函数的概念及表示方法

合集下载

函数的概念及表示

函数的概念及表示

函数的概念及表示知识点1:函数的概念1.函数的定义:一般地,设A,B是两个非空的数集,如果按某种对应法则f,对于集合A 中的每一个元素x,在集合B中都有唯一的元素y和它对应,那么这样的对应叫做从A到B 的一个函数,通常记为:y=f(x),x∈A.其中,所有的输入值x组成的集合A叫做函数y=f(x)的定义域.2.规律方法:(1)判断一个对应关系是否是函数,要从以下三个方面去判断,即A、B必须是非空数集;A 中任何一个元素在B中必须有元素与其对应;A中任一元素在B中必有唯一元素与其对应.(2)函数的定义中“每一个元素”与“有唯一的元素y”说明函数中两变量x,y的对应关系是“一对一”或者是“多对一”而不能是“一对多”.考点1:函数的判定典型例题例1 判断下列对应f是否为从集合A到集合B的函数.(1)A=N,B=R,对于任意的x∈A,x→±x;(2)A=R,B=N*,对于任意的x∈A,x→|x-2|;(3)A={1,2,3},B=R,f(1)=f(2)=3,f(3)=4;(4)A=[-1,1],B={0},对于任意的x∈A,x→0.例2 下列从集合A到集合B的对应关系中,不能构成从A到B的函数的是________.(只填序号)①集合A={x|1≤x≤2},B={y|1≤y≤4},f:x→y=x2;②集合A={x|2≤x≤3},B={y|4≤y≤7},f:x→y=3x-2;③集合A={x|1≤x≤4},B={y|0≤y≤3},f:x→y=-x+4;④集合A={x|1≤x≤2},B={y|1≤y≤4},f:x→y=4-x2;⑤集合A={(x,y)|x∈R,y∈R},B=R,对任意(x,y)∈A,f:(x,y)→x+y.知识点2:函数的图像1.概念:将自变量的一个值x0作为横坐标,相应的函数值f(x0)作为纵坐标,就得到坐标平面上的一个点(x0,f(x0)),当自变量取遍函数定义域A中的每一个值时,就得到一系列这样的点,所有这些点组成的集合(点集)为{(x,f(x))|x∈A},即{(x,y)|y=f(x),x∈A},所有这些点组成的图形就是函数y=f(x)的图象.2.作函数图像的方法:(1)利用描点法作函数图象的基本步骤:求定义域→化简解析式→列表→描点→连线(2)在画定义域为某一区间的函数图象时,要注意端点值的画法,闭区间画实心点,开区间画空心圈.考点1:画函数的图象 典型例题例1 作下列函数的图象(1)y =x 2+x (-1≤x ≤1); (2)y =2x (-2≤x <1,且x ≠0).(3)y =1+x (x ∈Z); (4)y =x 2-2x ,x ∈[0,3).考点2:函数图象的识别例1 设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是________.(填序号)例2 如图所示,函数y =ax 2+bx +c 与y =ax +b (a ≠0)的图象可能是________(填序号).考点3:函数图象的应用例1 画出函数f(x)=-x2+2x+3的图象,并根据图象回答下列问题:(1)比较f(0)、f(1)、f(3)的大小;(2)若x1<x2<1,比较f(x1)与f(x2)的大小;(3)求函数f(x)的值域;(4)若关于x的方程f(x)=k在[-1,2]内仅有一个实根,求k的取值范围.例2 若方程-x2+3x-m=3-x在x∈(0,3)内有唯一解,求实数m的取值范围.考点4:函数图像在实际问题中的应用例1 某商场销售一批进价是30元/件的商品,在市场试销中发现,此商品的销售单价x元与日销售量y件之间有如下关系(见表):(1)在所给的坐标系中,根据表中提供的数据描出实数对(x,y)对应的点,并确定y与x的一个函数关系式y=f(x);(2)设销售此商品的日销售利润为P元,根据上述关系写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?知识点3:函数的定义域1.概念:函数的定义域是指自变量x的范围2.函数定义域的求解方法:(1)若()x f为整式,则定义域为R.(2)若()x f是分式,则其定义域是分母不为0的实数集合(3)若()x f 是偶次根式,则其定义域是使根号下式子不小于0的实数的集合; (4)若()x f 是由几部分组成的,其定义域是使各部分都有意义的实数的集合; (5)实际问题中,确定定义域要考虑实际问题. 考点1:具体函数定义域求解 例1 求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-考点2:抽象函数定义域求解例1 设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;例 2 若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 .例3 已知()x f 的定义域为[]1,0,求函数()⎪⎭⎫⎝⎛++=342x f x f y 的定义域.例4 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围.知识点4:函数的值域1.概念:函数的值域指因变量y 的范围2.函数值域的求解方法: (1)观察法 (2)判别式法 (3)配方法 (4)换元法 (5)不等式法 (6)图像法 (7)分离常数法 考点1:用观察法求值域 例1 求下列函数的值域:(1)2415+-=x x y (2)123422--+-=x x x x y考点2:用配方法求值域例1 求函数242y x x =-++([1,1]x ∈-)的值域.考点3:用反解+判别式法求值域例1 求函数3274222++-+=x x x x y 的值域考点4:用换元法求值域 例1 求函数12--=x x y 的值域考点5:用不等式法求值域例1 求函数()22415≥+-=x x x y 的值域考点6:用图像法求值域 例1 求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈例2 画出函数[]5,1,642∈+-=x x x y 的图像,并根据其图像写出该函数的值域。

