.某“网红”甜品店出售几种甜品,由于口味独特,受到越来越多人的喜爱,好多外地的游客专门到该甜品店来品尝“打卡”,已知该甜品店同一种甜品售价相同,该店为了了解每个种类的甜品销售情况,专门收集了该店这个月里五种“网红甜品”的销售情况,统计后得如下表格:甜品种类A甜品B甜品C甜品D甜品E甜品销售总额(万元)105202012销售量(千份)521058利润率0.40.20.150.250.2(利润率是指一份甜品的销售价格减去成本得到的利润与该甜品的销售价格的比值)(1)从该甜品店本月卖出的甜品中随机选一份,求这份甜品的利润率高于0.2的概率;(2)假设每种甜品利润率不变,销售一份A甜品获利x1元,销售一份B甜品获利x2元,销售一份C甜品获利x3元,销售一份D甜品获利x4元,销售一份E甜品获利x5元,设 = 1+ 2+ 3+ 4+ 55,若该甜品店从五种“网红甜品”中随机卖出两种不同的甜品,求至少有一种甜品获利超过 元的概率.参考答案与解析1.C[解析]对于A,发芽与不发芽的概率一般不相等,不满足等可能性不是古典概型;对于B,正方形内点的个数是无限的,不满足有限性不是古典概型;对于C,满足有限性和等可能性,是古典概型;对于D,区间内的实数有无限多个,不满足有限性不是古典概型.故选C.2.A[解析]甲、乙、丙3人站成一排,该试验有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6个样本点,而事件“甲恰好站在中间”包含的样本点的个数为2,所以甲恰好站在中间的概率P=26=13,故选A.3.C[解析]该试验有12,13,20,30,21,31,共6个样本点,事件“所组成的两位数为奇数”包含的样本点有13,21,31,共3个,因此所组成的两位数为奇数的概率是36=12,故选C.4.B[解析]将3名男生用A,B,C表示,2名女生用a,b表示,从5名青年志愿者中选出2人,该试验的样本空间Ω={(A,B),(A,C),(A,a),(A,b),(B,C),(B,a),(B,b),(C,a),(C,b),(a,b)},共包含10个样本点,其中事件“选出的2名青年志愿者性别相同”包含的样本点有(A,B),(A,C),(B,C),(a,b),共4个,则选出的2名青年志愿者性别相同的概率P=410=25.故选B.5.C[解析]设两款优惠套餐分别为A,B,列举基本事件如图所示.由图可知,样本空间中共有8个样本点,其中“甲、乙、丙三位同学选择同一款套餐”包括(A,A,A),(B,B,B),共2个样本点,故所求概率P=28=14.6.C[解析]从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,该试验共有20个样本点,其中事件“这个两位数大于40”包含的样本点有8个,所以所求概率P=820=25.7.B[解析]设A,B,C三人的手机分别为A',B',C',则B,C两人拿到手机的样本空间Ω={(B-A',C-B'),(B-A',C-C'),(B-B',C-A'),(B-B',C-C'),(B-C',C-A'),(B-C',C-B')},共有6个样本点.事件“这两人中只有一人拿到自己手机”包含的样本点有(B-A',C-C'),(B-B',C-A'),共2个,故所求概率为26=13,故选B.8.C[解析]设这两人为A,B,则这两人离开电梯的样本空间Ω={(A2,B2),(A2,B3),(A2,B4),(A2,B5),(A2,B6),(A3,B2),(A3,B3),…,(A6,B6)},共包含25个样本点.事件“该两人在相同层离开电梯”共包含(A2,B2),(A3,B3),(A4,B4),(A5,B5),(A6,B6)5个样本点,所以“这两人在不同层离开电梯”共包含20个样本点,所求概率P=2025=45,故选C.9.12[解析]抛掷一枚质地均匀的骰子,观察其向上的点数,该试验共有6个样本点,事件“向上的点数是2的倍数”所包含的样本点的个数为3,所以所求概率为36=12.10.12[解析]从编号分别为1,2,3,4的4张卡片中随机抽取一张,放回后再随机抽取一张,则样本空间中样本点的个数为16,事件“第二次抽得的卡片上的数字能被第一次抽得的卡片上的数字整除”包含的样本点有8个,分别为(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4),所以第二次抽得的卡片上的数字能被第一次抽得的卡片上的数字整除的概率P=816=12.11.13[解析]试验的样本空间Ω={(红,红),(红,白),(红,蓝),(白,红),(白,白),(白,蓝),(蓝,红),(蓝,白),(蓝,蓝)},共包含9个样本点,设事件A=“甲、乙选择相同颜色的运动服”,则A={(红,红),(白,白),(蓝,蓝)},共包含3个样本点,故所求的概率P=39=13. 12.1223[解析]若是有放回地取出两个数字,则样本空间Ω1={(m,n)|m,n∈{1,2,3,4}},共包含16个样本点,其中事件“和为奇数”包括(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3),共8个样本点,故所求概率P1=816=12.若是不放回地取出两个数字,则样本空间Ω2={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)},共12个样本点,事件“和为奇数”包括8个样本点,故所求概率P2=812=23.13.解:将5张奖券编号为1,2,3,4,5,其中4,5为有奖奖券,用(x,y)表示甲抽到号码x,乙抽到号码y,则样本空间中所有的样本点为(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,2),(3,4),(3,5),(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4),共20个.(1)“甲中奖”包含8个样本点,分别为(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4),∴P(A)=820=25.(2)“甲、乙都中奖”包含2个样本点,分别为(4,5),(5,4),∴P(B)=220=110.(3)“只有乙中奖”包含6个样本点,分别为(1,4),(1,5),(2,4),(2,5),(3,4), (3,5),∴P(C)=620=310.(4)“乙中奖”包含8个样本点,分别为(1,4),(1,5),(2,4),(2,5),(3,4), (3,5),(4,5),(5,4),∴P(D)=820=25.14.解:(1)计算10件产品的综合指标Q,如下表:产品编号A1A2A3A4A5A6A7A8A9A10Q4565656634其中Q≤5的有A1,A2,A4,A6,A9,A10,共6件,故该样本的一等品率为610=0.6,从而估计该批产品的一等品率为0.6.(2)在该样本的一等品中,随机抽取2件产品,该试验的样本点有{A1,A2},{A1,A4},{A1,A6},{A1,A9},{A1,A10},{A2,A4},{A2,A6},{A2,A9},{A2,A10},{A4,A6},{ A4,A9},{A4,A10},{A6,A9},{A6,A10},{A9,A10},共15个.在该样本的一等品中,综合指标满足Q≤4的产品编号分别为A1,A9,A10,则事件B包含的样本点有{A1,A9},{A1,A10},{A9,A10},共3个,所以P(B)=315=15.15.A[解析]该试验的样本点有A→G→B→F→C,A→G→O→H→C,A→E→D→H→C,A→G →O→F→C,A→E→O→H→C,A→E→O→F→C,共6个,记“此人不经过市中心O”为事件M,则M包含的样本点有A→G→B→F→C,A→E→D→H→C,共2个,∴P(M)=26=13,即他不经过市中心O的概率为13,故选A.16.解:(1)由题意知本月共卖出3万份甜品,利润率高于0.2的是A甜品和D甜品,共有1万份,设“从本月卖出的甜品中随机选一份,这份甜品的利润率高于0.2”为事件A,则P(A)=13.(2)由题意得销售一份A,B,C,D,E甜品分别获利8,5,3,10,3元,∴ =8+5+3+10+35=295,故A甜品和D甜品获利超过 元.从五种“网红甜品”中随机卖出两种不同的甜品,该试验共有10个样本点,分别为{A,B},{A,C},{A,D},{A,E},{B,C},{B,D},{B,E},{C,D},{C,E},{D,E},设“至少有一种甜品获利超过 元”为事件B,则事件B包含的样本点有7个,分别为{A,B},{A,C},{A,D},{A,E},{B,D},{C,D},{D,E},故至少有一种甜品获利超过 元的概率P(B)=710.。

