高考专题解析几何常规题型及方法
高考数学复习解析几何的题型及方法

高考数学复习解析几何的题型及方法佚名知识整合高考中解析几何试题一样共有4题(2个选择题,1个填空题,1个解答题),共计30分左右,考查的知识点约为20个左右。
其命题一样紧扣课本,突出重点,全面考查。
选择题和填空题考查直线、圆、圆锥曲线、参数方程和极坐标系中的基础知识。
解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平几的差不多知识和向量的差不多方法,这一点值得强化。
1。
能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程动身推导出直线方程的其他形式,斜截式、两点式、截距式;能依照已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了。
观看内容的选择,我本着先静后动,由近及远的原则,有目的、有打算的先安排与幼儿生活接近的,能明白得的观看内容。
随机观看也是不可少的,是相当有味的,如蜻蜓、蚯蚓、毛毛虫等,小孩一边观看,一边提问,爱好专门浓。
我提供的观看对象,注意形象逼真,色彩鲜亮,大小适中,引导幼儿多角度多层面地进行观看,保证每个幼儿看得到,看得清。
看得清才能说得正确。
在观看过程中指导。
我注意关心幼儿学习正确的观看方法,即按顺序观看和抓住事物的不同特点重点观看,观看与说话相结合,在观看中积存词汇,明白得词汇,如一次我抓住时机,引导幼儿观看雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么模样的,有的小孩说:乌云像大海的波浪。
有的小孩说“乌云跑得飞速。
”我加以确信说“这是乌云滚滚。
”当幼儿看到闪电时,我告诉他“这叫电光闪闪。
”接着幼儿听到雷声惊叫起来,我抓住时机说:“这确实是雷声隆隆。
”一会儿下起了大雨,我问:“雨下得如何样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观看,让幼儿把握“倾盆大雨”那个词。
雨后,我又带幼儿观看晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。
数学解析几何的常见题型解析

数学解析几何的常见题型解析解析几何是数学中的分支学科,通过运用代数和几何的知识,以方程和不等式为工具,研究几何对象的性质和关系。
解析几何的题型主要包括直线方程、曲线方程、平面方程和空间曲面方程等。
本文将对解析几何的常见题型进行解析。
一、直线方程的解析1. 一般式方程直线的一般式方程为Ax + By + C = 0,其中A、B、C是常数,且A和B不同时为0。
2. 斜截式方程直线的斜截式方程为y = kx + b,其中k是直线的斜率,b是直线与y轴的截距。
3. 点斜式方程直线的点斜式方程为(y - y₁) = k(x - x₁),其中(x₁,y₁)是直线上的一点,k是直线的斜率。
二、曲线方程的解析1. 圆的方程圆的标准方程为(x - a)² + (y - b)² = r²,其中(a,b)是圆心的坐标,r是圆的半径。
2. 椭圆的方程椭圆的标准方程为(x/a)² + (y/b)² = 1,其中a和b分别是椭圆在x轴和y轴上的半轴长度。
3. 双曲线的方程双曲线的标准方程为(x²/a²) - (y²/b²) = 1,其中a和b分别是双曲线在x轴和y轴上的半轴长度。
三、平面方程的解析1. 一般式方程平面的一般式方程为Ax + By + Cz + D = 0,其中A、B、C和D是常数,且A、B和C不同时为0。
2. 法向量和点的关系式平面的法向量为(A,B,C),平面上一点为(x₁,y₁,z₁),则平面方程为A(x - x₁) + B(y - y₁) + C(z - z₁) = 0。
四、空间曲面方程的解析1. 球的方程球的标准方程为(x - a)² + (y - b)² + (z - c)² = r²,其中(a,b,c)是球心的坐标,r是球的半径。
2. 圆锥曲线的方程圆锥曲线的方程根据不同类型的圆锥曲线而不同,比如椭圆锥的方程为(x²/a²) + (y²/b²) - (z²/c²) = 0,双曲锥的方程为(x²/a²) + (y²/b²) - (z²/c²)= 1等。
高考数学秘籍18法解析几何问题的题型与方法试题

高考数学秘籍18法解析几何问题的题型与方法制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日一、知识整合高考中解析几何试题一般一共有4题(2个选择题, 1个填空题, 1个解答题),一共计30分左右,考察的知识点约为20个左右。
其命题一般紧扣课本,突出重点,全面考察。
选择题和填空题考察直线、圆、圆锥曲线、参数方程和极坐标系中的根底知识。
解答题重点考察圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考察直线与圆锥曲线的位置关系,求解有时还要用到平几的...根本知识和向量的根本方法............,这一点值得强化。
1.能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据条件,纯熟地选择恰当的方程形式写出直线的方程,纯熟地进展直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了.2.能正确画出二元一次不等式〔组〕表示的平面区域,知道线性规划的意义,知道线性约束条件、线性目的函数、可行解、可行域、最优解等根本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,理解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题.3. 理解“曲线的方程〞、“方程的曲线〞的意义,理解解析几何的根本思想,掌握求曲线的方程的方法.4.