函数知识点总结四年级下册

函数知识点总结四年级下册

函数知识点总结四年级下册在四年级下册数学课程中,学生将会开始接触函数的概念和相关知识。

函数是数学中一个非常重要的概念,它在数学、科学以及日常生活中都有着重要的应用。

因此,在这一阶段学习函数的知识对学生来说显得尤为重要。

接下来我们将对四年级下册的函数知识点进行总结,希望可以帮助学生更好地理解和掌握相关知识。

1. 函数的概念首先,我们来介绍一下函数的概念。

在数学中,函数是一个非常重要的概念,它描述了一个变量如何依赖于另一个或多个变量的关系。

一般来说,一个函数可以由一个或多个自变量和一个因变量组成。

其中,自变量是指可以变化的量,而因变量则是根据自变量的取值而确定的量。

换句话说,函数就是一种对于输入值的转换规则。

2. 函数的表示方法在四年级的数学课程中,学生将会学习到函数的表示方法。

一般来说,函数可以通过表格、图像、公式等方式来表示。

在学习函数的过程中,学生需要掌握如何根据给定的信息,用不同的方式来表示函数,以便更好地理解和应用函数的概念。

3. 定义域和值域在学习函数的过程中,学生还需要了解函数的定义域和值域。

其中,定义域是指函数中自变量的取值范围,而值域则是函数中因变量的取值范围。

理解定义域和值域的概念可以帮助学生更好地理解函数的特性,并且能够更好地解决相关的问题。

4. 函数的性质学生在学习函数的过程中,需要了解一些常见的函数性质。

例如,奇函数和偶函数的性质,以及函数的增减性、奇偶性等。

理解和掌握这些性质可以帮助学生更好地分析和理解函数的特点,从而更好地应用函数解决实际问题。

5. 函数的应用最后,学生还需要了解函数在实际生活中的应用。

函数在数学、物理、经济等领域都有着广泛的应用,学生需要了解如何将函数的知识应用到实际问题中,从而更好地解决实际的数学问题。

总结起来,在四年级下册的数学课程中,学生将会开始接触函数的知识。

通过学习函数的概念、表示方法、性质以及应用,可以帮助学生更好地掌握函数的相关知识,并且能够更好地应用函数解决实际问题。

函数的概念及其表示

函数的概念及其表示

一、函数的概念及其表示函数是刻画变量之间对应关系的数学模型和工具。

函数的共同特征:(1)都包含两个非空数集,用A 、B 来表示;(2)都有一个对应关系;(3)尽管对应关系的表示方法不同,但它们都有如下特性:对于数级A 中的任意一个数x ,按照对应关系,在数集B 中都有唯一确定的数y 和它对应。

事实上,除了解析式、图象、表格外,还有其他表示对应关系的方法。

为了表示方便,我们引进符号f 统一表示对应关系。

一般地,设A 、B 是非空的实数集,如果对于集合A 中的任意一个数x,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合b 的一个函数,记作().,A x x f y ∈=其中x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合(){}A x x f ∈|叫做函数的值域。