古典概型练习题(有详细答案)

古典概型练习题(有详细答案)

古典概型练习题1.从12个同类产品(其中10个正品,2个次品)中任意抽取3个,下列事件是必然事件的是A.3个都是正品B.至少有一个是次品C.3个都是次品D.至少有一个是正品2.给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件②“当x为某一实数时可使20x<”是不可能事件③“明天要下雨”是必然事件④“从100个灯泡中取出5个,5个都是次品”是随机事件.其中正确命题的个数是( )A. 0B. 1C.2D.34.袋中有3个白球和2个黑球,从中任意摸出2个球,则至少摸出1个黑球的概率为()A. 37B.710C.110D.3105.从标有1,2,3,4,5,6,7,8,9的9张纸片中任取2张,那么这2 张纸片数字之积为偶数的概率为( )A. 12B.718C.1318D.11186.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女当选的概率为( )A.715B.815C.35D. 17.下列对古典概型的说法中正确的个数是 ( )①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③基本事件的总数为n,随机事件A包含k个基本事件,则()kP An=;④每个基本事件出现的可能性相等;A. 1B. 2C. 3D. 48.从装有2个红球和2个白球的口袋中任取两球,那么下列事件中互斥事件的个数是( )⑴至少有一个白球,都是白球;⑵至少有一个白球,至少有一个红球;⑶恰有一个白球,恰有2个白球;⑷至少有一个白球,都是红球.A.0B.1C.2D.39.下列各组事件中,不是互斥事件的是 ( )A.一个射手进行一次射击,命中环数大于8与命中环数小于6B.统计一个班数学期中考试成绩,平均分数不低于90分与平均分数不高于90分C.播种菜籽100粒,发芽90粒与发芽80粒D.检查某种产品,合格率高于70%与合格率为70%10.若事件A 、B 是对立事件,则P(A)+P(B)=________________.11.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________。

