面向对象遥感影像分类技术研究的开题报告
面向对象的GEO遥感影像分类与信息提取

关 键 词 : 球 之 眼 卫 星 ; 感 图像 处 理 系统 ; 向对 象 地 遥 面 中 图分 类 号 : 3 1 TP 9 文献标识 码 : A 文 章 编 号 : 6 49 4 ( 0 1 0 — 2 30 1 7 — 9 4 2 1 ) 60 0 — 4
一
2 实 验 区及 数 据 源
2 1 地 球 之 眼 一1卫 星 的 基 本 参 数 设 置 .
方 面 是 我 们 获 得 的遥 感 图 片 分 辨 率 越 来 越
高 , 一方 面是 人们 对遥 感 信 息 的 认 识 和利 用 程 度 另 远远 落后 于遥感 信 息 获 取 的速 度 , 造成 大量 资 源 的 严 重 浪费 , 但据 统计 , 人们 用 到 的遥 感信 息仅 占全 部 获 取信 息 的 5%左右 , 而深 层 次 的信 息 开发更 少 , 这
1 引言
过去 4 0年间遥 感技 术有 了长足 的发展 , 备 了 具
出, 而光 谱分 辨率 并 不 高 , 因此 , 对 高 空 间分 辨 率 针 图像 , 在分 类 时不 能仅 依靠其 光谱 特征 , 多 的是 要 更
利 用 其几何 信 息和 结构 信息 。
高光谱 分辨 率 、 时 间 分辨 率 、 高 高空 间分 辨 率 、 传 多 感器 、 多平 台 、 多角 度 对 地 观 测 能力 , 已经形 成 了三
2 2 实 验 区 域 .
分 析 的分 类 方法 , 主要 包括 监督 分类 和非 监督 分类 。
监督 分类 是一 种 常用 的精度 较高 的统 计判 决分 类 , 已知类 别 的训练 场地 上提 取各 类训 练样 本 , 在 通
过选 择特 征变 量 、 确定判 别 函数 或判 别规则 , 而把 从 图像 中的各 个 像 元 点 划 归 到 各 个 给 定 类 的 分 类 方 法_ 。非监 督 分 类 是 在 没 有 先 验 类 别 知 识 的 情 况 2 ]
基于面向对象的中分辨率遥感影像变化检测方法研究

SCIENCE &TECHNOLOGY INFORMATION科技资讯基于面向对象的中分辨率遥感影像变化检测方法研究田方1武喜红2*(1.河南测绘职业学院河南郑州450000;2.中科星图股份有限公司北京100000)摘要:该文从如何提高遥感影像变化检测的精度出发,提出了一种基于面向对象的Idex-CVA 变化检测法。
通过实验数据分析,面向对象的Idex-CVA 法可以把图像指数变换与CVA 法的优势融合,能够提高检测精度,降低虚检率、漏检率。
随着经济与科技的发展,尤其是近年来人口的快速增长和城镇化的推进,地表覆盖物的变化越来越频繁,如果能用既快速又有效的方法检测到地表覆盖物的变化,在国情监测、农业普查、研究土地变化等领域具有十分重要的意义。
关键词:遥感影像变化检测Idex-CVA 面向对象中图分类号:P23文献标识码:A文章编号:1672-3791(2021)11(b)-0059-03Research on Change Detection Method of Medium ResolutionRemote Sensing Image Based on Object-orientedTIAN Fang 1WU Xihong 2*(1.Henan College of Surveying and Mapping,Zhengzhou,Henan Province,450000China;2.Geovis TechnologyCo.,Ltd.,Beijing,100000China)Abstract:Starting from how to improve the accuracy of remote sensing image change detection,it proposes an object-oriented Idex-CVA change detection method in this paper.Through the analysis of experimental data,the object-oriented Idex-CVA method can integrate the advantages of image exponential