古典概型知识点总结

合集下载

人教A版高中数学必修第二册-第十章 -10-1-3古典概型

人教A版高中数学必修第二册-第十章 -10-1-3古典概型
D解析 A,B两项中的样本点的出现不是等可能的; C项中样本点的个数是无限多个; D项中样本点的出现是等可能的,且是有限个.故选D.
高中数学 必修第二册 RJ·A
二 古典概型概率的计算 例2 一个口袋内装有大小相等的1个白球和已编有不同号码的3个黑 球,从中摸出2个球.求: (1)样本空间的样本点的总数n;
知识点一 事件的概率
对随机事件发生 可能性大小 的度量(数值)称为事件的概率,事件A的概率用 P(A) 表示.
高中数学 必修第二册 RJ·A
知识点二 古典概型
一般地,若试验E具有以下特征: (1)有限性:样本空间的样本点只有 有限个 ; (2)等可能性:每个样本点发生的可能性 相等 . 称试验E为古典概型试验,其数学模型称为 古典概率 模型,简称
(3)摸出2个黑球的概率. 解 样本点总数 n=6,事件“摸出两个黑球”包含的样本点个数 m=3,故 P=36=12, 即摸出 2 个黑球的概率为12.
高中数学 必修第二册 RJ·A
反思感悟
利用古典概型公式计算概率的步骤 (1)确定样本空间的样本点的总数n. (2)确定所求事件A包含的样本点的个数m.
故 P(A)=366=16.
高中数学 必修第二册 RJ·A
(2)求掷出两个4点的概率; 解 记“掷出两个4点”为事件B,从图中可以看出,事件B包含的样本点只有1个,即(4,4). 故 P(B)=316.
(3)求点数之和能被3整除的概率. 解 记“点数之和能被3整除”为事件C,则事件C包含的样本点共12个:(1,2),(2,1), (1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(4,5),(5,4),(6,6). 故 P(C)=1326=13.

