材料力学常用公式

合集下载

材料力学 -公式汇总-全要点

材料力学 -公式汇总-全要点

材料力学公式汇总一、应力与强度条件 1、拉压σmax N=A≤[σ]max4、平面弯曲①σmax=②σtmax=σcmaxMWz≤[σ]max2、剪切τmax=Q≤[τ] A挤压σ挤压=P挤压A≤σ挤压[]Mmaxytmax≤[σtmax] IzM=maxycmax≤[σcnax]IzIz⋅b*③τmax=QmaxSz max≤[τ]3、圆轴扭转τmax=5、斜弯曲σmax= T≤[τ] Wt≤[σ]maxMzMy+WzWy6、拉(压)弯组合σmax=σtmax=NM+AWz≤[σ]maxMzNMzN+ytmax≤[σt] σcmax=ycmax-≤[σc] AIzIzA注意:“5”与“6”两式仅供参考 7、圆轴弯扭组合:①第三强度理论σr3=②第四强度理论σr4=二、变形及刚度条件 NL1、拉压∆L==EANiLi=EAN(x)dxEA2w2+4τn==22Mw+MnWzWz≤[σ]≤[σ]2w2+3τn22Mw+0.75Mn∑⎰LTiLiT(x)dxTLΦT1800=∑=⋅2、扭转Φ= φ== ( /m)GIpGIpGIpLGIpπ⎰3、弯曲(1)积分法:EIy''(x)=M(x) EIy'(x)=EIθ(x)=⎰M(x)dx+C EIy(x)=[M(x)dx]dx+Cx+D (2)叠加法:f(P1,P2)…=f(P1)+f(P2)+…,θ(P1,P2)=θ(P1)+θ(P2)+…(3)基本变形表(注意:以下各公式均指绝对值,使用时要根据具体情况赋予正负号)MALq⎰⎰PALBBALBMLPL2qL3θB= θB= θB=EI2EI6EIqL4ML2PL3fB= fB= fB=8EI3EI2EIMLMLqL3PL2,θA= θB=θA= θB=θA= θB=6EI3EI24EI16EIqL4ML2PL3fc= fc= fc= 16EI48EI384EI(4)弹性变形能(注:以下只给出弯曲构件的变形能,并忽略剪力影响,其他变形与此相似,不予写出)Mi2LiM2LM2(x)dx=∑= U=2EIi2EI2EI⎰(5)卡氏第二定理(注:只给出线性弹性弯曲梁的公式)∆i=M(x)∂M(x)∂U=∑dx EI∂Pi∂Pi⎰三、应力状态与强度理论1、二向应力状态斜截面应力σx+σyσx-σyσx-σyσα=+cos2α-τxysin2α τα=sin2α+τxyco2sα 2222、二向应力状态极值正应力及所在截面方位角σx-σy2-2τxyσmaxσx+σy2=±()+τxy tg2α0= σminσx-σy223、二向应力状态的极值剪应力τmax=(σx-σy22)2+τxy0注:极值正应力所在截面与极值剪应力所在截面夹角为454、三向应力状态的主应力:σ1≥σ2≥σ3σ-σ3最大剪应力:τmax=1 25、二向应力状态的广义胡克定律(1)、表达形式之一(用应力表示应变)τxy11μεx=(σx-μσy) εy=(σy-μσx) εz=-(σx+σy) γxy= EEEG(2)、表达形式之二(用应变表示应力)σx=E1-μ2(εx+μεy) σy=E1-μ2(εy+μεx) σz=0 τxy=Gγxy6、三向应力状态的广义胡克定律εx=τxy1σx-μσy+σz (x,y,z) γxy= (xy,yz,zx) EG[()]27、强度理论(1)σr1=σ1≤[σ1] σr2=σ1-μ(σ2+σ3)≤[σ] [σ]=(2)σr3=σ1-σ3≤[σ] σr4=σbnb1(σ1-σ2)2+(σ2-σ3)2+(σ3-σ1)2≤[σ] [σ]=σsns28、平面应力状态下的应变分析εx+εyεx-εy⎛γxy⎫⎪sin2α (1)εα=+cos2α- - ⎪22222⎛εx-εy⎫⎛γxy⎫εmaxεx+εy⎪+ ⎪ =±(2)⎪⎪εmin2⎝2⎭⎝2⎭⎛γxy⎛γα⎫εx-εysin2α+ -⎪= -22⎝2⎭⎝⎫⎪co2sα ⎪⎭γxytg2α0=εx-εy四、压杆稳定1、临界压力与临界应力公式(若把直杆分为三类)π2EIminπ2E①细长受压杆λ≥λp Pcr= σcr=2 2λ(μL)②中长受压杆λp≥λ≥λs σcr=a-bλ ③短粗受压杆λ≤λs “σcr”=σs 或σba-σsπ2E2、关于柔度的几个公式λ= λp= λs=iσpbμL3、惯性半径公式i=Izd(圆截面 iz=,矩形截面iminA4=b(b为短边长度))五、动载荷(只给出冲击问题的有关公式)能量方程∆T+∆V=∆U 2h冲击系数 Kd=1++(自由落体冲击) Kd=∆st2v0(水平冲击)g∆st六、截面几何性质1、惯性矩(以下只给出公式,不注明截面的形状)dπd4πD42IP=ρdA= 1-α4 α=D3232⎰()bh3hb3Iz=ydA=1-α 64641212Izπd3πD3hb2bh24Wz== 1-αymax326326⎰2πd4πD4((4))2、惯性矩平移轴公式Iz=Izc+a2A。