古典概型与几何概型专题训练(答案版)

古典概型与几何概型专题训练(答案版)

古典轮廓与几何轮廓专题训练1.在集合{}04M x x =<≤中随机选取一个元素,2log y x =函数大于1的概率为( ) A. 1 湾。

14 C 。

12 D. 34答案与分析: 1. C2. 考虑一元二次方程20x mx n ++=,其,m n 值等于掷骰子两次后连续出现的点数,则方程有实根的概率为 ( ) 一个。

3619 湾。

187 C 。

94 D.3617 答案与分析: 2. A3.如图,大正方形的面积为34,四个全等直角三角形组成一个小正方形, 直角三角形短边的长度3是一朵小花落在一个小方块上的概率是A .117 B .217 C .317 D .417答案与分析: 3 B .因为大正方形的面积343落在5小3正方形4上2的概率是423417P ==。

所以选择B 。

【解题与探索】本题考查几何概率的计算。

求解几何概率问题的关键是求两个区间的长度(面积或体积),然后用几何概率的概率计算公式()=A P A 构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)求解。

所以在这道题中求小花落在小方块上的概率,关键是求小方块的面积和大方块的面积。

4 、如图所示,在3个地方有一只迷失方向的小青蛙。

每次跳跃都可以进入任意相邻格子(如果跳跃5个地方只能进入3个地方,3个可以等待一次跳跃后进入1、2、4、5的机会),然后在第三跳,第一次进5的概率是( ) A.316B. 14C 。

16D.12答案与分析: 4. A一个盒子6里有好的晶体管和4坏的晶体管。

取两次,每次取一个,每次取后不要放回去。

知道第一个是好晶体管,第二个也是好晶体管的概率是 ( ) 一个。

13 湾。

512 C 。

59 D.925答案与分析: (1) C一个盒子6里有好的晶体管和4坏的晶体管。

服用任意两次,每次服用一次,每次服用拿走不放回去后,第一次和第二次都是好晶体管的概率是 ( ) 一个。

13 湾。

古典概型练习题(有详细答案)解析

古典概型练习题1.从12个同类产品(其中10个正品,2个次品中任意抽取3个,下列事件是必然事件的是A.3个都是正品B.至少有一个是次品 (C.3个都是次品D.至少有一个是正品2.给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件②“当x为某一实数时可使20x<”是不可能事件③“明天要下雨”是必然事件④“从100个灯泡中取出5个,5个都是次品”是随机事件. 其中正确命题的个数是 (A. 0B. 1C.2D.33.从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,这个两位数大于40的概率为5B.25C.35D.45(4.袋中有3个白球和2个黑球,从中任意摸出2个球,则至少摸出1个黑球的概率为A. 37B.710110D.310(5.从标有1,2,3,4,5,6,7,8,9的9纸片中任取2,那么这2 纸片数字之积为偶数的概率为(A. 12B.718C.1318D.186.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为(A.715B.815C.35D. 17.下列对古典概型的说法中正确的个数是 (①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③基本事件的总数为n,随机事件A包含k个基本事件,则(kP An④每个基本事件出现的可能性相等;A. 1B. 2C. 3D. 48.从装有2个红球和2个白球的口袋中任取两球,那么下列事件中互斥事件的个数是(⑴至少有一个白球,都是白球;⑵至少有一个白球,至少有一个红球;⑶恰有一个白球,恰有2个白球;⑷至少有一个白球,都是红球.A.0B.1C.2D.39.下列各组事件中,不是互斥事件的是 (A.一个射手进行一次射击,命中环数大于8与命中环数小于6B.统计一个班数学期中考试成绩,平均分数不低于90分与平均分数不高于90分C.播种菜籽100粒,发芽90粒与发芽80粒D.检查某种产品,合格率高于70%与合格率为70%10.一个均匀的正方体的玩具的各个面上分别标以数1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不小于4,则(A.A与B是互斥而非对立事件B.A与B是对立事件C.B与C是互斥而非对立事件D.B与C是对立事件11.下列说法中正确的是 (A.事件A 、B 至少有一个发生的概率一定比A 、B 中恰有一个发生的概率大B.事件A 、B 同时发生的概率一定比A 、B 中恰有一个发生的概率小C.互斥事件一定是对立事件,对立事件也是互斥事件D.互斥事件不一定是对立事件,而对立事件一定是互斥事件12.有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上1,2,3,现任取3面,它们的颜色与均不相同的概率是 ( A.13 B.19 C.114 D.12713.若事件A 、B 是对立事件,则P(A+P(B=________________.14.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________。