高二数学必修3知识点整理:古典概型

高二数学必修3知识点整理:古典概型

【导语】以下是⽆忧考为⼤家推荐的有关⾼⼆数学必修3知识点整理:古典概型,如果觉得很不错,欢迎点评和分享~感谢你的阅读与⽀持! 古典概型的基本概念 1.基本事件:在⼀次试验中可能出现的每⼀个基本结果称为基本事件; 2.等可能基本事件:若在⼀次试验中,每个基本事件发⽣的可能性都相同,则称这些基本事件为等可能基本事件; 3.古典概型:满⾜以下两个条件的随机试验的概率模型称为古典概型①所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等; 4.古典概型的概率:如果⼀次试验的等可能基本事件共有n个,那么每⼀个等可能基本事件发⽣的概率都是 1,如果某个事件A包含了其中m个等可能基本事件,那么事件A发⽣的概率为nP(A)?m.n 知识点⼀:古典概型的基本概念 *例1:从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?思路分析: 题意分析:本试题考查⼀次试验中⽤列举法列出所有基本事件的结果,⽽画树状图是列举法的基本⽅法. 解题思路:为了了解基本事件,我们可以按照字典排序的顺序,把所有可能的结果都列出来.或者利⽤树状图将它们之间的关系列出来.解答过程:解法⼀:所求的基本事件共有6个: A?{a,b},B?{a,c},C?{a,d}D?{b,c},E?{b,d},F?{c,d} 解法⼆:树状图 解题后的思考:⽤树状图求解⼀次试验中的基本事件数⽐较直观、形象,可做到不重不漏.掌握列举法,学会⽤数形结合、分类讨论的思想解决概率的计算问题. **例2:(1)向⼀个圆⾯内随机地投射⼀个点,如该点落在圆内任意⼀点都是等可能的,你认为这是古典概型吗?为什么? (2)如图,某同学随机地向⼀靶⼼射击,这⼀试验的结果只有有限个:命中10环、命中9环??命中5环和不中环.你认为这是古典概型吗?为什么? 思路分析: 题意分析:本题考查古典概型的概念.应明确什么是古典概型及其应具备什么样的条件.解题思路:结合古典概型的两个基本特征可进⾏判定解决.解答过程: 答:(1)不是古典概型,因为试验的所有可能结果是圆⾯内所有的点,试验的所有可能结果数是⽆限的,虽然每⼀个试验结果出现的“可能性相同”,但这个试验不满⾜古典概型的第⼀个条件. (2)不是古典概型,因为试验的所有可能结果只有7个,⽽命中10环、命中9环??命中5环和不中环的出现不是等可能的,即不满⾜古典概型的第⼆个条件. 解题后的思考:判定是不是古典概型,主要看两个⽅⾯,⼀是实验结果是不是有限的;另⼀个就是每个事件是不是等可能的. ***例3:单选题是标准化考试中常⽤的题型,⼀般是从A,B,C,D四个选项中选择⼀个正确答案.如果考⽣掌握了考查的内容,他可以选择正确的答案.假设考⽣不会做,他随机的选择⼀个答案,问他答对的概率是多少?思路分析: 题意分析:本题考查古典概型概率的求解运算. 解题思路:解本题的关键,即讨论这个问题什么情况下可以看成古典概型.如果考⽣掌握了全部或部分考查内容,这都不满⾜古典概型的第2个条件——等可能性,因此,只有在假定考⽣不会做,随机地选择了⼀个答案的情况下,才可将此问题看作古典概型. 解答过程:这是⼀个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,即基本事件共有4个,考⽣随机地选择⼀个答案是选择A,B,C,D的可能性是相等的.从⽽由古典概型的概率计算公式得: P(答对\答对所包含的基本事件的个数1==0.25 基本事件的总数4解题后的思考:运⽤古典概型的概率公式求概率时,⼀定要先判定该试题是不是古典概型,然后明确试验的总的基本事件数,和事件A发⽣的基本事件数,再借助于概率公式运算.⼩结:本知识点的例题主要考查对古典概型及其概率概念的基本理解.把握古典概型的两个特征是解决概率问题的第⼀个关键点;理解⼀次试验中的所有基本事件数,和事件A发⽣的基本事件数,是解决概率问题的第⼆个关键点. 知识点⼆:古典概型的运⽤ *例4:同时掷两个骰⼦,计算:(1)⼀共有多少种不同的结果? (2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少? (4)为什么要把两个骰⼦标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?思路分析: 题意分析:本题考查了古典概型的基本运算问题. 解题思路:先分析“同时掷两个骰⼦的所有事件数”,然后分析事件A:向上的点数之和为5的基本事件数,最后结合概率公式运算.同时可以运⽤举⼀反三的思想⾃⾏设问、解答. 解答过程: 解:(1)掷⼀个骰⼦的结果有6种,我们把两个骰⼦标上记号1,2以便区分,由于1号骰⼦的结果都可与2号骰⼦的任意⼀个结果配对,我们⽤⼀个“有序实数对”来表⽰组成同时掷两个骰⼦的⼀个结果(如表),其中第⼀个数表⽰掷1号骰⼦的结果,第⼆个数表⽰掷2号骰⼦的结果.(可由列表法得到)1号骰⼦2号骰⼦1(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2) (4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5) (5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)123456由表中可知同时掷两个骰⼦的结果共有36种.(2)在上⾯的结果中,向上的点数之和为5的结果有4种,分别为:(1,4),(2,3),(3,2),(4,1) (3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得 P(A)=A所包含的基本事件的个数41== 基本事件的总数369(4)如果不标上记号,类似于(1,2)和(2,1)的结果将没有区别.这时,所有可能的结果将是: (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5) (5,6)(6,6)共有21种,和是5的结果有2个,它们是(1,4)(2,3),则所求的概率为 P(A)=A所包含的基本事件的个数2= 基本事件的总数21这就需要我们考察两种解法是否满⾜古典概型的要求了.可以通过展⽰两个不同的骰⼦所抛掷出来的点,感受第⼆种⽅法构造的基本事件不是等可能事件. 解题后的思考:考查同学们运⽤古典概型的概率计算公式时应注意验证所构造的基本事件是否满⾜古典概型的第⼆个条件. 对于同时抛掷的问题,我们要将骰⼦编号,因为这样就能反映出所有的情况,不⾄于把(1,2)和(2,1)看作相同的情况,保证基本事件的等可能性.我们也可将此试验通过先后抛掷来解决,这样就有顺序了,则基本事件的出现也是等可能的. **例5:从含有两件正品a1,a2和⼀件次品b1的三件产品中,每次任取⼀件,每次取出后不放回,连续取两次,求取出的两件产品中恰有⼀件次品的概率.