材料力学常用基本公式

材料力学常用基本公式

1.外力偶矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.纵向线应变和横向线应变7.泊松比8.胡克定律9.受多个力作用的杆件纵向变形计算公式?10.承受轴向分布力或变截面的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许用应力,脆性材料,塑性材料13.延伸率14.截面收缩率15.剪切胡克定律(切变模量G,切应变g )16.拉压弹性模量E、泊松比和切变模量G之间关系式17.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)19.圆截面周边各点处最大切应力计算公式20.扭转截面系数,(a)实心圆(b)空心圆21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24.等直圆轴强度条件25.塑性材料;脆性材料26.扭转圆轴的刚度条件? 或27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,28.平面应力状态下斜截面应力的一般公式,29.平面应力状态的三个主应力,,30.主平面方位的计算公式31.面内最大切应力32.受扭圆轴表面某点的三个主应力,,33.三向应力状态最大与最小正应力 ,34.三向应力状态最大切应力35.广义胡克定律36.四种强度理论的相当应力37.一种常见的应力状态的强度条件,38.组合图形的形心坐标计算公式,39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截面图形对轴z和轴y的惯性半径? ,41.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)42.纯弯曲梁的正应力计算公式43.横力弯曲最大正应力计算公式44.矩形、圆形、空心圆形的弯曲截面系数? ,,45.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)46.矩形截面梁最大弯曲切应力发生在中性轴处47.工字形截面梁腹板上的弯曲切应力近似公式48.轧制工字钢梁最大弯曲切应力计算公式49.圆形截面梁最大弯曲切应力发生在中性轴处50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处51.弯曲正应力强度条件52.几种常见截面梁的弯曲切应力强度条件53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,54.梁的挠曲线近似微分方程55.梁的转角方程56.梁的挠曲线方程?57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58.偏心拉伸(压缩)59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式62.63.弯拉扭或弯压扭组合作用时强度计算公式64.剪切实用计算的强度条件65.挤压实用计算的强度条件66.等截面细长压杆在四种杆端约束情况下的临界力计算公式67.压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.568.压杆的长细比或柔度计算公式,69.细长压杆临界应力的欧拉公式70.欧拉公式的适用范围71.压杆稳定性计算的安全系数法72.压杆稳定性计算的折减系数法73.关系需查表求得3 截面的几何参数4 应力和应变5 应力状态分析6 内力和内力图7 强度计算8 刚度校核9 压杆稳定性校核10 动荷载11 能量法和简单超静定问题材料力学公式汇总一、应力与强度条件 1、 拉压 []σσ≤=maxmax AN2、 剪切 []ττ≤=AQmax 挤压 []挤压挤压挤压σσ≤=AP3、 圆轴扭转 []ττ≤=W tTmax 4、平面弯曲 ①[]σσ≤=maxz max W M②[]max t max t max max σσ≤=y I M z tmax c max max y I Mzc =σ[]cnax σ≤③[]ττ≤⋅=bI S Q z *max z max max5、斜弯曲 []σσ≤+=maxyyz z max W M W M6、拉(压)弯组合 []σσ≤+=maxmax zW M A N[]t max t zmax t σσ≤+=y I M A N z[]c max c z z max c σσ≤-=A N y I M 注意:“5”与“6”两式仅供参考 7、圆轴弯扭组合:①第三强度理论 []στσσ≤+=+=z2n2w 