2015初中概率知识点-古典概型
古典概型概率

古典概型概率
古典概型概率是由法国数学家保罗·科尔贝于1812年提出,是有限随机实验中计算概率的一种理论。
它认为随机实验的可能性取决于该实验所包含的样本空间无外乎两个:实验成功或失败。
对于一个有限的样本空间来说,如果注意到其中某些成功的情况数量(即S1),则失败情况的数量也就已经定义好了(即F=N-S1)。
因此,可以将该随机实验的成功概率表述为S1/N。
古典概型概率通常用来估计一件特定事件发生的几率。
例如在随机试验中用一个面值为6的正方体来代表6个不同情况时,如果要估计在这6 个情况中出现特定情况的几率,则可以使用古典概型概率估计这一特征情况出现的几率是1/6.
总之,古典概型概率是利用样本量少但是样本数量单一、容易数量化的情况来估计特征情况出现的几���;考量到不同因子影响、分布开展大量样本测得、不易数量化时对此理论进行扩展使之通用性加强.。
概率综合(古典概型)

知识点之三:分房问题
例三、有n个人,每个人都以同样的概率1/N 被分配在N(n间房间中的每一间,试求下 列各事件的概率: (1)指定的n间房中各有一人 (2)恰有n间房中各有一个; (3)指定的某间房中恰有r(r≤N)个人; (4)第一间房、第二间房…第n间房中分别有 r1,r2,…rN个人,( r1+r2+…+rN=n,0≤r≤n)
有放回的抽样问题练习
4、袋中装有编号为1,2……N的球各一只, 采用有放回方式摸球,试求在第k次摸 球 时首次摸到1号球的概率.
解题分析:
从N个球中有放回地摸出k个球的所有各种可 能的结果为Nk个,把它们作为全体基本事件,有 利场合数为(N-1)k-1,故所求概率为:
(N 1) P K N
知识点练习一(不放回抽样练习)
1、甲袋中有3只白球,7只红球,15只, 黑球,乙袋中有10只白球,6只红球,9 只黑球,现从两袋中各取一球 ,求两球颜
色相同的概率。
解答: 从两袋中各取一球的所有可能作为基本事 件,总数有252,有利场合数 为3×10+7×6+15×9,故所求的概率 P=207/625
知识点练习一(不放回抽样练习)
3、从52张扑克牌中任取5张,求下列事件的 概率:①、4张A集中在一个人的手中。 ②、 以K打头的同花顺次五张牌; ③ 、同花顺 次五张牌;④ 、有四张牌同点数; ⑤ 、三 张同点数且另两张取其它同点数; ⑥、同 花五张; ⑦ 、异花顺次五张; ⑧ 、三张 同点数,另两张不同; ⑨ 、五张中 有两对; ⑩ 、五张中有一对。 说明:扑克牌的顺次为:A2345678910JKA
分析:这n个人在N间房中的所有不同的分配 ,相当于从N个元素中选取n个进行有重复的排列
古典概型知识点总结

古典概型知识点总结古典概型是概率论中的一个重要内容,它是指在相同的条件下,可能的结果均等可能的情况下,通过计算各种结果出现的可能性的概率。
在古典概型中主要涉及排列、组合、二项式定理、排列组合概率等基础知识。
下面就各个知识点做详细介绍。
一、排列排列是指从n个不同元素中取出m个进行排列,如果这m个元素的顺序不同则视为不同的排列。
排列数用P(n,m)表示,表示n中取m的排列数。
公式为P(n,m) = n!/(n-m)!例如,从5个不同的元素中取出3个元素进行排列,那么排列数就是P(5,3) = 5!/(5-3)! = 5*4*3 = 60。
二、组合组合是指从n个不同元素中取出m个进行组合,不考虑元素的排列顺序。
组合数用C(n,m)表示,表示n中取m的组合数。
公式为C(n,m) = n!/(m!*(n-m)!)例如,从5个不同的元素中取出3个元素进行组合,那么组合数就是C(5,3) = 5!/(3!*(5-3)!) = 10。
三、二项式定理二项式定理是代数中一个重要的定理,它包括二项式系数的公式以及二项式的展开式。
二项式系数的公式为C(n,m) = n!/(m!*(n-m)!)二项式展开式为(a+b)^n = C(n,0)*a^n*b^0 + C(n,1)*a^(n-1)*b^1 + ... + C(n,n)*a^0*b^n例如,(a+b)^3 = C(3,0)*a^3*b^0 + C(3,1)*a^2*b^1 + C(3,2)*a^1*b^2 + C(3,3)*a^0*b^3 = a^3 + 3*a^2*b + 3*a*b^2 + b^3。
四、排列组合概率排列组合概率是指在进行某种排列或组合的情况下,发生一定事件的概率。
在排列组合概率中,一般会出现某个事件的发生总数以及排列或组合的总数,然后通过计算得出该事件的概率。
例如,从一副扑克牌中随机取5张牌,计算得到顺子的概率。
我们可以计算出顺子的排列数,即5个元素的排列数P(5,5)=5!=120,然后计算出总的排列数,即从52张牌中取5张的排列数P(52,5)=52!/(52-5)!=2,598,960,最后通过计算得出顺子的概率为120/2,598,960≈0.000046。
古典概型知识点总结