掌握圆的HY 方程:222)()(r b y a x =-+-〔r >0〕,明确方程中各字母的几何意义,能根据圆心坐标、半径纯熟地写出圆的HY 方程,能从圆的HY 方程中纯熟地求出圆心坐标和半径,掌握圆的一般方程:022=++++F Ey Dx y x ,知道该方程表示圆的充要条件并正确地进展一般方程和HY 方程的互化,能根据条件,用待定系数法求出圆的方程,理解圆的参数方程cos sin x r y r θθ=⎧⎨=⎩〔θ为参数〕,明确各字母的意义,掌握直线与圆的位置关系的断定方法.5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的HY 方程;记住椭圆、双曲线和抛物线的各种HY 方程;能根据条件,求出椭圆、双曲线和抛物线的HY 方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线〔双曲线的渐近线〕等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握a 、b 、c 、p 、e 之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的HY 方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线位置关系的断定方法.二、近几年高考试题知识点分析2021年高考,各地试题中解析几何内容在全卷的平均分值为27.1分,占18.1%;2021年以来,解析几何内容在全卷的平均分值为29.3分,占19.5%.因此,占全卷近1/5的分值的解析几何内容,值得我们在二轮复习中引起足够的重视.高考试题中对解析几何内容的考察几乎囊括了该局部的所有内容,对直线、线性规划、圆、椭圆、双曲线、抛物线等内容都有涉及.1.选择、填空题1.1 大多数选择、填空题以对根底知识、根本技能的考察为主,难度以容易题和中档题为主〔1〕对直线、圆的根本概念及性质的考察例1 〔04〕以点(1,2)为圆心,与直线4x +3y -35=0相切的圆的方程是_________.〔2〕对圆锥曲线的定义、性质的考察 例2〔04〕点)0,2(1-F 、)0,2(2F ,动点P 满足2||||12=-PF PF . 当点P 的纵坐标是21时,点P 到坐标原点的间隔 是〔A 〕26 〔B 〕23 〔C 〕3 〔D 〕2 1.2 局部小题表达一定的才能要求才能,注意到对学生解题方法的考察 例3〔04文〕假设过定点(1,0)M -且斜率为k 的直线与圆22450x x y ++-=在第一象限内的局部有交点,那么k 的取值范围是〔A〕0k << 〔B〕0k <<〔C〕0k <<〔D 〕05k <<2.解答题 解析几何的解答题主要考察求轨迹方程以及圆锥曲线的性质.以中等难度题为主,通常设置两问,在问题的设置上有一定的梯度,第一问相比照拟简单. 例4(04〕椭圆的中心在原点,离心率为12,一个焦点是F 〔-m,0〕(m 是大于0的常数).〔Ⅰ〕求椭圆的方程;〔Ⅱ〕设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M.假设=,求直线l 的斜率.此题第一问求椭圆的方程,是比拟容易的,对大多数同学而言,是应该得分的;而第二问,需要进展分类讨论,那么有一定的难度,得分率不高.解:〔I 〕设所求椭圆方程是).0(12222>>=+b a by a x 由,得 ,21,==a c m c 所以m b m a 3,2==. 故所求的椭圆方程是1342222=+my m x 〔II 〕设Q 〔Q Q y x ,〕,直线),0(),(:km M m x k y l 则点+=当),,0(),0,(,2km M m F QF MQ -=由于时由定比分点坐标公式,得 ,62.139494,)3,32(.31210,32212022222±==+-=++=-=+-=k mm k m m km m Q km km y m m x Q Q 解得所以在椭圆上又点0(2)()2,2,1212Q Q m km MQ QF x m y km +-⨯-=-==-==---当时. 于是.0,134422222==+k mm k m m 解得 故直线l 的斜率是0,62±.例5〔04全国文科Ⅰ〕设双曲线C :1:)0(1222=+>=-y x l a y a x 与直线相交于两个不同的点A 、B .〔I 〕求双曲线C 的离心率e 的取值范围:〔II 〕设直线l 与y 轴的交点为P ,且5.12PA PB =求a 的值. 解:〔I 〕由C 与t 相交于两个不同的点,故知方程组 ⎪⎩⎪⎨⎧=+=-.1,1222y x y a x y 并整理得 〔1-a 2〕x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率01,2(2,).e a a a e e e ==<<≠∴>≠+∞且即离心率的取值范围为〔II 〕设)1,0(),,(),,(12211P y x B y x A .125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 由于x 1,x 2都是方程①的根,且1-a 2≠0,2222222222172522289,.,,121121160170,.13a a a x x x aa a a a =-=--=--->=所以消去得由所以 例6〔04全国文科Ⅱ〕给定抛物线C :,42x y =F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.〔Ⅰ〕设l 的斜率为1,求OB OA 与夹角的大小; 〔Ⅱ〕设]9,4[,∈=λλ若AF FB ,求l 在y 轴上截距的变化范围.解:〔Ⅰ〕C 的焦点为F 〔1,0〕,直线l 的斜率为1,所以l 的方程为.1-=x y 将1-=x y 代入方程x y 42=,并整理得 .0162=+-x x设),,(),,(2211y x B y x A 那么有 .1,62121==+x x x x.31)(2),(),(212121212211-=++-=+=⋅=⋅x x x x y y x x y x y x OB OA.41]16)(4[||||21212122222121=+++=+⋅+=x x x x x x y x y x OB OA.41143||||),cos(-=⋅=OB OA OB OA OB OA 所以OB OA 与夹角的大小为.41143arccos -π 〔Ⅱ〕由题设AF FB λ= 得 ),,1(),1(1122y x y x --=-λ即⎩⎨⎧-=-=-.1212),1(1y y x x λλ 由②得21222y y λ=, ∵ ,4,4222121x y x y == ∴.122x x λ=③联立①、③解得λ=2x ,依题意有.0>λ ∴),2,(),2,(λλλλ-B B 或又F 〔1,0〕,得直线l 方程为 ),1(2)1()1(2)1(--=--=-x y x y λλλλ或当]9,4[∈λ时,l 在方程y 轴上的截距为,1212---λλλλ或 由 ,121212-++=-λλλλλ 可知12-λλ在[4,9]上是递减的, ∴ ,431234,341243-≤--≤-≤-≤λλλλ 直线l 在y 轴上截距的变化范围为].34,43[]43,34[⋃--从以上3道题我们不难发现,对解答题而言,椭圆、双曲线、抛物线这三种圆①②锥曲线都有考察的可能,而且在历年的高考试题中往往是交替出现的,以为例,01年考的是抛物线,02年考的是双曲线,03年考的是求轨迹方程〔椭圆〕,04年考的是椭圆.