2n2wr34W M M②第四强度理论[]στσσ≤+=+=z2n2w 2n2wr475.03W M M二、变形及刚度条件1、 拉压 ∑⎰===∆LEAxx N EALN EANL L d )(ii2、 扭转 ()⎰=∑==Φpp i i p GI dxx T GI LT GI TL πφ0180⋅=Φ=p GI T L (m / )3、 弯曲(1)积分法:)()(''x M x EIy = C x x M x EI x EIy +==⎰d )()()('θ D Cx x x x M x EIy ++=⎰⎰d ]d )([)((2)叠加法:()21,P P f …=()()21P f P f ++…, ()21,P P θ=()()++21P P θθ…(3)基本变形表(注意:以下各公式均指绝对值,使用时要根据具体情况赋予正负号)EI ML B =θ EI PL B 22=θ EIqL B 63=θEIML f B 22=EI PL f B 33= EI qL f B 84=EIML B3=θ,EI MLA 6=θEIPL A B 162==θθEIqL A B 243==θθEIML f c 162=EIPL f c 483=EIqL f c 3844=(4)弹性变形能(注:以下只给出弯曲构件的变形能,并忽略剪力影响,其他变形与此相似,不予写出)EIL M U 22==ii i EI L M 22∑=()⎰EIdx x M 22 (5)卡氏第二定理(注:只给出线性弹性弯曲梁的公式)=∂∂=∆ii P U()()⎰∂∂∑dx P x M EI x M i 三、应力状态与强度理论 1、 二向应力状态斜截面应力ατασσσσσα2sin 2cos 22xy yx yx --++=ατασστα2cos 2sin 2xy yx +-=PAB MAB A BqL LLLL2、 二向应力状态极值正应力及所在截面方位角22min max )2(2xyy x y x τσσσσσσ+-±+=yx xyσστα--=22tg 03、 二向应力状态的极值剪应力22max )2(xyyx τσστ+-=注:极值正应力所在截面与极值剪应力所在截面夹角为450 4、 三向应力状态的主应力:321σσσ≥≥最大剪应力:231max σστ-=5、二向应力状态的广义胡克定律(1)、表达形式之一(用应力表示应变))(1y x x Eμσσε-= )(1x y y Eμσσε-= )(y x z Eσσμε+-= Gxy xy τγ=(2)、表达形式之二(用应变表示应力))(12y x x E μεεμσ+-= )(12x y y Eμεεμσ+-= 0=z σ xy xy G γτ=6、三向应力状态的广义胡克定律()[]z y x x Eσσμσε+-=1()z y x ,, Gxy xy τγ= ()zx yz xy ,,7、强度理论 (1)[]111σσσ≤=r ()3212σσμσσ+-=r []σ≤[]bb n σσ=(2)[]σσσσ≤-=313r()()()[]213232221421σσσσσσσ-+-+-=r []σ≤ []ss n σσ=8、平面应力状态下的应变分析 (1)αγαεεεεεα2sin 22cos 22⎪⎪⎭⎫⎝⎛---++=xyyx y x+-=⎪⎭⎫ ⎝⎛-αεεγα2sin 22yx αγ2cos 2⎪⎪⎭⎫ ⎝⎛-xy (2)22min max 222⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-±+=xy y x yx γεεεεεεyx xyεεγα-=02tg四、压杆稳定1、临界压力与临界应力公式(若把直杆分为三类)①细长受压杆 p λλ≥ ()2min 2cr L EI P μπ= 22cr λπσE=②中长受压杆 s p λλλ≥≥ λσb a -=cr③短粗受压杆s λλ≤ “cr σ”=s σ或 b σ2、关于柔度的几个公式 i Lμλ= p2p σπλE=ba s s σλ-=3、惯性半径公式AI i z= (圆截面4di z =,矩形截面12min b i =(b 为短边长度))五、动载荷(只给出冲击问题的有关公式) 能量方程 U V T ∆=∆+∆冲击系数 std 211∆++=hK (自由落体冲击)st20d ∆=g v K (水平冲击)六、截面几何性质1、 惯性矩(以下只给出公式,不注明截面的形状)⎰=dA I P 2ρ=324d π ()44132απ-D Dd =α ⎰==6442d dA y I z π ()44164απ-D 123bh123hb 323maxd y I W zz π==()43132απ-D62bh62hb2、惯性矩平移轴公式A a I I 2zc z +=。