transformation and CVA method,and improve the detection accuracy and reduce the false detection rate and missed detection rate.With the development of economy and science and technology,especially the rapid growth of population and the promotion of urbanization in recent years,the change of the surface covering more and more frequently.If we can detect the change of surface cover by fast and effective methods,it is of great significance in the fields of national condition monitoring,agricultural census,research on land change and so on.Key Words:Remote sensing image;Change detection;Idex-CVA;Object-oriented1研究背景和意义当今遥感技术进入了一个快速发展的阶段,“三多和三高”已经成为遥感技术的最大特点,三多是指多角度、多传感器和多平台,三高是指高光谱分辨率、高空间分辨率和高时间分辨率,遥感影像变化检测已成为空间信息科学中较为活跃的研究方向之一[1]。
面向对象高分辨遥感影像分类研究

最 近邻 法进行 监督 分类 , 较好 的 利用 影 像 的高 分 辨
对 象特 征 , 验结 果 表 明此 方 法 能够 很 好 的识 别 高 实 分 辨影像 地 物特征 。
点, 目前 较 常用 的分 割 算 法 主要 有 基 于纹 理 特 征 分
割 、 于 图像灰 度分 割 、 于知 识 影 像 分 割 、 形 网 基 基 分
光谱 信 息 , 有较 好 的 利用 高 空 间分 辨 影 像 的 对 象 没
特征。
收 稿 日期 :0 7 0 —0 20 — 4 5 修 订 日期 :0 7 0 — 1 20 — 5 5
中 图 分 类 号 :TP 9 7 文 献 标 识 码 :A 文 章 编 号 :1 0 — 0 0
1 引 言
随着 遥 感 技术 快 速 发展 , 其 是 近 年 来 高 空 间 尤
面 向对 象 的分类 方法 首 先将影 像 分割 成对 象特 征 , 后在 对象 的基 础上 进行 分类 研 究 , 然 目前对 面 向 对象 的研 究 主要 在 多 尺 度 分 割 上 , 割 是 对 象 特 征 分 分类 的基 础 _ 1 。面 向对 象 引 入 模 糊 理 论 中并 取 得 很好 的分 类 效 果_ 1 知 识 规 则 结 合 进 行 辅 助 分 类 与 等 等 ] 卜¨ 。本文 采用 分 割后 的 影 像 对 象 特 征 按 照
络 演化 ( NE 分 割等 算 法 , 虑 到 分 割 后 对 象 特 F A) 考
征 异质 性最 小 , 用 分 形 网络 演化 方 法 进行 影 像 分 采
基 金项 目 : 江苏 省测 绘科 研基金 项 目(S J CHKY2 0 0 ) 助 07 3资 作 者简 介 : 新亮 , , 京大 学地理 信息 科学 系在 校本科 生 , 黎 男 南 研究 兴趣遥 感理 论 与应用 , 地理 数据分 析与 建模 等 。
基于多示例学习的高分辨率遥感影像面向对象分类

rmo esn ig i g c o dn ot eo jc r n e g lsiiain p rdg Ho g n o so jcsa eg n r tdb e t e sn ma ea c r ig t h beto i tdi eca sf t a a im. mo e e u bet r e e ae yi e ma c o m— a esg n ain meh dfrt a d t e bet s d a n tn e , e h  ̄mu dv re d n i n tn e b r iig b g g e me tto to i , n h n o jcs u e sisa cs g tt ema s m ies e st isa c y tann a s y