三、热点分析与2021年高考预测1.重视与向量的综合在04年高考文科12个新课程卷中,有6个的解析几何大题与向量综合,主要涉及到向量的点乘积〔以及用向量的点乘积求夹角〕和定比分点等,因此,与向量综合,仍是解析几何的热点问题,预计在05年的高考试题中,这一现状仍然会持续下去.例7〔02年新课程卷〕平面直角坐标系中,O 为坐标原点,两点A 〔3,1〕,B 〔-1,3〕,假设点C 满足OB OA OC βα+=,其中α、β∈R,且α+β=1,那么点C 的轨迹方程为〔A 〕〔x -1〕2+〔y -2〕2=5〔B 〕3x +2y -11=0 〔C 〕2x -y =0 〔D 〕x +2y -5=0例8〔04〕点)0,2(-A 、)0,3(B ,动点2),(x PB PA y x P =⋅满足,那么点P 的轨迹是〔A 〕圆〔B 〕椭圆 〔C 〕双曲线 〔D 〕抛物线2.考察直线与圆锥曲线的位置关系几率较高 在04年的15个文科试题〔含新、旧课程卷〕中,全都“不约而同〞地考察了直线和圆锥曲线的位置关系,因此,可以断言,在05年高考试题中,解析几何的解答题考察直线与圆锥曲线的位置关系的概率仍然会很大.3.与数列相综合 在04年的高考试题中,、、解析几何大题与数列相综合,此外,03年的卷也曾出现过此类试题,所以,在05年的试题中仍然会出现类似的问题.例9〔04年卷〕如图,ΔOBC 的在个顶点坐标分别为〔0,0〕、〔1,0〕、〔0,2〕,设P 为线段BC 的中点,P 2为线段CO 的中点,P 3为线段OP 1的中点,对于每一个正整数n,P n+3为线段P n P n+1的中点,令P n 的坐标为(x n,y n ), .2121++++=n n n n y y y a 〔Ⅰ〕求321,,a a a 及n a ; 〔Ⅱ〕证明;,414*+∈-=N n y y n n 〔Ⅲ〕假设记,,444*+∈-=N n y y b nn n 证明{}n b 是等比数列. 解:(Ⅰ)因为43,21,153421=====y y y y y ,所以2321===a a a ,又由题意可知213+++=n n n y y y , ∴321121++++++=n n n n y y y a =221121++++++n n n n y y y y =,2121n n n n a y y y =++++ ∴{}n a 为常数列.∴.,21*∈==N n a a n(Ⅱ)将等式22121=++++n n n y y y 两边除以2,得,124121=++++n n n y y y 又∵2214++++=n n n y y y ,∴.414n n y y -=+ 〔Ⅲ〕∵)41()41(44444841n n n n n y y y y b ---=-=+++- )(41444n n y y --=+,41n b -= 又∵,041431≠-=-=y y b ∴{}n b 是公比为41-的等比数列. 4.与导数相综合 近几年的新课程卷也非常注意与导数的综合,如03年的文科试题、04年的文理科试题,都分别与向量综合.例10〔04年文理科试题〕如图,过抛物线x 2=4y 的对称轴上任一点P 〔0,m 〕(m>0)作直线与抛物线交于A,B 两点,点Q 是点P 关于原点的对称点。
高考解析几何的题型及思路

高考解析几何的题型及思路解析几何是必考的,常作为压轴题,特点是计算量大。
不过解几题其实很有规律性,解题思路并不难掌握,就是要用代数方法(方程、函数、不等式的思想和方法)研究几何问题,而数形结合思想(主要是利用定义或平面几何知识分析问题)是减少解几综合题计算量的主要手段。
常见的类型题有:(1)、求曲线(动点)的方程:若曲线类型已知,用待定系数法列方程组求解即可。
若给出了单个动点满足的条件,可先判断其是否符合某种曲线的定义,符合即可用待定系数求解,否则用直接法求解。
若条件有两个动点,一般用代入法求解;若条件有三个以上的动点,一般用参数法求解。
(2)求参数或曲线的特征量(如a、b、c、p、离心率、斜率、倾角、面积等)的值。
这类题要用到方程思想求解,即想办法把题目的条件(等量关系)转化为所求变量的方程(组)解之。
(3)求参数或几何量(如角、面积、斜率)的取值范围的问题。
主要是利不等式法或函数法求解。
其中判别式是列不等式的一个重要途径。
通常用韦达定理或题目给出的其它条件来列出变量间的等量关系,再把等量关系代入判别式消元化简解出相关参数的范围。
或利用韦达定理或其它等量关系建立变量间的关系式,把所求变量表示为其它变量的函数,利用求函数值域的方法确定变量的取值范围。
这个函数的定义域通常由判别式或其它条件确定。
(4)直(曲)线过定点问题:关键是求出直(曲)线的方程,当然这个方程必定含有一个参数。
求出方程后观察什么定点的坐标满足。
若观察不出,只要令参数取两个特殊值,然后把得到的两条具体的直(曲)线求交点即得所求定点。
(5)证明定值:证某个式子为定值,即是要求出这个式子的值是什么。
把条件转化为相关的方程(组),消去其中的参数即得。
(6)探索性(存在性)问题:通常转化为对方程根的存在性的讨论。
▲注意向量与解析几何的密切联系.由于向量具有几何形式和代数形式的“双重身份”,使向量与解析几何之间有着密切联系,大量的解析几何问题都是以向量作为背景编拟的;▲判别式和韦达定理是解决以直线和圆锥曲线的位置关系为背景的综合问题的必用工具。
高考解析几何题型归纳总结

高考解析几何题型归纳总结随着高考的逼近,几何题成为了考生备考中不可忽视的一部分。