材料力学常用公式整理

材料力学常用公式整理

材料力学常用公式1.外力偶矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.纵向线应变和横向线应变7.泊松比8.胡克定律9.受多个力作用的杆件纵向变形计算公式?10.承受轴向分布力或变截面的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许用应力,脆性材料,塑性材料13.延伸率14.截面收缩率15.剪切胡克定律(切变模量G,切应变g )16.拉压弹性模量E、泊松比和切变模量G之间关系式17.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)19.圆截面周边各点处最大切应力计算公式20.扭转截面系数,(a)实心圆(b)空心圆21.薄壁圆管(壁厚δ≤ R0/10 ,R0为圆管的平均半径)扭转切应力计算公式22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24.等直圆轴强度条件25.塑性材料;脆性材料26.扭转圆轴的刚度条件? 或27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,28.平面应力状态下斜截面应力的一般公式,29.平面应力状态的三个主应力,,30.主平面方位的计算公式31.面内最大切应力32.受扭圆轴表面某点的三个主应力,,33.三向应力状态最大与最小正应力 ,34.三向应力状态最大切应力35.广义胡克定律36.四种强度理论的相当应力37.一种常见的应力状态的强度条件,38.组合图形的形心坐标计算公式,39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截面图形对轴z和轴y的惯性半径? ,41.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)42.纯弯曲梁的正应力计算公式43.横力弯曲最大正应力计算公式44.矩形、圆形、空心圆形的弯曲截面系数? ,,45.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)46.矩形截面梁最大弯曲切应力发生在中性轴处47.工字形截面梁腹板上的弯曲切应力近似公式48.轧制工字钢梁最大弯曲切应力计算公式49.圆形截面梁最大弯曲切应力发生在中性轴处50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处51.弯曲正应力强度条件52.几种常见截面梁的弯曲切应力强度条件53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,54.梁的挠曲线近似微分方程55.梁的转角方程56.梁的挠曲线方程?57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58.偏心拉伸(压缩)59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式62.63.弯拉扭或弯压扭组合作用时强度计算公式64.剪切实用计算的强度条件希望对大家有所帮助,多谢您的浏览!65.挤压实用计算的强度条件66.等截面细长压杆在四种杆端约束情况下的临界力计算公式67.压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.568.压杆的长细比或柔度计算公式,69.细长压杆临界应力的欧拉公式70.欧拉公式的适用范围71.压杆稳定性计算的安全系数法72.压杆稳定性计算的折减系数法73.关系需查表求得(注:可编辑下载,若有不当之处,请指正,谢谢!)授课:XXX。