例 2 盒中有 6 只灯泡,其中 2 只次品, 4 只正品,有放回地从中任取 2 次,每次只取 1 只,试求下列事件的概率: (1)取到的 2 只都是次品; (2)取到的 2 只中正品、次品各 1 只;(3)取到的 2 只中至少有 1 只正品.
2
同取法.
;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;vnsr威尼斯城官网 https:// vnsr威尼斯城官网; ;vnsr威尼斯城官网 https:// vnsr威尼斯城官网; ;vnsr威尼斯城官网 https:// vnsr威尼斯城官网; ;vnsr威尼斯城官网 https:// vnsr威尼斯城官网; ;vnsr威尼斯城官网 https:// vnsr威尼斯城官网; ;vnsr威尼斯城官网 https:// vnsr威尼斯城官网; ;vnsr威尼斯城官网 https:// vnsr威尼斯城官网; ;澳门威斯尼 https:// 澳门威斯尼; ;威尼斯网站网址 https:// 威尼斯网站网址; ;威尼斯人 https:// 威尼斯人; ;vnsr威尼斯人官网 https:// vnsr威尼斯人官网; ;澳门威斯尼app https:// 澳门威斯尼app; ;澳门威斯尼 https:// 澳门威斯尼;
古典概型知识点总结

古典概型知识点总结古典概型是概率论中最基础、最简单的一种模型。
它是指在所有可能的结果中,每个结果的概率相等的模型。
本文将总结古典概型的相关知识点,并探讨其应用场景和注意事项。
一、基础定义1. 古典概型的定义古典概型是指在所有可能的结果中,每个结果的概率相等的模型。
例如,掷一次骰子,每个点数出现的概率都是1/6。
2. 样本空间样本空间是指古典概型中所有可能结果的集合。
例如,掷一枚硬币的样本空间为{正面,反面}。
3. 事件事件是样本空间的子集,表示发生某种结果的可能性。
例如,掷一枚硬币出现正面的事件为{正面}。
4. 概率概率是指某个事件发生的可能性大小,通常用小数表示,取值范围在0到1之间。
在古典概型中,概率可以用公式“事件发生的次数÷样本空间中总的可能结果数”来计算。
二、应用场景古典概型主要应用于以下场景:1. 骰子、硬币等随机游戏例如,掷骰子、抛硬币等游戏中,每个结果的概率都相等,符合古典概型的条件。
2. 假设检验在做假设检验时,常常需要确定某种情况下出现某种结果的概率。
如果符合古典概型条件,可以直接根据概率公式计算概率。
3. 统计学在统计学中,古典概型被广泛应用于概率分布的研究与推导。
三、注意事项在使用古典概型时,需要注意以下事项:1. 每个结果的概率相等古典概型中的最重要条件是每个结果的概率相等。
如果存在某些结果概率不等的情况,就不能使用古典概型进行概率计算了。
2. 互斥事件在计算概率时,需要注意事件之间是否互斥。
如果两个事件不互斥,那么它们的概率应该加在一起。
3. 独立事件在计算概率时,需要注意事件之间是否独立。
如果两个事件是独立的,那么它们的概率应该相乘。
四、结论古典概型是概率论中最基础、最简单的一种模型,应用范围广泛。
在使用古典概型进行概率计算时,需要注意每个结果的概率相等、事件之间是否互斥、事件之间是否独立等问题,才能准确计算概率,避免出现错误的结果。
古典概型

(二)分布列 1.分布列:设离散型随机变量 ξ 可能取得值为 x1,x2,…,x3,…,ξ 取每一个值 xi(i=1,2,…)的概率为
P(
xi )
pi ,则称表为随机变量 ξ
的概率分布,简称 ξ
的分布列
新疆 王新敞
奎屯
ξ
x1
x2
…
8.两点分布列: 随机变量 X 的分布列是:
ξ
0
1
P 1 p
p
像上面这样的分布列称为两点分布列.
[全面解读] 古典概型这一模块内容分两个部分,一个是古典概型,一个是离散型随机变量的概率分布。古典概型的问题 基本是数个数,它本质是排列组合问题,分布列问题主要应掌握期望与方差的公式,对二项分布问题应重点关注。 [难度系数]★★☆☆☆
知识点分析:
(一) 古典概型
1.随机事件 A 的概率: 0 P( A) 1,其中当 P( A) 1时称为必然事件;当 P( A) 0 时称为不可能事件;
2.等可能事件的概率(古典概型): P(A)= m 。理解这里 m、n的意义。 n
3.互斥事件:A、B 互斥,即事件 A、B 不可能同时发生。计算公式:P(A+B)=P(A)+P(B)。 4.对立事件:A、B 对立,即事件 A、B 不可能同时发生,但 A、B 中必然有一个发生。
6.方差的性质: Da b a2D ;
7.二项分布:在 一 次随机 试 验 中 ,某事 件 可能发 生 也 可能 不 发生 ,在 n 次独立重复试验中这个事件发生的 次数 ξ 是一个随机变量.如果在一次试验中某事件发生的概率是 P,那么在 n 次独立重复试验中这个事件 恰好发生 k 次的概率是
古典概型与几何概型知识点总结