几何题在高考中占据了相当大的比重,解析几何题更是考生普遍认为难度较高的题型之一。
为了帮助考生更好地备考解析几何题,本文将对高考解析几何题型进行归纳总结,从而帮助考生更好地应对高考几何题。
1. 二维几何题目二维几何题目主要涉及平面图形的性质、面积、周长以及平行线、垂直线的性质等。
在解答二维几何题目时,考生应注意以下几个方面:(1) 论证步骤的完整性:解答二维几何题目时,应充分体现论证的完整性,即从已知条件出发,一步一步进行推导,最终得出结论。
(2) 图形的准确画法:在画图时应确保图形的准确性,边长、角度等应与给定条件一致,以避免答案误差。
(3) 重点关注特殊性质:几何题中常涉及到平行线、垂直线以及等边等特殊性质,考生应注意识别和运用这些特殊性质来解答题目。
2. 三角形相关题目三角形相关的题目主要涉及三角形的面积、周长、角度等性质。
在解答三角形题目时,考生应注意以下几个方面:(1) 利用相似三角形性质:在解答三角形的题目时,经常会用到相似三角形的性质。
考生应注意观察题目中是否存在相似三角形,以便能够灵活地运用相似三角形性质来解题。
(2) 角度关系的应用:三角形中的角度关系常常是解题的关键,考生应深入理解角的概念,并能够巧妙利用角度关系解答题目。
(3) 三角形的分类:根据不同的三角形分类,可以利用其特定性质解答题目。
例如,等边三角形具有所有边相等的性质,而等腰三角形具有两边相等的性质。
考生应注意灵活运用不同种类三角形的性质。
3. 圆相关题目圆相关的题目主要涉及圆的性质、弧长、面积等。
在解答圆相关题目时,考生应注意以下几个方面:(1) 圆的性质的应用:圆的性质是解答圆相关题目的基础,考生应深刻理解圆的定义、圆心角、弧长等基本概念,并能够合理运用这些性质。
(2) 弧长和扇形面积的计算:在解答涉及弧长和扇形面积的题目时,考生应熟记相应的计算公式,并注意计算过程中的单位换算。
解析几何题型及解题方法

解析几何题型及解题方法
解析几何是数学中的一个重要分支,主要研究空间中点、线、面等几何对象在坐标系中的表示和性质。
以下是一些常见的解析几何题型及其解题方法:
1. 求轨迹方程:给定一些条件,求动点的轨迹方程。
解题方法包括直接法、参数法、代入法等。
2. 判断位置关系:判断两条直线、两个圆、两条圆锥曲线等是否相交、相切、相离。
解题方法包括联立方程组消元法、判别式法、一元二次方程根的判别式法等。
3. 求弦长、面积、体积等:给定一个几何对象,求其长度、面积、体积等。
解题方法包括公式法、参数法、极坐标法等。
4. 求最值:给定一个几何对象,求其长度的最大值、最小值等。
解题方法包括导数法、不等式法、极坐标法等。
5. 证明不等式:通过几何图形证明不等式。
解题方法包括构造法、极坐标法、数形结合法等。
6. 探索性问题:通过观察、猜想、证明等方式探索几何对象的性质。
解题方法包括归纳法、反证法、构造法等。
以上是一些常见的解析几何题型及其解题方法,掌握这些方法可以帮助我们更好地解决解析几何问题。
同时,需要注意题目中的条件和限制,以及图形的位置和形状,以便更准确地解决问题。
高考解析几何大题题型归纳
高考解析几何大题题型归纳高考解析几何大题题型归纳一、三角形的性质与判定在高中数学中,三角形是一个重要的图形。
学生在高考中常常会遇到与三角形性质与判定相关的大题。
在这一题型中,常见的题目包括用三角形的边长、角度或者特殊性质来判断三角形的形状、大小或者其他性质。
二、直线与线段的相交问题直线和线段是解析几何题目中常见的图形。
学生在高考中常常会遇到关于直线和线段相交问题的大题。
在这一题型中,学生需要根据已知条件求解未知的角度、线段长度或者其他相关问题。
三、圆的性质与判定圆是解析几何题目中一个重要的图形。
学生在高考中经常会遇到与圆的性质与判定相关的大题。
在这一题型中,学生需要利用已知条件来判断圆的位置,或者通过已知条件求解未知物品与圆的关系。
四、平行线与垂直线的判定平行线与垂线也是高考解析几何题目中常见的考点。
在这一题型中,学生需要利用已知条件来判定两条线是否平行或者垂直,或者根据已知条件求解未知的线段长度或者角度。
五、多边形的性质与判定在解析几何题中,多边形也是一个重要的图形。
学生在高考中常常会遇到与多边形的性质与判定相关的大题。
在这一题型中,学生需要利用已知条件来判断多边形的形状、大小或者其他性质,或者求解未知的角度或者线段长度。
六、空间几何问题空间几何问题在高考中也是一个重要的考点。
在这一题型中,学生需要利用已知条件来求解空间中的角度、线段长度或者其他相关问题。
这类题目常常需要学生运用立体几何知识和空间想像力来进行推理和求解。
七、向量的应用在解析几何题目中,向量是一个重要的工具。
学生在高考中常常会遇到与向量的应用相关的大题。
在这一题型中,学生需要利用向量的性质来求解角度、线段长度或者其他相关问题。
总结:解析几何题目涉及到的题型很多,常见的包括三角形的性质与判定、直线与线段相交问题、圆的性质与判定、平行线与垂直线的判定、多边形的性质与判定、空间几何问题以及向量的应用等。
针对这些题型,学生在备考中应该重点复习相关知识,并且多进行一些练习题,以加深对题型的理解和应用能力。
高考专题复习—解析几何的题型与方法
2015届高三数学题型与方法专题七:解析几何1【基础知识梳理】
班级: 姓名: [例1]已知直线的斜率是,直线过坐标原点且倾斜角是倾斜角的两倍,则直线的方程为___. [例2]已知直线的方程为且不经过第二象限,则直线的倾斜角大小为( B )
A、arctanab; B、arctan(-ab); C、p+arctanab; D、p-arctanab. [例3]与圆相切,且在两坐标轴上截距相等的直线有――( B ) A、2条; B、3条; C、4条; D、5条. [例4]过点与坐标原点距离为2的直线方程是___与. [例5]直线斜率相等是的――――――――――――――――――( D ) A、充分不必要条件;B、必要不充分条件;C、充要条件;D、既不充分又不必要条件. [例6]直线过点与以为端点的线段AB有公共点,则直线倾斜
角的取值范围是______.. [例7]将一张画有直角坐标系的图纸折叠使点与点重合,若点与点D重合,则点D的坐标为 _;. [例8]抛物线C1:关于直线对称的抛物线为C2,则C2的焦点坐标为____.. [例9]已知点是圆外的一点,则直线与圆的位置关系 是( C ) A、相离; B、相切; C、相交且不过圆心; D、相交且过圆心.