思路分析: 题意分析:本题考查的是不放回抽样的古典概型概率的运⽤ 解题思路:⾸先注意到该题中取出的过程是有顺序的.同时明⽩⼀次试验指的是“不放回的,连续的取两次”. 先列举出试验中的所有基本事件数,然后求事件A的基本事件数,利⽤概率公式求解.解答过程: 解法1:每次取出⼀个,取后不放回地连续取两次,其⼀切可能的结果组成的基本事件有6个,即(a1,a2),(a1,b1),(a2,a1),(a2,b1),(b1,a1),(b1,a2).其中⼩括号内左边的字母表⽰第1次取出的产品,右边的字母表⽰第2次取出的产品. ⽤A表⽰“取出的两件中,恰好有⼀件次品”这⼀事件,则A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)]事件A由4个基本事件组成,因⽽P(A)= 42=63解法2:可以看作不放回3次⽆顺序抽样,先按抽取顺序(x,y)记录结果,则x有3种可能,y有2种可能,但(x,y),(y,x)是相同的,所以试验的所有结果有3×2÷2=3种,按同样的⽅法,事件B包含的基本事件个数为2×1÷1=2,因此P(B)= 23解题后的思考:关于不放回抽样,计算基本事件的个数时,既可以看作是有顺序的,也可以看作是⽆顺序的,其结果是⼀样的,但⽆论选择哪⼀种⽅式,观察的⾓度必须⼀致,否则会导致错误. ***例6:从含有两件正品a1,a2和⼀件次品b1的三件产品中,每次任取⼀件,每次取出后放回,连续取两次,求取出的两件产品中恰有⼀件次品的概率.思路分析: 题意分析:本题考查放回抽样的概率问题. 解题思路:⾸先注意到该题中取出的过程是有顺序的.同时明⽩⼀次试验指的是“有放回的,连续的取两次”. 解答过程:每次取出⼀个后放回,连续取两次,其⼀切可能的结果组成的基本事件有9个,即 (a1,a1),(a1,a2)和(a1,b1)(a2,a1),(a2,b1)和(a2,a2)(b1,a1),(b1,a2)和(b1,b1) 其中⼩括号内左边的字母表⽰第1次取出的产品,右边的字母表⽰第2次取出的产品.⽤A表⽰“取出的两件中,恰好有⼀件次品”这⼀事件,则A=[(b1,a1),(b1,a2),(a2,b1),(a1,b1)]事件A由4个基本事件组成,因此P(A)= 4.9解题后的思考:对于有放回抽样的概率问题我们要理解每次取的时候,总数是不变的,且同⼀个体可被重复抽取,同时,在求基本事件数时,要做到不重不漏.⼩结: (1)古典概型概率的计算公式是⾮常重要的⼀个公式,要深刻体会古典概型的概念及其概率公式的运⽤,为我们学好概率奠定基础. (2)体会求解不放回和有放回概率的题型. 知识点三:随机数产⽣的⽅法及随机模拟试验的步骤 **例7:某篮球爱好者,做投篮练习,假设其每次投篮命中的概率是40%,那么在连续三次投篮中,恰有两次投中的概率是多少?思路分析: 题意分析:本题考查的是近似计算⾮古典概型的概率. 解题思路:其投篮的可能结果有有限个,但是每个结果的出现不是等可能的,所以不能⽤古典概型的概率公式计算,我们⽤计算机或计算器做模拟试验可以模拟投篮命中的概率为40%.解答过程: 我们通过设计模拟试验的⽅法来解决问题,利⽤计算机或计算器可以⽣产0到9之间的取整数值的随机数. 我们⽤1,2,3,4表⽰投中,⽤5,6,7,8,9,0表⽰未投中,这样可以体现投中的概率是40%.因为是投篮三次,所以每三个随机数作为⼀组. 例如:产⽣20组随机数: 812,932,569,683,271,989,730,537,925,488907,113,966,191,431,257,393,027,556,458 这就相当于做了20次试验,在这组数中,如果恰有两个数在1,2,3,4中,则表⽰恰有两次投中,它们分别是812,932,271,191,393,即共有5个数,我们得到了三次投篮中恰有两次投中的概率近似为解题后的思考: (1)利⽤计算机或计算器做随机模拟试验,可以解决⾮古典概型的概率的求解问题.(2)对于上述试验,如果亲⼿做⼤量重复试验的话,花费的时间太多,因此利⽤计算机或计算器做随机模拟试验可以⼤⼤节省时间. (3)随机函数(RANDBETWEEN)(a,b)产⽣从整数a到整数b的取整数值的随机数. ⼩结:能够简单的体会模拟试验求解⾮古典概型概率的⽅法和步骤.⾼考对这部分内容不作更多的要求,了解即可.5=25%.20 【同步练习题】 1.(2014•惠州调研)⼀个袋中装有2个红球和2个⽩球,现从袋中取出1个球,然后放回袋中再取出1个球,则取出的2个球同⾊的概率为()A.12;B.13;C.14;D.25 答案:A[把红球标记为红1、红2,⽩球标记为⽩1、⽩2,本试验的基本事件共有16个,其中2个球同⾊的事件有8个:红1,红1,红1、红2,红2、红1,红2、红2,⽩1、⽩1,⽩1、⽩2,⽩2、⽩1,⽩2、⽩2,故所求概率为P=816=12.] 2.(2013•江西⾼考)集合A={2,3},B={1,2,3},从A,B中各任意取⼀个数,则这两数之和等于4的概率是 ()A.23B.12C.13D.16 答案:C[从A,B中各任取⼀个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6种情况,其中两个数之和为4的有(2,2),(3,1),故所求概率为26=13.故选C.] 3.(2014•宿州质检)⼀颗质地均匀的正⽅体骰⼦,其六个⾯上的点数分别为1、2、3、4、5、6,将这⼀颗骰⼦连续抛掷三次,观察向上的点数,则三次点数依次构成等差数列的概率为()A.112B.118C.136D.7108 答案:A[基本事件总数为6×6×6,事件“三次点数依次成等差数列”包含的基本事件有(1,1,1),(1,2,3),(3,2,1),(2,2,2),(1,3,5),(5,3,1),(2,3,4),(4,3,2),(3,3,3),(2,4,6),(6,4,2),(3,4,5),(5,4,3),(4,4,4),(4,5,6),(6,5,4),(5,5,5),(6,6,6)共18个,所求事件的概率P=186×6×6=112.] 4.(2013•安徽⾼考)若某公司从五位⼤学毕业⽣甲、⼄、丙、丁、戊中录⽤三⼈,这五⼈被录⽤的机会均等,则甲或⼄被录⽤的概率为 ()A.23B.25C.35D.910 答案:D[五⼈录⽤三⼈共有10种不同⽅式,分别为:{丙,丁,戊},{⼄,丁,戊},{⼄,丙,戊},{⼄,丙,丁},{甲,丁,戊},{甲,丙,戊},{甲,丙,丁},{甲,⼄,戊},{甲,⼄,丁},{甲,⼄,丙}. 其中含甲或⼄的情况有9种,故选D.] 5.(理)(2014•安徽⽰范⾼中联考)在棱长分别为1,2,3的长⽅体上随机选取两个相异顶点,若每个顶点被选取的概率相同,则选到两个顶点的距离⼤于3的概率为()A.47B.37C.27D.314 答案:B[从8个顶点中任取两点有C28=28种取法,其线段长分别为1,2,3,5,10,13,14.①其中12条棱长度都⼩于等于3;②其中4条,棱长为1,2的⾯对⾓线长度为5<3;故长度⼤于3的有28-12-4=12,故两点距离⼤于3的概率为12C28=37,故选B.]。