高一数学古典概型试题答案及解析

高一数学古典概型试题答案及解析1.袋中有大小相同的三个白球和两个黑球,从中任取两个球,两球同色的概率为()A.B.C.D.【答案】B【解析】所有不同方法数有种,所求事件包含的不同方法数有种,因此概率,答案选B.【考点】古典概型的概率计算2.某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数,按十位数字为茎,个位数字为叶得到的茎叶图如图所示.已知甲、乙两组数据的平均数都为10.(1)求的值;(2)分别求出甲、乙两组数据的方差和,并由此分析两组技工的加工水平;(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件数之和大于17,则称该车间“质量合格”,求该车间“质量合格”的概率.(注:方差,为数据的平均数)【答案】(1);(2);(3).【解析】(1)由题意根据平均数的计算公式分别求出的值;(2)分别求出甲、乙两组技工在单位时间内加工的合格零件数的方差和,再根据它们的平均值相等,可得方差较小的发挥更稳定一些;(3)用列举法求得所有的基本事件的个数,找出其中满足该车间“质量合格”的基本事件的个数,即可求得该车间“质量合格”的概率.试题解析:解:(1)由题意得,解得,再由,解得;(2)分别求出甲、乙两组技工在单位时间内加工的合格零件数的方差:,,并由,可得两组技工水平基本相当,乙组更稳定些.(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检查,设两人加工的合格零件数分别为,则所有的有(7,8)、(7,9)、(7,10)、(7,11)、(7,12)、(8,8)、(8,9)、(8,10)、(8,11)、(8,12)、(10,8)、(10,9)、(10,10)、(10,11)、(10,12)、(12,8)、(12,9)、(12,10)、(12,11)、(12,12)、(13,8)、(13,9)、(13,10)、(13,11)、(13,12),共计25个,而满足的基本事件有(7,8)、(7,9)、(7,10)、(8,8)、(8,9),共计5个基本事件,故满足的基本事件个数为,所以该车间“质量合格”的概率为.【考点】1、古典概型及其概率计算公式;2、平均数与方差.3.有一个奇数列1,3,5,7,9,…,现在进行如下分组,第一组有1个数为1,第二组有2个数为3、5,第三组有3个数为7、9、11,…,依次类推,则从第十组中随机抽取一个数恰为3的倍数的概率为 .【答案】【解析】由题可知前9组数据共有,第10组共有10数,且第一个为46,其中为3的倍数的数为:48,51,54,故概率为.【考点】古典概型.4.设函数是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数, (1) 求的最小值;(2)求恒成立的概率.【答案】(1)则当时,;当时,;当时,; (2).【解析】(1)对于的最小值问题,对于不同的其结果不一样,故应分别讨论,且采用分离常数法;(2)由(1)小题,要使其恒成立必有,并由列举法计算出其中符合条件的.试题解析:由,因为,故有.则当时,;当时,;当时,;由(1)可知,要使恒成立,当时,;当时,;当时,;故满足条件的有对.共有,则概率.【考点】(1)函数最值问题(分离常数法);(2)古典概型.5.已知方程是关于的一元二次方程.(1)若是从集合四个数中任取的一个数,是从集合三个数中任取的一个数,求上述方程有实数根的概率;(2)若,,求上述方程有实数根的概率.【答案】(1)(2)【解析】(1)先将从集合四个数中任取的一个数作为,从集合三个数中任取的一个数作为的所有情况列出来,再将使上述方程由实数根的情况列出来,根据古典概型公式算出所求事件的概率;(2)先作出满足,表示的平面区域并计算出区域的面积S,再根据要使方程有实数根,则△≥0,求出a,b满足的不等式,作出该不等式与,表示区域并计算面积,根据几何概型公式,该面积与S的比值就是上述方程有实数根的概率.试题解析:设事件为“方程有实数根”.当,时,方程有实数根的充要条件为.(1)基本事件共12个:,,,.其中第一个数表示的取值,第二个数表示的取值.事件中包含9个基本事件.事件发生的概率为.(2)试验的全部结果所构成的区域为.构成事件的区域为.所以所求的概率.考点:古典概型;几何概型6.在两个袋内,分别写着装有、、、、、六个数字的张卡片,今从每个袋中各取一张卡片,则两数之和等于9的概率为()A.B.C.D.【答案】C【解析】任取一张卡片共种情况,两数之和为9包括共4种,所以两数之和为9的概率为,故选C.【考点】古典概型的概率问题7.某种饮料每箱装5听,其中有3听合格,2听不合格,现质检人员从中随机抽取2听进行检测,则检测出至少有一听不合格饮料的概率是_________.【答案】【解析】每箱中3听合格的饮料分别记为,不合格的2听分别记为。