[例10]若圆O:上有且只有两点到直线的距离为2,则圆的半径的取值范围是____.. [例11]二次方程表示圆的充要条件是_____; . [例12]已知圆C被轴截得的弦长是2,被轴分成的两段弧长之比为,求圆心C的轨迹方程..
[例13]直线过定点与圆交于A、B两点,则弦AB中点N的轨迹方程为_____;(. [例14]直线过定点与圆交于A、B两点,O是坐标原点,则△AOB面积的最大值为_______;2. [例15]已知A是圆上任意一点,点A关于直线的对称点也在圆上,那么实数的值为___3__. [例16]已知动圆C与定圆M:相切,且与轴相切,则圆心C的轨迹方程是__;与. [例17]已知,一动圆I过点M与圆N:内切. (1)求动圆圆心I的轨迹C的方程; (2)经过点作直线交曲线C于A、B两点,设,当四边形OAPB的面积最大时,求直线的方程.
数学解析几何2024高考知识点清单总结与题型练习
数学解析几何2024高考知识点清单总结与题型练习一、直线的方程与性质直线的一般式方程为Ax+By+C=0,其中A、B、C为常数且A与B不同时为0。
直线的斜截式方程为y=kx+b,其中k为直线的斜率,b为直线与y轴的交点坐标。
直线的截距式方程为x/a+y/b=1,其中a、b为直线与坐标轴的截距。
二、直线与平面的位置关系直线与平面的关系可分为以下几种情况:1. 直线与平面相交:直线与平面交于一点,方程组有唯一解。
2. 直线与平面平行:直线与平面无交点,方程组无解。
3. 直线包含于平面:直线上的每一点都在平面上,方程组有无数解。
三、平面的方程与性质平面的一般式方程为Ax+By+Cz+D=0,其中A、B、C、D为常数且A、B、C不同时为0。
平面的点法式方程为Ax+By+Cz+D=0,其中A、B、C为法向量的分量。
平面的截距式方程为x/a+y/b+z/c=1,其中a、b、c为平面与坐标轴的截距。
四、直线与直线的位置关系直线与直线的位置关系可分为以下情况:1. 相交于一点:两条直线交于一点,方程组有唯一解。
2. 平行:两条直线的斜率相等但截距不相等,方程组无解。
3. 重合:两条直线完全重合,方程组有无数解。
五、直线与平面的位置关系直线与平面的位置关系可分为以下情况:1. 相交于一点:直线与平面交于一点,方程组有唯一解。
2. 平行:直线与平面无交点,方程组无解。
3. 直线包含于平面:直线上的每一点都在平面上,方程组有无数解。
六、空间几何体的体积与表面积计算常见空间几何体的体积与表面积计算公式如下:1. 立方体体积公式:V=a^3,其中a为边长。
2. 球体体积公式:V=(4/3)πr^3,其中r为半径。
3. 圆柱体体积公式:V=πr^2h,其中r为底面半径,h为高度。
4. 圆锥体体积公式:V=(1/3)πr^2h,其中r为底面半径,h为高度。
七、题型练习1. 已知直线L1:2x+y-1=0与直线L2:x-y+2=0,求直线L1与L2的交点坐标。
高考数学专题解解析几何题的方法
解解析几何题的方法大全高考解析几何试题一般共有4题,共计30分左右, 考查的知识点约为20个左右. 其命题一般紧扣课本, 突出重点, 全面考查. 选择题和填空题考查直线, 圆, 圆锥曲线, 参数方程和极坐标系中的基础知识. 解答题重点考查圆锥曲线中的重要知识点, 通过知识的重组与链接, 使知识形成网络, 着重考查直线与圆锥曲线的位置关系, 求解有时还要用到平几的基本知识, 这点值得考生在复课时强化.例1 已知点T 是半圆O 的直径AB 上一点,AB=2、OT=t (0<t<1),以AB 为直腰作直角梯形B B A A '',使A A '垂直且等于AT ,使B B '垂直且等于BT ,B A ''交半圆于P 、Q 两点,建立如图所示的直角坐标系.(1)写出直线B A ''的方程; (2)计算出点P 、Q 的坐标;(3)证明:由点P 发出的光线,经AB 反射后,反射光线通过点Q.讲解: 通过读图, 看出'',B A 点的坐标.(1 ) 显然()t A -1,1', (),,‘t B +-11 于是 直线B A ''的方程为1+-=tx y ;(2)由方程组⎩⎨⎧+-==+,1,122tx y y x解出 ),(10P 、),(2221112t t t t Q +-+;(3)tt k PT 1001-=--=,t t t t tt t t t k QT1111201122222=--=-+-+-=)(. 由直线PT 的斜率和直线QT 的斜率互为相反数知,由点P 发出的光线经点T 反射,反射光线通过点Q.需要注意的是, Q 点的坐标本质上是三角中的万能公式, 有趣吗?例2 已知直线l 与椭圆)0(12222>>=+b a by a x 有且仅有一个交点Q ,且与x 轴、y轴分别交于R 、S ,求以线段SR 为对角线的矩形ORPS 的一个顶点P 的轨迹方程. 讲解:从直线l 所处的位置, 设出直线l 的方程,由已知,直线l 不过椭圆的四个顶点,所以设直线l 的方程为).0(≠+=k m kx y 代入椭圆方程,222222b a y a x b =+ 得.)2(22222222b a m kmx x k a x b =+++ 化简后,得关于x 的一元二次方程.02)(222222222=-+++b a m a mx ka x b k a于是其判别式).(4))((4)2(222222222222222m b k a b a b a m a b k a m ka -+=-+-=∆ 由已知,得△=0.即.2222m b k a =+ ①在直线方程m kx y +=中,分别令y=0,x =0,求得).,0(),0,(m S kmR -令顶点P 的坐标为(x ,y ), 由已知,得⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧=-=.,.,y m x y k m y k m x 解得 代入①式并整理,得 12222=+y b x a , 即为所求顶点P 的轨迹方程.方程12222=+y b x a 形似椭圆的标准方程, 你能画出它的图形吗?