Ab ta t I utp e i s a c e r ig,h a sa e u e s ta n n a is a d t e g a fla n n s p e itt e l b l f s r c : n m li l t n e la n n t e b g r s d a r i i g s mp e , n h o l e r ig i r d c h a e n o o
修 订 日 期 :0 1 1 一 O 2 1— 1 l
基 金项 目: 国家 自然科学 基金 项 目( 0 7 1 5 ; 苏省 自然科 学基金 ( K2 1 1 2 。 4 8 19)江 B 0 0 8 )
作 者简 介 : 里木 ・ 阿 赛买 提 ( 9 4 男 , 1 8  ̄) 维吾 尔族 , 士 , 硕 主要 研究 方 向 : 遥感 图像处 理与应 用 、 器学 习在遥 感 图像 分析 中的应用 。 机
际应用 中都 取 得 了大 量 成 果 [ 。在 多 示 例 学 习 1 ] 中 , 由示 例组 成 的包作 为训 练样 本 , 将 包具 有概 念标
面向对象的遥感影像信息提取

面向对象的遥感影像信息提取摘要:随着遥感技术的不断发展,遥感影像的分辨率不断的提高,如何对遥感影像中的地物信息进行高效、快速的提取,是当前研究的热点问题。
面向对象的方法先对影像进行多尺度分割得到同质区域对象,充分利用遥感影像中丰富的光谱、形状、纹理等特征对分割后的对象进行分类。
面向对象的遥感信息提取的方法克服了传统的基于像元的分类方法只依靠光谱信息的缺点,更高效的获取地物信息,得到更高精度的分类结果。
关键词:多尺度分割、分类、遥感影像、面向对象Abstract:With the continuous development of remote sensing technology, the resolution of remote sensing image is constantly improving. How to efficiently and quickly extract the ground object information in remote sensing image is a hot issue in current research. The object oriented method firstly segmented the image to obtain the homogeneous region object, and made full use of the rich spectral, shape, texture and other features of remote sensing image to classify the segmented object. The object-oriented remote sensing information extraction method overcomes the shortcoming of the traditional classification method based on pixel which only relies on spectral information, and obtains the ground object information moreefficiently and gets the classification result with higher precision.Key word:Multi-scale segmentation、classification、remote sensing image、object oriented.1引言利用面向对象的信息提取技术,可以更好掌握实际生产生活中地物变化情况,以及土地利用等情况,能够为国土空间规划、土地利用调查、资源普查、交通规划、生态旅游发展等工作提供有力的数据支撑。
面向对象的遥感影像分类技术