材料力学常用基本公式

材料力学常用基本公式

面积A,拉应力为正)d,拉伸后试样直径 d1)纵向线应变和横向线应变外力偶P 功率, n 转速)弯矩、剪力和荷载集度之间的关系式轴向拉压杆横截面上正应力的计算公式杆件横截面轴力F N,横截面1.2.3.4.5.6.7.8.9.10.11.12.泊松比胡克定律受多个力作用的杆件纵向变形计算公式轴向拉压杆斜截面上的正应力与切应力计算公式夹角a 从x 轴正方向逆时针转至外法线的方位角为正)纵向变形和横向变形(拉伸前试样标距l ,拉伸后试样标距 l1 ;拉伸前试样直径承受轴向分布力或变截面的杆件,纵向变形计算公式轴向拉压杆的强度计算公式许用应力,脆性材料延伸率截面收缩率剪切胡克定律拉压弹性模量,塑性材料切变模量G,切应变gE、泊松比和切变模量圆截面对圆心的极惯性矩( a)实心圆b)空心圆)G之间关系式圆轴扭转时横截面上任一点切应力计算公式圆截面周边各点处最大切应力计算公式扭转截面系数,( a)实心圆扭矩T,所求点到圆心距离r )13.14.15.16.17.18.19.20.21.22.23.24.薄壁圆管(壁厚 δ≤ R 0 /10 ,R 0 为圆管的平均半径)扭转切应力计算公式圆轴扭转角 与扭矩 T 、杆长 l 、 扭转刚度 GH p 的关系式 同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时等直圆轴强度条件受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式平面应力状态下斜截面应力的一般公式b )空心圆25.26. 27. 28. 29. 30.31.32.33.或 塑性材料或 扭转圆轴的刚度条件 ? ;脆性材料平面应力状态的三个主应力 主平面方位的计算公式 ,面内最大切应力 三向应力状态最大切应力 广义胡克定律 四种强度理论的相当应力34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之 和的关系式平行移轴公式(形心轴 z c 与平行轴 z 1的距离为 a ,图形面积为 A )纯弯曲梁的正应力计算公式45. 46.47.48.49. 50.51.52.53.54., 组合图形的形心坐标计算公式 截面图形对轴 z 和轴y 的惯性半径 ?矩形、圆形、空心圆形的弯曲截面系数几种常见截面的最大弯曲切应力计算公式( 轴 z 的静矩, b 为横截面在中性轴处的宽度)为中性轴一侧的横截面对中性横力弯曲最大正应力计算公式工字形截面梁腹板上的弯曲切应力近似公式轧制工字钢梁最大弯曲切应力计算公式 圆形截面梁最大弯曲切应力发生在中性轴处弯曲正应力强度条件弯曲梁危险点上既有正应力 σ 又有切应力 τ 作用时的强度条件 或,梁的挠曲线近似微分方程 轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式55.56.57.58.59. 60.61.62.63.64.65. 66.算公式偏心拉伸(压缩) 圆环形薄壁截面梁最大弯曲切应力发生在中性轴处 几种常见截面梁的弯曲切应力强度条件梁的转角方程梁的挠曲线方程圆截面杆横截面上有两个弯矩 和 同时作用时,合成弯矩为圆截面杆横截面上有两个弯矩和同时作用时强度计算公式弯拉扭或弯压扭组合作用时强度计算公式剪切实用计算的强度条件挤压实用计算的强度条件 等截面细长压杆在四种杆端约束情况下的临界力计算公式 压杆的约束条件:( a )两端铰支 μ =l( b )一端固定、一端自由 μ =2( c )一端固定、一端铰支d )两端固定 μ =0.567.68.69.70.71.72.73. 74. 75. 76. 77.μ=0.778.压杆的长细比或柔度计算公式79.细长压杆临界应力的欧拉公式80.欧拉公式的适用范围81.压杆稳定性计算的安全系数法82.压杆稳定性计算的折减系数法83. 关系需查表求得3截面的几何参数4应力和应变5应力状态分析6内力和内力图7强度计算刚度校核9 压杆稳定性校核10 动荷载11 能量法和简单超静定问题材料力学公式汇总、应力与强度条件1、拉压maxmax2、剪切max3、4、挤压挤压圆轴扭转P挤压A挤压TWtmax平面弯曲①maxM maxy t maxI z*③ Q max S z max②t max5、斜弯曲max M z M yW z W yW z maxtmaxt maxmax注意:“5”与“ 6”两式仅供参考 ②第四强度理论r4w 2 3 n 2M w 20.75M n 2r4 w 3 n WWz二、变形及刚度条件1拉压LNLNLN i L iN ( x) dxEA EA LEA2扭转TLT i L i T x dx T 180 0( /GI pGI pGI pL GI p3弯曲(1) 积分法 : EIy ''( x) M(x) E Iy '(x) EI (x) M(x)dx CEIy ( x) [ M (x)dx]dx Cx D(2)叠加法 : f P 1,P 2 ⋯= f P 1 f P 2 +⋯, P 1, P 2 = P 1 P 2 ⋯M 2L =M i 2L i =M 2xdx2EI 2EI i 2EI(5)卡氏第二定理 ( 注:只给出线性弹性弯曲梁的公式 ) 三、应力状态与强度理论 1、 二向应力状态斜截面应力2、 二向应力状态极值正应力及所在截面方位角 3、 二向应力状态的极值剪应力注:极值正应力所在截面与极值剪应力所在截面夹角为 4504、 三向应力状态的主应力: 1 2 36、拉(压)弯组合 maxNM7、圆轴弯扭组合:①第三强度理论M w 2 M n2Wz(3)基本变形表 ( 注意:以下各公式均指绝对值,使用时要根据具体情 况赋予正负号 )ML3EI, A MLA6EIBA PL 216EI qL3 24EI (4)弹性变形能 ( 注:以下只给出弯曲构件的变形能 响, 其他变形与此相似 ,不予写出 ) 并忽略剪力影 B最大剪应力 : max1 325、二向应力状态的广义胡克定律(1)、表达形式之一(用应力表示应变) (2)、表达形式之二(用应变表示应力) 6、三向应力状态的广义胡克定律 强度理论 1) r1 1 1 bnb2)r 3 1 3五、动载荷(只给出冲击问题的有关公式)能量方程TVU7、 sn s8、平面应力状态下的应变分析sin 2x y x y1)2 2xys i n222tg2 0 xyxy四、压杆稳定1、临界压力与临界应力公式(若把直杆分为三类) ① 细长受压杆 p ② 中长受压杆 p ③ 短粗受压杆s2EI minPcr 2PcrL2cr a b“ cr ”2Ecr22、关于柔度的几个公式 或 b2Epasb3、惯性半径公式 i I Az短边长度 ))圆截面 i d4,矩形截面 i min b12(b 为2cos 2xyc o 2s2冲击系数 K d 1 1 2hst (自由落体冲击)K dgv0st(水平冲击)六、截面几何性质1、 惯性矩(以下只给出公式,不注明截面的形状) 442 d D 4 d132 DI P 2dA =2、惯性矩平移轴公式32。