例3已知双曲线12222=-by a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23(1)求双曲线的方程;(2)已知直线)0(5≠+=k kx y 交双曲线于不同的点C ,D 且C ,D 都在以B 为圆心的圆上,求k 的值.讲解:∵(1),332=a c 原点到直线AB :1=-by a x 的距离.3,1.2322==∴==+=a b c ab b a ab d .故所求双曲线方程为 .1322=-y x(2)把33522=-+=y x kx y 代入中消去y ,整理得 07830)31(22=---kx x k .设CD y x D y x C ),,(),,(2211的中点是),(00y x E ,则.11,315531152002002210kx y k k kx y k k x x x BE-=+=-=+=⋅-=+= ,000=++∴k ky x即7,0,03153115222=∴≠=+-+-k k k kk k k 又 故所求k=±7.为了求出k 的值, 需要通过消元, 想法设法建构k 的方程.例4 已知椭圆C 的中心在原点,焦点F 1、F 2在x 轴上,点P 为椭圆上的一个动点,且∠F 1PF 2的最大值为90°,直线l 过左焦点F 1与椭圆交于A 、B 两点,△ABF 2的面积最大值为12.(1)求椭圆C 的离心率; (2)求椭圆C 的方程. 讲解:(1)设cF F r PF r PF 2||,||,||212211===, 对,21F PF ∆ 由余弦定理, 得1)2(2441244242)(24cos 22122212221221221212221121-+-≥--=--+=-+=∠r r c a r r c a r r c r r r r r r c r r PF F0212=-=e , 解出 .22=e(2)考虑直线l 的斜率的存在性,可分两种情况:i) 当k 存在时,设l 的方程为)(c x k y +=………………①椭圆方程为),(),,(,122112222y x B y x A b y a x =+由.22=e 得 2222,2c b c a ==.于是椭圆方程可转化为 022222=-+c y x ………………② 将①代入②,消去y 得 02)(22222=-++c c x k x ,整理为x 的一元二次方程,得 0)1(24)21(22222=-+++k c x ck x k .则x 1、x 2是上述方程的两根.且221221122||k k c x x ++=-, 2212221)1(22||1||k k c x x k AB ++=-+=,也可这样求解:||||212121y y F F S -⋅=||||21x x k c -⋅⋅=AB 边上的高,1||2sin ||22121kk c F BF F F h +⨯=∠=c k k k k c S 21||)211(2221222+++=.2141224412221||122224242422222c k k c k k k k ck k k c<++=+++=++=ii) 当k 不存在时,把直线c x -=代入椭圆方程得22221,2||,22c c S c AB c y ⨯==±=由①②知S 的最大值为22c 由题意得22c =12 所以2226b c == 2122=a故当△ABF 2面积最大时椭圆的方程为: .12621222=+y x下面给出本题的另一解法,请读者比较二者的优劣: 设过左焦点的直线方程为:c my x -=…………① (这样设直线方程的好处是什么?还请读者进一步反思反思.)椭圆的方程为:),(),,(,122112222y x B y x A by a x =+由.22=e 得:,,22222c b c a ==于是椭圆方程可化为:022222=-+c y x ……② 把①代入②并整理得:02)2(222=---c mcy y m于是21,y y 是上述方程的两根.||1)()(||122221221y y m y y x x AB -+=-+-=2)2(441222222++++=m m c c m m2)1(2222++=m m c , AB 边上的高212mc h +=,从而222222)2(122122)1(2221||21++=+⨯++⨯==m m cm c m m c h AB S.221111222222c m m c ≤++++=当且仅当m=0取等号,即.22max c S =由题意知1222=c , 于是 212,26222===a c b .故当△ABF 2面积最大时椭圆的方程为: .12621222=+y x例5 已知直线1+-=x y 与椭圆)0(12222>>=+b a by a x 相交于A 、B两点,且线段AB 的中点在直线02:=-y x l 上. (1)求此椭圆的离心率;(2 )若椭圆的右焦点关于直线l 的对称点的在圆422=+y x 上,求此椭圆的方程.讲解:(1)设A 、B 两点的坐标分别为⎪⎩⎪⎨⎧=++-=11).,(),,(22222211b y ax x y y x B y x A ,则由 得 02)(2222222=-+-+b a a x a x b a ,根据韦达定理,得,22)(,2222212122221b a b x x y y b a a x x +=++-=++=+ ∴线段AB 的中点坐标为(222222,b a b b a a ++).由已知得2222222222222)(22,02c a c a b a b a b b a a =∴-==∴=+-+故椭圆的离心率为22=e . (2)由(1)知,c b =从而椭圆的右焦点坐标为),0,(b F 设)0,(b F 关于直线02:=-y x l 的对称点为,02221210),,(000000=⨯-+-=⋅--yb x b x y y x 且则解得 b y b x 545300==且 由已知得 4,4)54()53(,42222020=∴=+∴=+b b b y x故所求的椭圆方程为14822=+y x .