高三数学古典概型试题答案及解析

高三数学古典概型试题答案及解析1.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.【答案】A【解析】由题意知本题是一个古典概型,试验发生包含的事件数是种结果,满足条件得事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到,故选A.【考点】古典概型及其概率计算公式.2.甲、乙两人玩一种游戏;在装有质地、大小完全相同,编号分别为1,2,3,4,5,6六个球的口袋中,甲先模出一个球,记下编号,放回后乙再模一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.(1)求甲赢且编号和为8的事件发生的概率;(2)这种游戏规则公平吗?试说明理由.【答案】(1);(2)这种游戏规则是公平的.【解析】(1)设“两个编号和为8”为事件A,计算甲、乙两人取出的数字等可能的结果数,事件A包含的基本事件为(2,6),(3,5),(4,4),(5,3),(6,2)共5个,按古典概型概率的计算公式计算;(2)首先按古典概型计算两人分别获胜的概率,通过比较大小,作出结论.所以这种游戏规则是公平的.试题解析:(1)设“两个编号和为8”为事件A,则事件A包含的基本事件为(2,6),(3,5),(4,4),(5,3),(6,2)共5个,又甲、乙两人取出的数字共有6×6=36(个)等可能的结果,故 6分(2)这种游戏规则是公平的. 7分设甲胜为事件B,乙胜为事件C,则甲胜即两编号和为偶数所包含的基本事件数有18个:(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)所以甲胜的概率,乙胜的概率= 11分所以这种游戏规则是公平的. 12分【考点】古典概型概率的计算.3.(本小题满分12分)一个盒子里装有三张卡片,分别标记有数字,,,这三张卡片除标记的数字外完全相同。