随着遥感技术的发展,高分辨率影像 越来越普及。面向对象分类方法能够 更好地适应高分辨率影像的特点,提 取出更多的地物细节信息。
02
遥感影像数据预处理
遥感影像数据来源及特点
来源
卫星、飞机、无人机等遥感平台获取 的影像数据。
特点
具有多源性、多时相性、多光谱性、 高分辨率等特点。
数据预处理流程
总结与展望
研究成果总结
01
面向对象遥感影像分类技术的优势
通过面向对象的方法,遥感影像分类技术能够更有效地提取地物特征,
降低分类误差,提高分类精度。
02
关键技术的突破
在特征提取、对象构建、分类器设计等方面取得了重要突破,推动了遥
感影像分类技术的发展。
03
多样化应用场景的实现
面向对象遥感影像分类技术已广泛应用于土地利用/覆盖分类、城市规
04
数据融合技术
将多源、多时相、多光谱的遥感影像 数据进行融合,提高影像数据的空间 分辨率和光谱分辨率。
03
面向对象分类方法原理及实现
面向对象分类方法的基本原理
对象的概念
01
在遥感影像中,对象是指具有相似光谱、纹理、形状等特征的
像素集合。
分层结构
02
面向对象分类方法通过构建分层结构,将影像划分为不同尺度
动态交互可视化
利用GIS等空间分析工具,实现分类结果的动态交互可视化,支持用 户自定义查询、分析和展示。
算法优化与改进方向
特征提取与选择
研究更有效的特征提取方法,如深度学习、纹理分析等, 提高分类器的性能;同时,针对特定应用需求,选择合适 的特征组合进行优化。
上下文信息利用
充分挖掘和利用遥感影像中的上下文信息,如空间关系、 地物形状等,提高分类的准确性;研究基于图模型、条件 随机场等方法的上下文建模技术。
面向对象的高分辨率遥感影像分类
⾯向对象的⾼分辨率遥感影像分类⼆○⼀⼀届毕业设计⾯向对象的⾼分辨率遥感影像分类Object-oriented Classification of high Resolution RemoteSensing images学院:地质⼯程与测绘学院专业:遥感科学与技术姓名:学号:指导教师:完成时间:2011年6⽉17⽇⼆〇⼀⼀年七⽉摘要⾼空间分辨率遥感影像使得在较⼩的空间尺度上观察地表细节变化,进⾏⼤⽐例尺遥感制图,以及监测⼈为活动对环境的影响成为可能。
随着⾼分辨率影像的应⽤越来越普及,迫切要求⼈们对⾼分辨率遥感信息提取进⾏研究,以满⾜⾼分辨率影像信息不断增长的应⽤和研究需要⾼分辨率遥感影像光谱信息有限,空间信息丰富,地物的尺⼨、形状及相邻地物间的关系都得到很好的反映。
⾯向对象的分类⽅法与传统的基于像素的分类相⽐,不仅仅是依靠光谱信息,⽽且还充分利⽤影像的空间信息,分类时也克服了基于像元的逐点分类⽆法对相同语义特征的像素集合进⾏识别的缺点,是⼀种⽬前最适合于⾼分辨率遥感影像的分类⽅法。
本⽂采⽤⾯向对象的分类⽅法对⾼分辨率影像进⾏分类,该⽅法⾸先对影像进⾏多尺度分割获得同质区域对象,在此基础上利⽤模糊分类思想对分割后的对象进⾏分类。
该⽅法不仅充分利⽤了⾼分辨率影像的空间信息,还将基于像素的分类提升到了基于对象的分类。
多尺度分割采⽤的是区域⽣长合并算法,通过对尺度阈值、光谱因⼦及形状因⼦等参数的控制,可以获得不同尺度下有意义的对象。
分割后的对象不仅包含了原始的光谱信息,还可以提供⼤量辅助特征,如纹理、形状、拓扑等特征。
综合利⽤这些特征以及模糊分类的思想,使得⾼分辨率影像分类在减少分类不确定性的同时,还提⾼了分类的精度。
最后将⾯向对象分类结果与传统的基于像素分类结果进⾏对⽐分析,发现其分类精度要明显⾼于传统法,且具有较强的抗噪声的功能,分类所得的地物结果相对较为完整,具有更丰富的语义信息,更加符合客观现实情形。
面向对象的遥感影像分类技术
面向对象分类的 基本原理
面向对象分类的基本概念
面向对象分类: 将遥感影像分割 为多个对象,每 个对象具有相同 的属性和特征
基本原理:通过 分析遥感影像的 纹理、颜色、形 状等特征,将具 有相似特征的像 素划分为同一个 对象
优势:能够更好 地处理遥感影像 中的噪声和异物, 提高分类精度
应用领域:广泛 应用于土地覆盖 分类、灾害监测、 环境监测等领域
遥感影像分类技术的分类方法
监督分类:利用已知类别的样本进行训练,然后对未知类别的影像进行分类
无监督分类:无需已知类别的样本,直接对影像进行分类
半监督分类:结合监督分类和无监督分类的方法,提高分类准确性