例6 已知⊙M :x Q y x 是,1)2(22=-+轴上的动点,QA ,QB 分别切⊙M 于A ,B两点, (1)如果324||=AB ,求直线MQ 的方程;(2)求动弦AB 的中点P 的轨迹方程.讲解:(1)由324||=AB ,可得,31)322(1)2||(||||2222=-=-=AB MA MP 由射影定理,得 ,3|||,|||||2=⋅=MQ MQ MP MB 得 在Rt △MOQ 中, 523||||||2222=-=-=MO MQ OQ , 故55-==a a 或,所以直线AB 方程是;0525205252=+-=-+y x y x 或(2)连接MB ,MQ ,设),0,(),,(a Q y x P 由 点M ,P ,Q 在一直线上,得(*),22xy a -=-由射影定理得|,|||||2MQ MP MB ⋅= 即(**),14)2(222=+⋅-+a y x 把(*)及(**)消去a ,并注意到2<y ,可得).2(161)47(22≠=-+y y x适时应用平面几何知识,这是快速解答本题的要害所在,还请读者反思其中的奥妙.例7 如图,在Rt △ABC 中,∠CBA=90°,AB=2,AC=22。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考专题:解析几何常规题型及方法 一、高考风向分析: 高考解析几何试题一般共有3--4题(1--2个选择题,0--1个填空题,1个解答题),共计20多分,考查的知识点约为20个左右,其命题一般紧扣课本,突出重点,全面考查。选择题和填空题考查直线,圆,圆锥曲线中的基础知识,大多概念性较强,小巧灵活,思维多于计算;而解答题重点考查圆锥曲线中的重要知识点及其综合运用,重在考察直线与圆锥曲线的位置关系、轨迹方程,以向量为载体,立意新颖,要求学生综合运用所学代数、三角、几何的知识分析问题,解决问题。 二、本章节处理方法建议: 纵观历年全国各省市文、理高考试卷,普遍有一个规律:占解几分值接近一 半的填空、选择题难度不大,中等及偏上的学生能将对应分数收入囊中;而占解几分值一 半偏上的解答题得分很不理想,其原因主要体现在以下几个方面:(1)解析几何是代数与 几何的完美结合,解析几何的问题可以涉及函数、方程、不等式、三角、几何、数列、向 量等知识,形成了轨迹、最值、对称、范围、参系数等多种问题,因而成为高中数学综合 能力要求最高的内容之一(2)解析几何的计算量相对偏大(3)在大家的“拿可拿之分” 的理念下,大题的前三道成了兵家必争之地,而排放位置比较尴尬的第21题或22题(有 时20题)就成了很多人遗忘的角落,加之时间的限制,此题留白的现象比较普遍。 鉴于解几的特点,建议在复习中做好以下几个方面.1.由于高考中解几内容弹性很 大。有容易题,有中难题。因此在复习中基调为狠抓基础。不能因为高考中的解几解答题 较难,就拼命地去搞难题,套新题,这样往往得不偿失;端正心态:不指望将所有的题攻 下,将时间用在巩固基础、对付“跳一跳便可够得到”的常规题上,这样复习,高考时就 能保证首先将选择、填空题拿下,然后对于大题的第一个小问争取得分,第二小题能拿几 分算几分。 三、高考核心考点 1、准确理解基本概念(如直线的倾斜角、斜率、距离、截距等) 2、熟练掌握基本公式(如两点间距离公式、点到直线的距离公式、斜率公式、定比分点的坐标公式、到角公式、夹角公式等) 3、熟练掌握求直线方程的方法(如根据条件灵活选用各种形式、讨论斜率存在和不存在的各种情况、截距是否为0等等) 4、在解决直线与圆的位置关系问题中,要善于运用圆的几何性质以减少运算 5、了解线性规划的意义及简单应用 6、熟悉圆锥曲线中基本量的计算 7、掌握与圆锥曲线有关的轨迹方程的求解方法(如:定义法、直接法、相关点法、参数法、交轨法、几何法、待定系数法等) 8、掌握直线与圆锥曲线的位置关系的常见判定方法,能应用直线与圆锥曲线的位置关系解决一些常见问题 四、常规题型及解题的技巧方法
A:常规题型方面 (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)xy11,(,)xy22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。
典型例题给定双曲线xy2221。过A(2,1)的直线与双曲线交于两点P1及P2,求线段P1P2的中点P的轨迹方程。 分析:设Pxy111(,),Pxy222(,)代入方程得xy121221,xy222221。 两式相减得 ()()()()xxxxyyyy12121212120。
又设中点P(x,y),将xxx122,yyy122代入,当xx12时得 22201212xyyyxx·。
又kyyxxyx121212, 代入得24022xyxy。 当弦PP12斜率不存在时,其中点P(2,0)的坐标也满足上述方程。 因此所求轨迹方程是24022xyxy 说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。 变式练习:
给定双曲线2x2-y2=2,过点B(1,1)能否作直线L,使L与所给双曲线交于两点Q1、Q2两点,且点B是线段Q1Q2的中点?如果直线L存在,求出它的方程;如果不存在,说明理由. (2)焦点三角形问题
椭圆或双曲线上一点P,与两个焦点F1、F2构成的三角形问题,常用正、余弦定理搭桥。
典型例题设P(x,y)为椭圆xayb22221上任一点,Fc10(,),Fc20(,)为焦点,PFF12,PFF21
。
(1)求证离心率sinsin)sin(e; (2)求|||PFPF1323的最值。 分析:(1)设||PFr11,|PFr22,由正弦定理得rrc122sinsinsin()。
得rrc122sinsinsin(), (2)()()aexaexaaex3332226。 当x0时,最小值是23a; 当ax时,最大值是26323aea。 变式练习:
设F1、F2分别是双曲线12222byax(a>0,b>0)的左、右两个焦点,P是双曲线上的一点,若∠P=θ,求证:S△=b2cot2 (3)直线与圆锥曲线位置关系问题 直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式,应特别注意数形结合的办法
典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。ypxpxytx210()() (1)求证:直线与抛物线总有两个不同交点 (2)设直线与抛物线的交点为A、B,且OA⊥OB,求p关于t的函数f(t)的表达式。
(1)证明:抛物线的准线为114:xp
由直线x+y=t与x轴的交点(t,0)在准线右边,得tptp14440,而 故直线与抛物线总有两个交点。 (2)解:设点A(x1,y1),点B(x2,y2) 变式练习:
直线y=ax+1与双曲线3x2-y2=1交于两点A、B两点 (1)若A、B都位于双曲线的左支上,求a的取值范围 (2)当a为何值时,以AB为直径的圆经过坐标原点? (4)圆锥曲线的有关最值(范围)问题 圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。 <1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。 <2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。 典型例题 已知抛物线y2=2px(p>0),过M(a,0)且斜率为1的直线L与抛物线交于不同的两点A、B,|AB|≤2p
(1)求a的取值范围;(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值。 分析:这是一道直线与圆锥曲线位置关系的问题,对于(1),可以设法得到关于a的不等式,通过解不等式求出a的范围,即:“求范围,找不等式”。或者将a表示为另一个变量的函数,利用求函数的值域求出a的范围;对于(2)首先要把△NAB的面积表示为一个变量的函数,然后再求它的最大值,即:“最值问题,函数思想”。 解:(1)直线L的方程为:y=x-a,将y=x-a代入抛物线方程y2=2px,得:设直线L与抛物线两交点的坐标分别为A(x1,y1),B(x2,y2),则221212)(204)(4axxpaxxapa,又y1=x1-a,y2=x2-a, 解得:.42pap (2)设AB的垂直平分线交AB与点Q,令其坐标为(x3,y3),则由中点坐标公式得: paxxx2213,.2)()(221213paxaxyyy
所以|QM|2=(a+p-a)2+(p-0)2=2p2.又△MNQ为等腰直角三角形,所以|QM|=|QN|=P2,所以S△
NAB=22222||22||||21pppABpQNAB,即△NAB面积的最大值为P22。 变式练习: 双曲线12222byax(a>0,b>0)的两条准线间的距离为3,右焦点到直线x+y-1=0的距离为2
2
(1)求双曲线的方程 (2)设直线y=kx+m(k0且m0)与双曲线交于两个不同的点C、D,若A(0,-1)且AC=AD,求实数m的取值范围 (5)求曲线的方程问题 1.曲线的形状已知--------这类问题一般可用待定系数法解决。 典型例题 已知直线L过原点,抛物线C的顶点在原点,焦点在x轴正半轴上。若点A(-1,0)和点B(0,8)关于L的对称点都在C上,求直线L和抛物线C的方程。 分析:曲线的形状已知,可以用待定系数法。 设出它们的方程,L:y=kx(k≠0),C:y2=2px(p>0) 设A、B关于L的对称点分别为A/、B/,则利用对称性可求得它们的坐标分别为:
A/(12,11222kkkk),B(1)1(8,116222kkkk)。因为A、B均在抛物线上,代入,消去p,得:k2-k-1=0.
解得:k=251,p=552. 所以直线L的方程为:y=251x,抛物线C的方程为y2=554x. 变式练习: 在面积为1的△PMN中,tanM=21,tanN=-2,建立适当的坐标系,求出以M、N为焦点且过点P的椭圆方程。 2.曲线的形状未知-----求轨迹方程 典型例题 已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切
线长与|MQ|的比等于常数(>0),求动点M的轨迹方程,并说明它是什么曲线。 分析:如图,设MN切圆C于点N,则动点M组成的集合是:P={M||MN|=|MQ|},由平面几何知识可知:|MN|2=|MO|2-|ON|2=|MO|2-1,将M点坐标代入,可得:(2-1)(x2+y2)-42x+(1+42)=0. 当=1时它表示一条直线;当≠1时,它表示圆。这种方法叫做直接法。 变式练习:
过抛物线y2=4x的焦点F作斜率为k的弦AB,且AB≤8,此外,直线AB和椭圆3x2+2y2=2交于不同的两点。 (1)求直线AB的斜率k的取值范围 (2)设直线AB与椭圆相交于C、D两点,求CD中点M的轨迹方程 (6)存在两点关于直线对称问题 在曲线上两点关于某直线对称问题,可以按如下方式分三步解决:求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。(当然也可以利用韦达定理并结合判别式来解决)
典型例题已知椭圆C的方程xy22431,试确定m的取值范围,使得对于直线yxm4,椭圆C上有不同两点关于直线对称。 分析:椭圆上两点(,)xy11,(,)xy22,代入方程,相减得31212()()xxxx
412()yy()yy120。
又xxx122,yyy122,kyyxx121214,代入得yx3。
又由yxyxm34解得交点(,)mm3。 交点在椭圆内,则有()()mm224331,得2131321313m。 变式练习: 为了使抛物线()yx112上存在两点关于直线ymx对称,求m的取值范围。 (7)两线段垂直问题