《古典概型》基础训练

《古典概型》基础训练一、单项选择题1.甲、乙、丙是同班同学,假设他们三个人早上到学校先后的可能性是相同的,则事件“甲比乙先到学校,乙又比丙先到学校”的概率是()A.12B.13C.14D.162.如图所示,在每一个方格中填入一个数字,数字可以是1,2,3,4中的任何一个,允许重复,则填入A方格的数字大于B方格的数字的概率为()A.12B.14C.34D.383.某班有男生30人,女生20人,按分层抽样的方法从班级中选5人负责校园开放日的接待工作.现从这5人中随机选取2人,至少有1名男生的概率是()A.110B.310C.710D.9104.边长为2的正三角形的顶点和各边的中点共6个点,从中任选两点,所选出的两点之间的距离大于1的概率是()A.13B.12C.25D.355.袋中装有红、黄、蓝三种颜色的球各2个,从中任取3个球,则恰有两个球同色的概率为()A.15B.310C.35D.45二、多项选择题6.以下试验是古典概型的有()A.从6名同学中选出4名同学参加学校文艺汇演,每个人被选中的可能性大小B.同时掷两枚骰子,点数和为7的概率C.近三天中有一天降雪的概率D.3个人站成一排,其中甲、乙相邻的概率三、填空题7.有5张卡片,上面分别标有数字1,2,3,4,5,从中任取2张,则卡片上数字之积为偶数的概率为________.8.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_________.四、解答题a b是一颗骰子掷两9.已知关于x的一元二次方程22---+=.若(,)2(2)160x a x b次所得的点数.(1)求方程有两个正根的概率;(2)求方程没有实根的概率.10.甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取6次,得到甲、乙两位学生成绩的茎叶图.(1)现要从中选派一人参加数学竞赛,从平均成绩状况和方差的角度考虑,你认为哪位学生的成绩更稳定?请说明理由;(2)在乙同学的6次预赛成绩中,从不小于70分的成绩中随机抽取2个成绩,列出所有结果,并求抽取的2个成绩均大于80分的概率.参考答案一、单项选择题1.答案:D解析:甲、乙、丙三人到学校的次序共有甲乙丙、甲丙乙、乙甲丙、乙丙甲、丙甲乙、丙乙甲6种结果,而事件“甲比乙先到学校,乙又比丙先到学校”含“甲乙丙”1种结果,因此其概率16P=,故选D.2.答案:D解析:只考虑A,B两个方格的填法,不考虑大小,A,B两个方格有16种填法要使填入A方格的数字大于B方格的数字,则从1,2,3,4中选2个数字,大的放入A格,小的放入B格,有{(4,3),(4, 2) ,(4,1),(3,2),(3,1),(2,1)},共6个样本点,故填入A方格的数字大于B方格的数字的概率为63 168=.3.答案:D解析:由分层抽样知识得,男生中抽取530350⨯=人,设为,,a b c;女生中抽取520250⨯=人,设为,d e.从中任取2人的样本空间{,,,,,,,,,}ab ac ad ae bc bd be cd ce deΩ=,共10个样本点.设“至少有1名男生”为事件A,则A为2人全是女生,所以A中含{}de,共1个样本点,因此11(),()11010P A P A=∴=-910=,故选D.4.答案:C解析:如图,从,,,,,6A B C D E F个点中任选两个点,样本空间{(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),A B A C A D A E A F B C B D B E B F C D C E C F Ω=(,),(,),(,)}D E D F E F,共15个样本点,其中所选出的两点之间的距离大于1包含6个样本点,即{(,)(,),(,),(,),(,),(,)}A B A C A E B C B F C D ,故所求概率62155P ==.5. 答案:C解析:设2个红球为12,a a ,2个黄球为12,b b ,2个蓝球为12,c c ,从中任取3个,其样本空间{121122121122112111112121122112,,,,,,,,,a a b a a b a a c a a c a bb a b c a b c a b c a b c a c c Ω=, }212211212221222212121122112212,,,,,,,,,a bb a b c a b c a b c a b c a c c bb c bb c b c c b c c ,共20个样本点设“恰有两球同色”为事件A ,则A中含有{121122121122112112212212121122,,,,,,,,,a a b a a b a a c a a c a bb a c c a bb a c c bb c bb c }112212,b c c b c c ,共12个样本点.123()205P A ∴==,故选C. 二、多项选择题 6.答案:ABD解析:对于A ,从6名同学中选出4名同学参加学校文艺汇演,每个人被选中的可能性相等,满足有限性和等可能性,是古典概型;在B 中,同时掷两枚骰子,点数和为7的事件是随机事件,满足有限性和等可能性,是古典概型;在C 中,不满足等可能性,不是古典概型;在D 中,3个人站成一排,其中甲,乙相邻的概率,满足有限性和等可能性,是古典概型. 三、填空题 7. 答案:710解析:从标有数字1,2,3,4,5的5张卡片中任取2张,其样本空间{(1,2)Ω=,(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)},共10个样本点.解法一:卡片上数字之积为偶数的有{(1,2),(1,4),(2,3),(2,4),(2,5),(3,4),(4,5)},共7个样本点,故所求概率710P =. 解法二:从5张卡片中任取2张,有“卡片上数字之积为奇数”“卡片上数字之积为偶数”两种结果,且二者必居其卡片上数字之积为奇数有{(1,3),(1,5),(3,5)}, 共3个样本点,则“卡片上数字之积为奇数”的概率为310,所以所求概率3711010P =-=. 8.答案:23解析:设2本不同的数学书为12,,a a 语文书为b ,在书架上的排法为{}121221211221,,,,,a a b a ba a a b a ba ba a ba a ,共6个样本点,其中2本数学书相邻的有{}12211221,,,a a b a a b ba a ba a ,共4个样本点,因此2本数学书相邻的概率4263P ==. 四、解答题 9.答案:见解析解析:(1)样本空间中的样本点共有36个,方程有两个正根等价于22(2)0,160,0,a b ->⎧⎪->⎨⎪∆⎩即222,44,(2)16.a b a b >⎧⎪-<<⎨⎪-+⎩设“方程有两个正根”为事件A ,则事件A 包含4个样本点,即{(6,1),(6,2),(6,3),(5,3)},故所求概率为41()369P A ==. (2)方程没有实根等价于0∆<,即22(2)16a b -+<.设“方程没有实根”为事件B ,则事件B 包含的样本点有14个,即{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(5,1),(5,2)},故所求概率为147()3618P B ==.10.答案:见解析解析:(1) 1(69787979867+88)=80x =⨯++++甲,22222221(6980)(7880)(7980)(7980)(8780)(8880)6s ⎡⎤=⨯-+-+-+-+-+-⎣⎦甲40= . 1(657779828889)806x =⨯+++++=乙,22222221(6580)(7780)(7980)(8280)(8880)(8980)64.6s ⎡⎤=⨯-+-+-+-+-+-=⎣⎦乙 22,x x s s =<甲乙甲乙,∴甲学生的成绩更稳定. (2)在乙同学的6次预赛成绩中,从不小于70分的成绩中随机抽取2个成绩,样本空间(77,88),(77,89),(79,82),(79,88{(7),(7,79),(779,89),(78,82)2,,,88)Ω=(82,89),(88,89)},共10个样本点,2个成绩均大于80分的有{(82,88),(82,89)(88,89)},,共3个样本点,∴抽取的2个成绩均大于80分的概率310P =.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