深度学习分类:利用深度学习技术,如卷积神经网络(CNN)、循环神经网络(RNN)等,进行 遥感影像分类
技术发展对策与建议
加强技术研发,提高分类精度和速度 拓展应用场景,如农业、环保、城市规划等领域 加强与其他领域的交叉学科合作,如人工智能、大数据等 制定相关政策和标准,推动技术发展和应用
感谢您的观看
汇报人:XX
在林业领域的应用
森林资源调查:通过遥感影像分类技术,可以快速准确地获取森林资源的分布、面积和种类等信息。
森林健康监测:通过对遥感影像的分析,可以及时发现森林的病虫害、火灾等灾害,并采取相应的 措施。
森林资源管理:通过遥感影像分类技术,可以评估森林资源的利用情况,为森林资源的保护和管理 提供依据。
选择分类器的依据:数据集的大小、 特征的复杂性、计算资源的限制等
分类结果后处理与优化
后处理方法:平 滑、滤波、边缘 检测等
优化策略:调整参 数、选择合适的分 类器、融合多种分 类方法等
评价指标:精度、 召回率、F1值等
基于GLC面向对象遥感影像分类方法的研究与应用
R e s e a r c h a n d Ap p l i c a t i o n o f Ob j e c t - — - Or i e n t e d Re mo t e
t i o n,w h i c h i s u s i n g s i mp l e x i n f o r ma t i o n f o r c l a s s i f y i n g a n d ma k e s i t d i f i f c u l t t o s o l v e t h e p r o b l e m o f“t h e s a me l i g h t wi h t d i f f e r e n t
较 高层次里 实现 了地物信息的提取 , 在减 少信 息遗 失的同时提 高了分 类精度 。本文主要介绍 了面向对 象遥感 影 像分类技术的基本原理和方法 , 并对 C 5 . 0决策树分类算法进行 了改进和研 究, 构造 出新的分 类器 G L C决 策树 . 之后又基 于该分类 器对遥感影像进 行面向对象分类, 将结果与基 于像元分类和使 用 S V M 面向对象分类结果进 行 对 比分析 , 从 而验证 了经过改进的 C 5 . 0算法应 用于面向对 象遥感影像分类的准确性 和有效性 。 关键词 : 遥感影像分类 ; G L C决策树分类 ; 面向对 象; C 5 . 0算法
s p e c t r u m’ ’a n d“ t h e s a me s p e c t r u m w i t h d i f f e r e n t o b j e c t ” .T u r n i n g t o w a r d s t h e s h a p e.t e x t u r e a n d o t h e r c h a r a c t e is r t i c s o f t h e t a r g e t f e a t u r e s o f t h e o b j e c t —o i r e n t e d c l a s s i i f c a t i o n t e c h n o l o g y,i t r e a l i z e s t h e e x t r a c t i o n o f t o p o g r a p h i c f e a t u r e s i n a h i 【 g h e r l e v e l a n d n o t o n l y
遥感的面向对象分类法
遥感的面向对象分类法传统的基于像素的遥感影像处理方法都是基于遥感影像光谱信息极其丰富,地物间光谱差异较为明显的基础上进行的。
对于只含有较少波段的高分辨率遥感影像,传统的分类方法,就会造成分类精度降低,空间数据的大量冗余,并且其分类结果常常是椒盐图像,不利于进行空间分析。
为解决这一传统难题,模糊分类技术应运而生。
模糊分类是一种图像分类技术,它是把任意范围的特征值转换为 0 到 1 之间的模糊值,这个模糊值表明了隶属于一个指定类的程度。
通过把特征值翻译为模糊值,即使对于不同的范围和维数的特征值组合,模糊分类能够标准化特征值。
模糊分类也提供了一个清晰的和可调整的特征描述。