概率与统计知识点总结

概率与统计知识点总结

概率与统计知识点总结一、概率的基本概念概率,简单来说,就是衡量某个事件发生可能性大小的一个数值。

比如抛硬币,正面朝上的概率是 05,意思是在大量重复抛硬币的实验中,正面朝上的次数大约占总次数的一半。

随机事件,就是在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。

比如掷骰子得到的点数就是随机事件。

必然事件,就是在一定条件下必然会发生的事件。

比如太阳从东方升起,这就是必然事件。

不可能事件,就是在一定条件下不可能发生的事件。

比如在地球上,水往高处流就是不可能事件。

概率的取值范围在 0 到 1 之间。

0 表示事件不可能发生,1 表示事件必然发生。

二、古典概型古典概型是一种最简单、最基本的概率模型。

它具有两个特点:试验中所有可能出现的基本事件只有有限个;每个基本事件出现的可能性相等。

计算古典概型中事件 A 的概率公式为:P(A) = A 包含的基本事件个数/基本事件的总数。

例如,一个袋子里有 5 个红球和 3 个白球,从中随机摸出一个球是红球的概率,基本事件总数是 8(5 个红球+ 3 个白球),红球的个数是 5,所以摸到红球的概率就是 5/8。

三、几何概型与古典概型不同,几何概型中的基本事件个数是无限的。

比如在一个时间段内等可能地到达某一地点,或者在一个区域内等可能地取点。

几何概型的概率计算公式是:P(A) =构成事件 A 的区域长度(面积或体积)/试验的全部结果所构成的区域长度(面积或体积)。

举个例子,在区间0, 10中随机取一个数,这个数小于 5 的概率就是 5/10 = 05。

四、条件概率条件概率是在已知某个事件发生的条件下,另一个事件发生的概率。

记事件 A 在事件 B 发生的条件下发生的概率为 P(A|B)。

计算公式为:P(A|B) = P(AB) / P(B) ,其中 P(AB) 表示事件 A 和事件 B 同时发生的概率。

比如说,已知今天下雨,明天也下雨的概率就是一个条件概率。

高中 古典概型 知识点+例题+练习

高中 古典概型 知识点+例题+练习

教学过程【训练2】(2014·滨州一模)甲、乙两名考生在填报志愿时都选中
了A,B,C,D四所需要面试的院校,这四所院校的面试安排在同
一时间.因此甲、乙都只能在这四所院校中选择一所做志愿,假设
每位同学选择各个院校是等可能的,试求:
(1)甲、乙选择同一所院校的概率;
(2)院校A,B至少有一所被选择的概率.
1.古典概型计算三步曲
第一,本试验是否是等可能的;第二,本试验的基本事件有多少个;
第三,事件A是什么,它包含的基本事物有多少个.
2.确定基本事件的方法
列举法、列表法、树形图法.