古典概型练习题
1.从12个同类产品(其中10个正品,2个次品)中任意抽取3个,下列事件是必然事件的是 A.3个都是正品 B.至少有一个是次品 ( ) C.3个都是次品 D.至少有一个是正品
2.给出下列四个命题:
①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件 ②“当x 为某一实数时可使20x <”是不可能事件
③“明天要下雨”是必然事件
④“从100个灯泡中取出5个,5个都是次品”是随机事件.
其中正确命题的个数是 ( ) A. 0 B. 1 C.2 D.3
3.从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,这个两位数大于40的概率为
A. 15
B. 25
C. 35
D. 4
5
( )
4.袋中有3个白球和2个黑球,从中任意摸出2个球,则至少摸出1个黑球的概率为
A. 37
B. 710
C. 110
D. 3
10
( )
5.从标有1,2,3,4,5,6,7,8,9的9张纸片中任取2张,那么这 2 张纸片数字之积为偶数的概率为 ( )
A. 12
B. 718
C. 1318
D. 11
18
6.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为( )
A. 715
B. 815
C. 3
5
D. 1
7.下列对古典概型的说法中正确的个数是 ( )
①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;
③基本事件的总数为n,随机事件A 包含k 个基本事件,则()k
P A n
=;
④每个基本事件出现的可能性相等; A. 1 B. 2 C. 3 D. 4
8.从装有2个红球和2个白球的口袋中任取两球,那么下列事件中互斥事件的个数是( ) ⑴至少有一个白球,都是白球; ⑵至少有一个白球,至少有一个红球; ⑶恰有一个白球,恰有2个白球; ⑷至少有一个白球,都是红球. A.0 B.1 C.2 D.3
9.下列各组事件中,不是互斥事件的是 ( ) A.一个射手进行一次射击,命中环数大于8与命中环数小于6
B.统计一个班数学期中考试成绩,平均分数不低于90分与平均分数不高于90分
C.播种菜籽100粒,发芽90粒与发芽80粒
D.检查某种产品,合格率高于70%与合格率为70%
10.一个均匀的正方体的玩具的各个面上分别标以数1,2,3,4,5,6.将这个玩具向上抛掷1次,
设事件A 表示向上的一面出现奇数点,事件B 表示向上的一面出现的点数不超过3,事件C 表示向上的一面出现的点数不小于4,则 ( ) A .A 与B 是互斥而非对立事件
B .A 与B 是对立事件
C .B 与C 是互斥而非对立事件
D .B 与C 是对立事件
11.下列说法中正确的是 ( )
A.事件A、B至少有一个发生的概率一定比A、B中恰有一个发生的概率大
B.事件A、B同时发生的概率一定比A、B中恰有一个发生的概率小
C.互斥事件一定是对立事件,对立事件也是互斥事件
D.互斥事件不一定是对立事件,而对立事件一定是互斥事件
12.有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上号码1,2,3,现任取3面,它们
的颜色与号码均不相同的概率是()
A.1
3
B.
1
9
C.
1
14
D.
1
27
13.若事件A、B是对立事件,则P(A)+P(B)=________________.
14.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________。

15.抛掷一个骰子,它落地时向上的数可能情形是1,2,3,4,5,6,骰子落地时向上的数是3的倍数的概率
是_________。

16.将一枚骰子抛掷两次,若先后出现的点数分别为b、c则方程x2+bx+c=0有实根的概率为
____________.
17.若以连续掷两颗骰子分别得到的点数m、n作为点P的坐标,则点P落在圆x2+y2=16内的概率
是______.
18. 3粒种子种在甲坑内,每粒种子发芽的概率为1
2.若坑内至少有1粒种子发芽,则不需要补种,若坑
内的种子都没有发芽,则需要补种,则甲坑不需要补种的概率为________.
19.抛掷两颗骰子,求:(1)点数之和是4的倍数的概率;(2)点数之和大于5小于10的概率.
20.袋中有红、白色球各一个,每次任取一个,有放回地抽三次,写出所有的基本事件,并计算下列事件的概率:(1)三次颜色恰有两次同色;(2)三次颜色全相同;
(3)三次抽取的球中红色球出现的次数多于白色球出现的次数。