对于影像分类来说,基于像元的信息提取是根据地表一个像元范围内辐射平均值对每一个像元进行分类,这种分类原理使得高分辨率数据或具有明显纹理特征的数据中的单一像元没有很大的价值。
影像中地物类别特征不仅由光谱信息来刻画的,很多情况下(高分辨率或纹理影像数据)通过纹理特征来表示。
此外背景信息在影像分析中很重要,举例来说,城市绿地与某些湿地在光谱信息上十分相似,在面向对象的影像分析中只要明确城市绿地的背景为城市地区,就可以轻松地区分绿地与湿地,而在基于像元的分类中这种背景信息几乎不可利用。
面向对象的影像分析技术是在空间信息技术长期发展的过程中产生的,在遥感影像分析中具有巨大的潜力,要建立与现实世界真正相匹配的地表模型,面向对象的方法是目前为止较为理想的方法。
面向对象的处理方法中最重要的一部分是图像分割。
随着对地观测任务逐渐精细化,高分辨率遥感卫星影像的应用越来越广泛。
这对遥感影像分类方法提出了挑战。
已有的研究表明:基于像元的高分辨率遥感影像分类存在明显的限制。
近年来,面向对象影像分析(Object-Based ImageAnalysis,OBIA)在高分辨率遥感影像处理中渐露头角,被认为是遥感与地理信息科学发展的重要趋势。
本文针对面向对象影像分类(Object-Based Image Classification,OBIC)方法中的若干问题开展研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
面向对象遥感影像分类技术研究的开题报告
1.课题背景
遥感影像分类一直是遥感应用的主要领域之一,其分类精度对于土地利用/覆盖等地学研究和环境监测具有重要意义。
近年来,随着计算机科学与技术的不断发展,机器学习和深度学习等技术在遥感影像分类中得到了广泛应用,但是,在图像分类时如何保证分类精度和分类速度仍然是一个挑战。
同时,面向对象的遥感影像分类是一种新的遥感影像分类方式。
相比于传统的像元级分类方式,面向对象的分类依据图像中的对象,这些对象由一组像素表示,并包含一组属性。
这种分类方式可以更好地考虑地物的空间上下文关系,提高分类的精度和准确性。
2.研究内容
本研究旨在提出一种基于面向对象的遥感影像分类技术,该技术将计算机视觉中的目标检测和图像分割技术应用于遥感影像分类中。
具体研究内容包括:
(1)通过目标检测技术检测出遥感影像中所有感兴趣的区域。
(2)对感兴趣区域进行图像分割,将每个区域划分为包含一个或多个对象的图像块。
(3)提取每个对象的特征,包括形状、颜色、纹理等等。
(4)基于机器学习和深度学习算法,将提取的特征与类别标签进行匹配,实现遥感影像的自动分类。
3.研究意义
本研究的成果将具有以下意义:
(1)提高遥感影像分类的精度和准确性。
(2)自动识别和分类遥感影像中的复杂地物,提高分类的时效性和效率。
(3)对于土地利用/覆盖等地学研究和环境监测具有重要意义。
4.研究方法和技术路线
本研究采用以下技术和方法:
(1)目标检测算法,如Faster R-CNN和YOLO等。
(2)图像分割算法,如基于区域的分割算法和基于像素的分割算法等。
(3)特征提取算法,如HOG、LBP和CNN等。
(4)分类算法,如支持向量机、随机森林和深度神经网络等。
本研究的技术路线如下:
(1)收集并准备训练数据集。
(2)设计并实现遥感影像分类系统。
(3)对遥感影像进行目标检测和图像分割。
(4)提取每个对象的特征,并进行特征选择和降维。
(5)训练分类器,并对分类器进行优化和调参。
(6)对测试数据进行分类并评估分类结果。
5.研究进度安排
本研究计划在两年内完成,按照以下进度安排:
第一年:
(1)调研相关技术和方法。
(2)收集并准备训练数据集。
(3)设计并实现遥感影像分类系统。
(4)完成目标检测和图像分割的算法实现。
第二年:
(1)完成每个对象的特征提取和特征选择等工作。
(2)完成分类器的训练和优化。
(3)对测试数据进行分类并评估分类结果。
(4)撰写论文并进行答辩。
6.论文创新
本研究的主要创新点如下:
(1)提出一种基于面向对象的遥感影像分类技术,该技术将目标检测和图像分割应用于遥感影像分类中。
(2)提出了一种新的特征提取和选择方法,能够更好地描述遥感影像中的地物特征。
(3)采用机器学习和深度学习算法进行分类,提高了分类的准确性和效率。
(4)在遥感影像分类领域中取得了一定的研究成果,具有一定的实际应用价值。