析。

高中数学知识点精讲精析 古典概型的特征和概率计算公式

高中数学知识点精讲精析 古典概型的特征和概率计算公式

3.2.1 古典概型的特征和概率计算公式1.基本事件:在一次试验中可能出现的每一个基本结果称为基本事件.2.等可能性事件:若在一次试验中,每个基本事件发生的可能性相同,则称这些基本事件为等可能基本事件.3.古典概型的特点:⑴所有的基本事件只有有限个;⑵每个基本事件发生的概率相等,⑶不需要通过大量重复的试验,只要通过对一次试验可能出现的结果进行分析即可.4.古典概型的概率公::如果一次试验的等可能基本事件共有n 个,那么每个等可能基本事件发生的概率都是1n ,如果某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率为P(A)= mn.5.从集合的角度来理解古典概型的概率:把一次试验中等可能出现的所有结果组成全集I ,把事件A 发生的结果组成集合A ,则A 是I 的一个子集,则有P(A) =card(A)card(t).6.古典概型的公式推导如:在20瓶饮料中,有1瓶已经过了保质期,从中任取1瓶,取到已过保质期的饮料的概率是多少?在20瓶饮料中,有2瓶已经过了保质期了呢?(1/20,2/20=1/10)在n 瓶饮料中,有m 瓶已经过了保质期,从中任取1瓶,取到已过保质期的饮料的概率是多少?(m/n)假设有n 个等可能基本事件,某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率是多少?分析:有n 个等可能基本事件,则每个基本事件发生的概率是多少?答:1/n 事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率是多少?答:nm 1⨯公式:假设有n 个等可能基本事件,某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率nm A P =)(1.连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面. (1)写出这个试验的基本事件空间; (2)求这个试验的基本事件的总数;(3)“恰有两枚正面向上”这一事件包含哪几个基本事件?分析:理解并运用各定义.解:(1)这个试验的基本事件空间Ω={(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反)};(2)基本事件的总数是8.(3)“恰有两枚正面向上”包含以下3个基本事件:(正,正,反),(正,反,正),(反,正,正).2.甲.乙两人做出拳游戏(锤子.剪刀.布),求:(1)平局的概率;(2)甲赢的概率;(3)乙赢的概率.分析:研究此试验是否为古典概型,如果是,基本事件总数n,事件A包含的基本事件数m各为多少.解:甲有3种不同的出拳方法,每一种出法是等可能的,乙同样有等可能的3种不同出法.一次出拳游戏共有3×3=9种不同的结果,可以认为这9种结果是等可能的.所以一次游戏(试验)是古典概型.它的基本事件总数为9.平局的含义是两人出法相同,例如都出了锤.甲赢的含义是甲出锤且乙出剪,甲出剪且乙出布,甲出布且乙出锤这3种情况.乙赢的含义是乙出锤且甲出剪,乙出剪且甲出布,乙出布且甲出锤这3种情况.设平局为事件A,甲赢为事件B,乙赢为事件C.由图3-2-1容易得到:图3-2-1(1)平局含3个基本事件(图中的△);(2)甲赢含3个基本事件(图中的⊙);(3)乙赢含3个基本事件(图中的※).由古典概率的计算公式,可得P (A )3193==; P (B )3193==; P (C )3193==. 3.甲.乙两个均匀的正方体玩具,各个面上分别刻有1,2,3,4,5,6六个数字,将这两个玩具同时掷一次.(1)若甲上的数字为十位数,乙上的数字为个位数,问可以组成多少个不同的数,其中个位数字与十位数字均相同的数字的概率是多少?(2)两个玩具的数字之和共有多少种不同结果?其中数字之和为12的有多少种情况?数字之和为6的共有多少种情况?分别计算这两种情况的概率.分析:(1)准确求出基本事件总数n 和事件A 包含的基本事件个数m . (2)可采用列表的方法求m .n .解:(1)甲有6种不同的结果,乙也有6种不同的结果,故基本事件总数为6×6=36个.其中十位数字共有6种不同的结果,若十位数字与个位数字相同,十位数字确定后,个位数字也即确定.故共有6×1=6种不同的结果,即概率为61366=. (2)两个玩具同时掷的结果可能出现的情况如下表.①每次取一件,取后不放回地连续取两次,其一切可能的结果组成的基本事件空间为 Ω={(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)},其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.Ω由6个基本事件组成,而且可以认为这些基本事件的出现是等可能的.用A 表示“取出的两件中,恰好有一件次品”这一事件,则A ={(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)}.事件A 由4个基本事件组成.