材料力学公式汇总

材料力学公式汇总

*材料力学常用公式1.外力偶矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)5.6.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)7.8.纵向线应变和横向线应变9.10.、11.泊松比12.胡克定律13.受多个力作用的杆件纵向变形计算公式14.承受轴向分布力或变截面的杆件,纵向变形计算公式15.轴向拉压杆的强度计算公式16.许用应力,脆性材料,塑性材料17.延伸率18.截面收缩率19.;G,切应变g )20.剪切胡克定律(切变模量21.拉压弹性模量E、泊松比和切变模量G之间关系式22.圆截面对圆心的极惯性矩(a)实心圆23.(b)空心圆24.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)25.圆截面周边各点处最大切应力计算公式26.扭转截面系数,(a)实心圆27.(b)空心圆28.薄壁圆管(壁厚δ≤ R0/10 ,R0为圆管的平均半径)扭转切应力计算公式29.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式30.·31.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或32.等直圆轴强度条件33.塑性材料;脆性材料34.扭转圆轴的刚度条件或35.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,36.平面应力状态下斜截面应力的一般公式,37.平面应力状态的三个主应力, ,38.主平面方位的计算公式39.-40.面内最大切应力41.受扭圆轴表面某点的三个主应力,,42.三向应力状态最大与最小正应力 ,43.三向应力状态最大切应力44.广义胡克定律45.46.47.四种强度理论的相当应力48.一种常见的应力状态的强度条件,49.组合图形的形心坐标计算公式,50.%51.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式52.截面图形对轴z和轴y的惯性半径,53.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)54.纯弯曲梁的正应力计算公式55.横力弯曲最大正应力计算公式56.矩形、圆形、空心圆形的弯曲截面系数,,57.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)58.矩形截面梁最大弯曲切应力发生在中性轴处59.{60.工字形截面梁腹板上的弯曲切应力近似公式61.轧制工字钢梁最大弯曲切应力计算公式62.圆形截面梁最大弯曲切应力发生在中性轴处63.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处64.弯曲正应力强度条件65.几种常见截面梁的弯曲切应力强度条件66.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,67.梁的挠曲线近似微分方程68.~69.梁的转角方程70.梁的挠曲线方程71.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式72.偏心拉伸(压缩)73.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,74.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为75.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式76.77.、78.弯拉扭或弯压扭组合作用时强度计算公式79.剪切实用计算的强度条件80.挤压实用计算的强度条件81.等截面细长压杆在四种杆端约束情况下的临界力计算公式82.压杆的约束条件:(a)两端铰支μ=l83.(b)一端固定、一端自由μ=284.(c)一端固定、一端铰支μ=85.(d)两端固定μ=86.压杆的长细比或柔度计算公式,87.细长压杆临界应力的欧拉公式88.欧拉公式的适用范围89.压杆稳定性计算的安全系数法90.压杆稳定性计算的折减系数法91.关系需查表求得。