21.口袋里装有两个白球和两个黑球,这四个球除颜色外完全相同,四个人按顺序依次从中摸出一球,试求“第二个人摸到白球”的概率。

22.为积极配合深圳2011年第26届世界大运会志愿者招募工作,某大学数学学院拟成立由4名同学组成的志愿者招募宣传队,经过初步选定,2名男同学,4名女同学共6名同学成为候选人,每位候选人当选宣传队队员的机会是相同的.
(1)求当选的4名同学中恰有1名男同学的概率;
(2)求当选的4名同学中至少有3名女同学的概率.
18、因为种子发芽的概率为1
2,种子发芽与不发芽的可能性是均等的.若甲坑中种子发芽记为1,不发
芽记为0,每粒种子发芽与否彼此互不影响,故其基本事件为(1,1,1),(1,1,0),(1,0,1),(1,0,0),(0,1,1),(0,1,0),(0,0,1),(0,0,0),共8种.而都不发芽的情况只有1种,即(0,0,0),所以需要补种的概率是1
8,
故甲坑不需要补种的概率是1-18=7
8
.
19、从图中容易看出基本事件与所描点一一对应,共36种.
(1)记“点数之和是4的倍数”为事件A ,从图中可以看出,事件A 包含的基本事件共
有9个:(1,3),(2,2),(2,6),(3,1),(3,5),(4,4),(5,3),(6,2),(6,6).所以P (A )= 1
4.
(2)记“点数之和大于5小于10”为事件B ,从图中可以看出,事件B 包含的基本事件 共有20个.即(1,5),(2,4),(3,3),(4,2),(5,1),(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),
(2,6),(3,5),(4,4),(5,3),(6,2),(3,6),(4,5),(5,4),(6,3).所以P (B )=
59
. 20、(红红红)(红红白)(红白红)(白红红)(红白白)(白红白)(白白红)(白白白)(1)
34(2)14(3)12
22、(1)将2名男同学和4名女同学分别编号为1,2,3,4,5,6(其中1,2是男同学,3,4,5,6是女同学),该学
院6名同学中有4名当选的情况有(1,2,3,4),(1,2,3,5),(1,2,3,6),(1,2,4,5),(1,2,4,6),(1,2,5,6),(1,3,4,5),(1,3,4,6),(1,3,5,6),(1,4,5,6),(2,3,4,5),(2,3,4,6),(2,3,5,6),(2,4,5,6),(3,4,5,6),共15种,当选的4名同学中恰有1名男同学的情况有(1,3,4,5),(1,3,4,6),(1,3,5,6),(1,4,5,6),(2,3,4,5),(2,3,4,6),(2,3,5,6),(2,4,5,6),共8种,
故当选的4名同学中恰有1名男同学的概率为P(A)=
815
. (2)当选的4名同学中至少有3名女同学包括3名女同学当选(恰有1名男同学当选),4名女同学当选这
两种情况,而4名女同学当选的情况只有(3,4,5,6),则其概率为P(B)=1
15

又当选的4名同学中恰有1名男同学的概率为P(A)=815
,故当选的4名同学中至少有3名女同学的概率为P =
815+115=35
. 21、把四人依次编号为甲、乙、丙、丁,把两白球编上序号1、2,把两黑球也编上序号1、2,于是四个人按顺序依次从袋内摸出一个球的所有可能结果,可用树形图直观地表示出来如下:
从上面的树形图可以看出,试验的所有可能结果数为24,第二人摸到白球的结果有12种,记“第二
个人摸到白球”为事件A ,则121()242P A =
=。

黑2
白1 白2 白2 黑1 黑1 黑1 2 1 白1 白1 白2 白2
白1 白1
黑1
甲 乙 丙 丁 白2 白1 黑1
黑2 黑1 黑2 黑2 黑2 黑1 黑1 白1 白1 白1
白1 黑1 黑2 甲 乙 丙 丁 黑1
白1 白2
黑2 白2 黑2 黑2 2 2 白1 白1 白2 白2
白1 白1
黑2
甲 乙 丙 丁 白1 白2 黑1 黑2 黑1 黑2 黑2 2 1 黑1 白2 白2 白2 白2 黑1 黑2 甲 乙 丙 丁。

相关文档
最新文档