因而P (A )3264==. ②有放回地连续取出两件,其一切可能的结果组成的基本事件空间Ω={(a 1,a 1),(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,a 2),(a 2,b 1),(b 1,a 1),(b 1,a 2),(b 1,b 1)},由9个基本事件组成.由于每一件产品被取到的机会均等,因此可以认为这些基本事件的出现是等可能的.用B 表示“恰有一件次品”这一事件,则B ={(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)}.事件B 由4个基本事件组成,因而P (B )=94. 4.判断下列命题的真假.⑴掷两枚硬币,可能出现“两个正面”.“两个反面”.“一正一反”3种等可能的结果; ⑵某口袋中装有大小和形状完全一样的三个红球.两个黑球和一个白球,那么每一种颜色的球被模到的可能相同;⑶从-3,-2,-1,0,1,2,3中任取一个数,则此数小于0与不小于0的可能相同; ⑷分别从3名男生和4名女生中各选取一名代表,那么某个同学当选的可能性相同.解:以上命题均不正确.⑴如果仅考虑这三种结果,则它们不是等可能的,若要是等可能的,则有(正,正),(正,反),(反,正)和(反,反)4种结果,故本小题总是错的;⑵应是摸到每一个球的可能相同,而三种颜色的球的数量是不相同的; ⑶小于0的有3个,而不小于0的有4个;⑷分别从男生和女生中各选取一个人,对男生或女生内部来说是等可能的,而对所有的同学来说男生是3选1,而女生是4选1,显然每个被选取的可能性不同.说明:对硬币的问题,我们不管抛掷是否有先后顺序,还是一起抛掷的,都必须看成有 先后顺序,否则它们就不是等可能的.若先后抛掷n 次或一次抛掷n 枚,基本事件总数都应是2n个.5.将骰子先后抛掷两次,求:⑴向上的点数之和为几的概率最大?最大值是多少? ⑵向上的点数之和是5的倍数的概率是多少? ⑶个向上的点数中至少有一个是6点的概率? ⑷两个点数中有2或3的的概率;⑸第一次得到的点数比第二次的点数大的概率. 解:将骰子先后抛掷两次,得到的点数情况如下表:统计向上点数和的情况如下:⑴向上点数之和是7的概率最大,最大值是636 = 16;⑵向上的点数之和是5的倍数的有(1,4),(2,3),(3,2),(4,1),(4,6),(5,5),(6,4)7个,⑶至少有一个是6点的共有11个,则其概率为1136;⑷两个点数之和是2的倍数或是3的倍数,按列计算,有2+6+6+2+2+2=20个,其概率为2036 = 59;⑹去掉相等的共有6个,剩下的一半是前面的数字大,一半是后面的数字大,有15个,其概率为1536 = 512.说明:⑴骰子问题与硬币问题一样,都要考虑先后顺序,且n 个骰子的基本事件总数是2n;⑵当基本事件总数不大时,用枚举法较方便;⑶若能用一个表格来表示这些问题,可使问题直观明了.6.从数字1,2,3,4,5中任取2个,组成没有重复数字的两位数.试求: ⑴这个两位数是5的倍数的概率; ⑵这个两位数是偶数的概率; ⑶这个两位数大于40的概率.解:“从数字1,2,3,4,5中任取2个,组成没有重复数字的两位数”,共有基本事件总数5×4=20个.⑴设事件A 为“这个两位数是5的倍数”,则事件A 包含的基本事件为:个位数字是5,共有4个, ∴P(A)= 420 =15;⑵设事件B 为“这个两位数是偶数” 则事件B 包含的基本事件为:个位数字是2或4,共有8个, ∴P(A)= 820 =25;⑶设事件C 为“这个两位数大于40” 则事件C 包含的基本事件为:个十位数字是4或5,也有8个, ∴P(A)= 820 =25.说明:⑴数字问题要考虑先后顺序;⑵常把问题转换成个位数或首位数的问题,学会用到分类讨论的思想;⑶若含有0,还要考虑0不能在首位的特殊要求,这是最容易出错的地方.7.一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两只球. ⑴摸出的两只球都是白球的概率是多少? ⑵摸出的两只球是一白一黑的概率是多少?解:从中摸出两球,可分有先后顺序(有序)和无先后顺序(无序)两种情况.设摸出的2只球都是白球的事件为A ,一白一黑的事件为B .有序:从5只球中摸出2只球,其基本事件总数为5×4=20. ⑴摸到2只白球的基本事件数是3×2=6,∴P(A)=620 =310;⑵摸到1只白球和一只黑球的基本事件数是(先白后黑)3×2 +(先黑后白)2×3 =12, ∴P(A)=1220 =35.无序:从5只球中摸出2只球,其基本事件总数为5×42=10.⑴摸到2只白球的基本事件数是3×2 2=3 ∴P(A)= 310;⑵摸到1只白球和一只黑球的基本事件数是3×2 =6, ∴P(A)=610 =35.说明:某些摸球问题是否考虑先后顺序,对问题的答案没有区别,但必须正确理解题意. 8.袋中有红.黄.白色球各一个,每次任取一个,有放回抽三次,计算下列事件的概率: (1)三次颜色各不同;(2)三种颜色不全相同;(3)三次取出的球无红色或无黄色; 解:基本事件有3327=个,是等可能的,(1)记“三次颜色各不相同”为A ,332()279A P A ==; (2)记“三种颜色不全相同”为B ,2738()279P B -==; (3)记“三次取出的球无红色或无黄色”为C ,332215()279P C +-==; 9.将一枚骰子先后掷两次,求所得的点数之和为6的概率。