古典概型与几何概型知识点总结古典概型和几何概型是概率论中最基础的概率模型,它们分别适用于简单事件和几何事件的计算。
以下是古典概型和几何概型的知识点总结:一、古典概型:1.古典概型是指事件的样本空间具有有限个数的元素,样本点的概率相等。
2.样本空间是指实验中所有可能的结果的集合,例如掷一枚骰子的样本空间为{1,2,3,4,5,6}。
3.事件是样本空间的子集,例如“掷一枚骰子,出现的点数为偶数”的事件为{2,4,6}。
4.古典概型的概率计算公式为:P(A)=n(A)/n(S),其中P(A)为事件A发生的概率,n(A)为事件A包含的样本点个数,n(S)为样本空间的样本点个数。
5.古典概型的概率计算要求样本点的概率相等,且样本点的个数有限。
二、几何概型:1.几何概型是指事件的样本空间是一个几何图形,而不是有限个元素。
2.在几何概型中,事件的概率等于事件所占的几何图形的面积或体积与样本空间所占的几何图形的面积或体积的比值。
3.几何概型的概率计算需要使用几何图形的面积或体积的计算方法,例如计算矩形的面积为长乘以宽,计算圆的面积为π乘以半径的平方。
4.几何概型可以应用于连续变量的概率计算,例如计算一些范围内的事件发生的概率。
5.几何概型的概率计算要求事件与样本空间之间存在其中一种几何关系,例如事件发生的可能性与事件所占的几何图形的面积或体积成正比。
综上所述,古典概型适用于简单事件且样本空间的样本点个数有限的情况,其概率计算公式为P(A)=n(A)/n(S);几何概型适用于事件的样本空间是一个几何图形的情况,概率等于事件所占的几何图形的面积或体积与样本空间所占的几何图形的面积或体积的比值。
掌握古典概型和几何概型的知识点,能够帮助我们更好地理解和计算事件的概率,为概率论的进一步学习奠定基础。
概率2 古典概型

由于事件A比较复杂,可考虑它的对立事件,即“输入由0,3,2,5组成的
一个四位数字,恰是密码”显然它只有一种结果四个数字0,3,2,5随机编
排顺序 所有可能结果可用树状图表示,如图7-10。
2
3 5
5 3
0
3 5
例5 某网站登录密码由四位数字组成.某同学注册时将自己生日的四 个数字0,3,2,5重新编排了一个顺序作为密码.由于长时间末登录该网站, 他忘记了密码.若登录时随机输入由0,3,2,5组成的一个四位数字,则该 同学不能顺利登录的概率是多少?
解:用事件A表示“输入由0,3,2,5组成的的一个四位数字,但不是密码”.
牌是红心”,试探究P(A),P(B)与P(A∪B)的关系。
将上述探究的结果填入表7-2(课本P200).
E
E5
E12
A与B的关系
P(A)
P(B)
P(A∪B)
P(A)+P(B)
知识探究·素养培育 探究点一互斥事件的概率加法公式
[问题1] 在集合{1,2,3,4,5,6,7}中随机取一个数, (1)设事件A表示“取到数字1”,事件B表示“取到数字2或3”,求 P(A),P(B),P(A∪B); (2)设事件A表示“取到数字1或2”,事件B表示“取到数字2或3”,求 P(A),P(B),P(A∪B).
例3 口袋里共有4个球,其中有2个是白球,2个是黑球,这4个球除颜色 外完全相同.4个人按顺序依次从中摸出一个球(不放回),试计算第二个 人摸到白球的概率. 解法4:进一步简化,只考虑第二个人摸球的情况.
考察试验E11:4个人按顺序依次从中摸出一 个球,只记录第二个人摸
出球的情况. 把2个白球、2个黑球分别编上序号1,2,记摸到1,2号白球的结果分别
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015初中概率知识点-古典概型
学好数学就需要平时的积累。
知识积累越多,掌握越熟练,小编编辑了概率知识点-古典概型,欢迎参考!
1、古典概型的定义
某个试验若具有①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等。
我们把具有这两个特点的试验称为古典概型。
2、古典概型的概率的求法
一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为上面就是为大家准备的概率知识点-古典概型,希望同学们认真浏览,希望同学们在考试中取得优异成绩。