材料力学常用公式

材料力学常用公式

材料力学常用公式1.外力偶矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a从x轴正方向逆时针转至外法线的方位角为正)5.6.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)7.8.纵向线应变和横向线应变9.10.泊松比11.胡克定律12.受多个力作用的杆件纵向变形计算公式?13.承受轴向分布力或变截面的杆件,纵向变形计算公式14.轴向拉压杆的强度计算公式15.许用应力,脆性材料,塑性材料16.延伸率17.截面收缩率18.剪切胡克定律(切变模量G,切应变g )19.拉压弹性模量E 、泊松比和切变模量G之间关系式20.圆截面对圆心的极惯性矩(a)实心圆21.(b)空心圆22.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)23.圆截面周边各点处最大切应力计算公式24.扭转截面系数,(a)实心圆25.(b)空心圆26.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式27.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式28.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或29.等直圆轴强度条件30.塑性材料;脆性材料31.扭转圆轴的刚度条件? 或32.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,33.平面应力状态下斜截面应力的一般公式,34.平面应力状态的三个主应力,,35.主平面方位的计算公式36.面内最大切应力37.受扭圆轴表面某点的三个主应力,,38.三向应力状态最大与最小正应力,39.三向应力状态最大切应力40.广义胡克定律41.42.43.四种强度理论的相当应力44.一种常见的应力状态的强度条件,45.组合图形的形心坐标计算公式,46.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式47.截面图形对轴z和轴y的惯性半径?,48.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A )49.纯弯曲梁的正应力计算公式50.横力弯曲最大正应力计算公式51.矩形、圆形、空心圆形的弯曲截面系数?,,52.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)53.矩形截面梁最大弯曲切应力发生在中性轴处54.工字形截面梁腹板上的弯曲切应力近似公式55.轧制工字钢梁最大弯曲切应力计算公式56.圆形截面梁最大弯曲切应力发生在中性轴处57.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处58.弯曲正应力强度条件59.几种常见截面梁的弯曲切应力强度条件60.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,61.梁的挠曲线近似微分方程62.梁的转角方程63.梁的挠曲线方程? 64.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式65.偏心拉伸(压缩)66.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,67.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为68.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式69.弯拉扭或弯压扭组合作用时强度计算公式70.剪切实用计算的强度条件71.挤压实用计算的强度条件72.等截面细长压杆在四种杆端约束情况下的临界力计算公式73.压杆的约束条件:(a)两端铰支μ=l74.(b)一端固定、一端自由μ=275.(c)一端固定、一端铰支μ=0.776.(d)两端固定μ=0.577.压杆的长细比或柔度计算公式,78.细长压杆临界应力的欧拉公式79.欧拉公式的适用范围80.压杆稳定性计算的安全系数法81.压杆稳定性计算的折减系数法82.关系需查表求得。

材料力学常用公式

材料力学常用公式

材料力学常用公式1.外力偶矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a从x轴正方向逆时针转至外法线的方位角为正)5.6.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)7.8.纵向线应变和横向线应变9.10.泊松比11.胡克定律12.受多个力作用的杆件纵向变形计算公式?13.承受轴向分布力或变截面的杆件,纵向变形计算公式14.轴向拉压杆的强度计算公式15.许用应力,脆性材料,塑性材料16.延伸率17.截面收缩率18.剪切胡克定律(切变模量G,切应变g)19.拉压弹性模量E、泊松比和切变模量G之间关系式20.圆截面对圆心的极惯性矩(a)实心圆21.(b)空心圆22.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)23.圆截面周边各点处最大切应力计算公式24.扭转截面系数,(a)实心圆25.(b)空心圆26.薄壁圆管(壁厚δ≤R0/10,R0为圆管的平均半径)扭转切应力计算公式27.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式28.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或29.等直圆轴强度条件30.塑性材料;脆性材料31.扭转圆轴的刚度条件?或32.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,33.平面应力状态下斜截面应力的一般公式,34.平面应力状态的三个主应力,,35.主平面方位的计算公式36.面内最大切应力37.受扭圆轴表面某点的三个主应力,,38.三向应力状态最大与最小正应力,39.三向应力状态最大切应力40.广义胡克定律41.42.43.四种强度理论的相当应力44.一种常见的应力状态的强度条件,45.组合图形的形心坐标计算公式,46.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式47.截面图形对轴z和轴y的惯性半径?,48.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)49.纯弯曲梁的正应力计算公式50.横力弯曲最大正应力计算公式51.矩形、圆形、空心圆形的弯曲截面系数?,,52.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)53.矩形截面梁最大弯曲切应力发生在中性轴处54.工字形截面梁腹板上的弯曲切应力近似公式55.轧制工字钢梁最大弯曲切应力计算公式56.圆形截面梁最大弯曲切应力发生在中性轴处57.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处58.弯曲正应力强度条件59.几种常见截面梁的弯曲切应力强度条件60.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,61.梁的挠曲线近似微分方程62.梁的转角方程63.梁的挠曲线方程?64.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式65.偏心拉伸(压缩)66.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,67.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为68.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式69.弯拉扭或弯压扭组合作用时强度计算公式70.剪切实用计算的强度条件71.挤压实用计算的强度条件72.等截面细长压杆在四种杆端约束情况下的临界力计算公式73.压杆的约束条件:(a)两端铰支μ=l74.(b)一端固定、一端自由μ=275.(c)一端固定、一端铰支μ=0.776.(d)两端固定μ=0.577.压杆的长细比或柔度计算公式,78.细长压杆临界应力的欧拉公式79.欧拉公式的适用范围80.压杆稳定性计算的安全系数法81.压杆稳定性计算的折减系数法82.关系需查表求得。