高二年级数学必修3第三章知识点:古典概型与几何概型知识点总结

高二年级数学必修3第三章知识点:古典概型与几何概型知识点总结

高二年级数学必修3第三章知识点:古典概型与几何概型知
识点总结
数学在科学发展和现代生活生产中的应用非常广泛,以下是为大家整理的高二年级数学必修3第三章知识点,希望可以解决您所遇到的相关问题,加油,一直陪伴您。

知识梳理
1. 基本事件:一次试验连同其中可能出现的每一个结果(事件 )称为一个基本事件
特别提醒:基本事件有如下两个特点:
○1任何两个基本事件都是互斥的;
○2任何事件都可以表示成基本事件的和。

2.所有基本事件的全体,叫做样本空间,用表示,例如抛一枚硬币为一次实验,则={正面,反面}。

3.等可能性事件(古典概型):如果一次试验中可能出现的结果有个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是,这种事件叫等可能性事件
特别提醒:古典概型的两个共同特点:
○1有限性,即试中有可能出现的基本事件只有有限个,即样本空间中的元素个数是有限的;
○2等可能性,即每个基本事件出现的可能性相等。

4.古典概型的概率公式:如果一次试验中可能出现的结果有个,而且所有结果都是等可能的,如果事件包含个结果,那么事件的概率
5.几何概型:如果第个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。

特别提醒:几何概型的特点:
○1试验的结果是无限不可数的;
○2每个结果出现的可能性相等。

6.几何概型的概率公式: P(A)=
最后,希望小编整理的高二年级数学必修3第三章知识点对您有所帮助,祝同学们学习进步。

高二数学概率知识点总结

高二数学概率知识点总结

高二数学概率知识点总结
一、随机事件的概率
1. 随机事件:在一定条件下可能发生也可能不发生的事件。

2. 必然事件:在一定条件下必然发生的事件。

3. 不可能事件:在一定条件下不可能发生的事件。

4. 概率的定义:对于一个随机事件A,它发生的概率P(A)满足0 ≤ P(A) ≤ 1。

如果P(A)=1,则事件A 为必然事件;如果P(A)=0,则事件A 为不可能事件。

二、古典概型
1. 古典概型的特征:
-试验中所有可能出现的基本事件只有有限个。

-每个基本事件出现的可能性相等。

2. 古典概型的概率计算公式:P(A)=事件A 包含的基本事件数÷总的基本事件数。

三、几何概型
1. 几何概型的特征:
-试验中所有可能出现的结果(基本事件)有无限多个。

-每个基本事件出现的可能性相等。

2. 几何概型的概率计算公式:P(A)=构成事件A 的区域长度(面积或体积)
÷试验的全部结果所构成的区域长度(面积或体积)。

四、互斥事件和对立事件
1. 互斥事件:如果事件A 和事件B 不能同时发生,那么称事件A 和事件B 为互斥事件。

-互斥事件的概率加法公式:P(A∪B)=P(A)+P(B)(A、B 互斥)。

2. 对立事件:如果事件A 和事件B 必有一个发生,且仅有一个发生,那么称事件A 和事件 B 为对立事件。

-对立事件的概率计算公式:P(A)=1 - P(A 的对立事件)。

古典概型知识点总结

古典概型知识点总结

古典概型知识点总结关键信息项:1、古典概型的定义2、古典概型的特点3、古典概型的概率计算公式4、基本事件的概念5、基本事件的特点6、古典概型的常见例题7、古典概型与其他概率类型的区别11 古典概型的定义古典概型是一种概率模型,它具有以下两个特点:试验中所有可能出现的基本结果是有限的。

每个基本结果出现的可能性相等。

111 有限性意味着试验的结果是可以一一列举出来的,不是无穷无尽的。

112 等可能性表明每个基本结果发生的概率相同,不存在某些结果更容易发生的情况。

12 古典概型的特点确定性:试验的条件和结果都是明确的。

互斥性:不同的基本事件之间是相互排斥的,不会同时发生。

121 可重复性相同的条件下,重复进行试验,结果具有稳定性。

122 规范性符合概率的基本定义和性质,能够通过计算得出准确的概率值。

13 古典概型的概率计算公式假设试验的基本事件总数为 n,事件 A 包含的基本事件数为 m,则事件 A 发生的概率 P(A) = m / n 。

131 计算步骤确定基本事件的总数 n 。

确定事件 A 包含的基本事件数 m 。

代入公式计算 P(A) 。

132 注意事项计算要准确,避免遗漏或重复计算基本事件。

确保对基本事件的界定清晰无误。

14 基本事件的概念基本事件是试验中不能再分的最简单的随机事件,其他事件可以由基本事件组合而成。

141 基本事件的性质独立性:每个基本事件的发生与否互不影响。

完整性:所有基本事件的集合构成了试验的全部可能结果。

15 基本事件的特点最小性:不能再分解为更小的随机事件。

明确性:能够清晰地定义和区分。

151 基本事件的表示通常用简单的符号或数字来表示。

152 基本事件的数量确定根据试验的具体情况,通过分析得出。

16 古典概型的常见例题掷骰子问题:计算掷出特定点数的概率。

抽奖问题:在有限数量的抽奖券中计算中奖的概率。

摸球问题:从装有不同颜色球的容器中摸出特定颜色球的概率。

161 例题分析详细阐述如何确定基本事件和所求事件包含的基本事件数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点:古典概型
目录知识点总结常见考法误区提醒
知识点难易度 (中)
知识点总结
本节主要包括古典概型的特征、古典概型的概率计算公式等主要知识点。

其中主要是理解和掌握古典概型的概率计算公式,这个并不难。

1、古典概型
(1)定义:如果试验中所有可能出现的基本事件只有有限个,并且每个基本事件出现的可能性相等,则称此概率为古典概型。

(2)特点:①试验结果的有限性②所有结果的等可能性
(3)古典概型的解题步骤;
①求出试验的总的基本事件数;
②求出事件A所包含的基本事件数;
2、基本事件是事件的最小单位,所有事件都是由基本事件组成的,基本事件有下列两个特点:①任何两个基本事件都是互斥的;②任何事件都可以表示成基本事件的和(不可能事件除外)。

常见考法
本节在段考中,一般以选择题、填空题和解答题的形式考查古典概型的特征、古典概型的概率计算公式等知识点,属于中档题。

在高考中多融合在离散型随机变量的分布列中考查古典概型的概率计算公式,属于中档题,先求出各个基本量再代入即可解答。

误区提醒
在求试验的基本事件时,有时容易计算出错。

基本事件是事件的最小单位,所有事件都是由基本事件组成的,基本事件有下列两个特点:①任何两个基本事件都是互斥的;②任何事件都可以表示成基本事件的和(不可能事件除外)。

【典型例题】
例1 如图,四边形ABCD被两条对角线分成四个小三角形,若每个小三角形用4种不同颜色中的任一种涂染,求出现相邻三角形均不同色的概率.解:若不考虑相邻三角形不同色的要求,则有44=256(种)涂法,下面求相
邻三角形不同色的涂法种数:①若△AOB与△COD同色,它们共有4种涂法,对每一种涂法,△BOC与△AOD各有3种涂法,所以此时共有4×3×3=36(种)涂法.②若△AOB与△COD不同色,它们共有4×3=12(种)涂法,对每一种涂法△BOC与△AOD各有2种涂法,所以此时有4×3×2×2=48(种)涂法.故相邻三角形均不同色的概率
例2 盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取2次,每次只取1只,试求下列事件的概率:(1)取到的2只都是次品;(2)取到的2只中正品、次品各1只;(3)取到的2只中至少有1只正品.
解:从6只灯泡中有放回地任取2次,每次只取1只,共有62=36(种)不同取法.。

相关文档
最新文档