材料力学公式总结

材料力学公式总结

材料力学公式总结材料力学是研究材料在外力作用下的力学性能和变形规律的学科,它在工程领域中具有重要的应用价值。

在材料力学的研究中,我们常常需要运用一些公式来描述材料的力学性能和变形规律。

下面,我将对材料力学中常用的一些公式进行总结和归纳,以便大家更好地掌握和运用这些公式。

1. 应力和应变的关系公式。

在材料力学中,应力和应变是两个基本的物理量。

它们之间的关系可以用应力-应变关系公式来描述。

一般而言,线弹性材料的应力和应变之间满足线性关系,即应力等于弹性模量乘以应变。

其数学表达式为:σ = Eε。

其中,σ表示应力,E表示弹性模量,ε表示应变。

2. 杨氏模量的计算公式。

杨氏模量是描述材料抗拉伸和压缩能力的重要参数,它可以用来表征材料的硬度和刚度。

对于各向同性材料,杨氏模量的计算公式为:E = (σ/ε)。

其中,E表示杨氏模量,σ表示拉伸或压缩的应力,ε表示相应的应变。

3. 泊松比的计算公式。

泊松比是描述材料在拉伸或压缩时横向收缩或膨胀的程度的物理量,它可以用来表征材料的变形性能。

泊松比的计算公式为:ν = -ε横/ε轴。

其中,ν表示泊松比,ε横表示横向应变,ε轴表示轴向应变。

4. 屈服强度的计算公式。

材料的屈服强度是描述材料开始发生塑性变形的应力值,它可以用来评估材料的抗拉伸能力。

一般而言,材料的屈服强度可以通过材料的拉伸试验来测定,其计算公式为:σy = Fy/A0。

其中,σy表示屈服强度,Fy表示屈服点的拉伸力,A0表示原始横截面积。

5. 断裂韧性的计算公式。

断裂韧性是描述材料抗断裂能力的物理量,它可以用来评估材料的抗破坏能力。

一般而言,材料的断裂韧性可以通过材料的冲击试验来测定,其计算公式为:Kc = Yσ√(πa)。

其中,Kc表示断裂韧性,Y表示材料的弹性模量,σ表示应力,a表示裂纹长度。

以上就是我对材料力学中常用的一些公式进行的总结和归纳。

希望这些公式能够对大家在材料力学的学习和工程实践中有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程力学常用公式
外力偶矩: n
P M e 9550= 胡克定律:εσE =;EA
l F l N =∆ 圆轴扭转横截面上任一点应力:p T I M ρτρ=,最大切应力:p
T W M =max τ 梁弯曲时横截面上任一点应力:Z
Z I y M =σ,最大正应力:Z W M =max σ
伸长率:%10000⨯-=l l l b δ,断面收缩率:%1000
0⨯-=A A A b ψ 拉压强度条件:][max max σσ≤=
A F N , 扭转强度条件:][max max ττ≤=P
T W M 剪切挤压强度条件:][, ][bs bs
bs bs Q
A F A F σσττ≤=≤= 弯曲强度条件:][ ][max max max max max σσσσ≤=≤=Z Z W M I y M 或 拉(压)弯曲组合变形强度条件:][max max σσ≤±±=Z N W M A F
弯曲与扭转组合变形强度条件:][22σσ≤+=W M M T 圆轴的扭转角:P
T GI l M =ϕ, 扭转刚度条件:][1018030
max θπθ≤⨯⨯=P T GI M 梁弯曲的刚度条件:][, ][max max θθ≤≤y y 欧拉公式:2222 ,λ
πσπE l EI
F cr cr == 柔度:i
l μλ= 惯性半径:A I i = 直线公式(经验公式):λσb a cr -= 压杆稳定性条件:][w cr cr w n F F n ≥==σσ。

相关文档
最新文档