我们所熟悉的一次函数y=kx+b ,k ≠0的定义域是R ,值域也是R 。

对应关系f 把r 中的任意一个数x ,对应到R 中唯一确定的数kx+b 。

二次函数)0(2≠++=a c bx ax y 的定义域是R ,值域是B 。

当A>0时,B=⎭⎬⎫⎩⎨⎧-≥a b ac y y 44|2;当A<0时,B=⎭⎬⎫⎩⎨⎧-≤a b ac y y 44|2。

对应关系f 把R 中任意一个数x,对应到B 中唯一确定的数)0(2≠++a c bx ax 。

由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。

因为值域是由定义域和对应关系决定的,所以如果两个函数的定义域相同,并且对应关系完全一致,即相同的自变量对应的函数值也相同,那么这两个函数是同一个函数。

两个函数如果仅有对应关系相同,但定义域不相同,那么它们不是同一个函数。

函数的三种表示方法:解析法、列表法和图象法。

解析法,就是用数学表达式表示两个变量之间的对应关系;列表法,就是列出表格来表示两个变量之间的对应关系;图象法,的就是用图象表示两个变量之间的对应关系。

高中试卷-3.1 函数的概念及其表示方法(含答案)

高中试卷-3.1 函数的概念及其表示方法(含答案)

3.1 函数的概念及其表示方法1. 函数概念的理解;2. 求函数的定义域;3. 求函数值(值域);4. 函数的三种表示方法;5. 求函数解析式;6. 分段函数的概念;7.分段函数的求值;8.函数的图象及应用;9. 分段函数与方程、不等式综合问题一、单选题1.(2021·全国高一课时练习)设()1,01,01,0x x f x x x +>ìï==íï-<î,则()()0f f 等于( )A .1B .0C .2D .-1【答案】C 【解析】1,0()1,01,0x x f x x x +>ìï==íï-<îQ\ (0)1f =,((0))(1)112f f f ==+=.故选: C.2.(2021·浙江南湖嘉兴一中高一月考)下列函数中,与函数y =有相同定义域的是( )A.()f x =B .1()f x x=C .()||f x x =D.()f x =【答案】A 【解析】函数y =的定义域为{}0x x >;函数()f x ={}0x x >;函数1()f x x=的定义域为{}0,x x x ¹ÎR ;函数()f x x =的定义域为R ;函数()f x =定义域为{}1x x ….所以与函数y =有相同定义域的是()f x =.故选:A.3.(2021·浙江高一期中)函数1()f x x=的定义域是( )A .R B .[1,)-+¥C .(,0)(0,)-¥+¥U D .[1,0)(0,)-+¥U 【答案】D 【解析】由题意可得:10x +³,且0x ¹,得到1x ³-,且0x ¹,故选:D4.(2021·全国高一课时练习)已知函数f(x -1)=x 2-3,则f(2)的值为( )A .-2B .6C .1D .0【答案】B 【解析】令1x t -=,则1x t =+,()()213f t t \=+-,()()213f x x \=+-()()222136f \=+-=,故选B.5.(2021·全国高一课时练习)如果1f x æöç÷èø=1x x-,则当x≠0,1时,f(x)等于( )A .1xB .11x -C .11x-D .11x-【答案】B 【解析】令1x=t ,则x =1t ()1t ¹,代入1f x æöç÷èø=1x x -,则有f(t)=111t t-=11t -()1t ¹.即()()111f x x x =¹-.故选:B.6.(2021·全国高一课时练习)已知函数y =21,02,0x x x x ì+£í->î,则使函数值为5的x 的值是( )A .2-或2B .2或52-C .2-D .2或2-或52-【答案】C 【解析】当0x £时,令5y =,得215x +=,解得2x =-;当0x >时,令5y =,得25x -=,解得52x =-,不合乎题意,舍去.综上所述,2x =-.故选:C.7.(2021·全国高一课时练习)设函数若f (a )=4,则实数a =( )A .-4或-2B .-4或2C .-2或4D .-2或2【答案】B 【解析】当0a £时,()4f a a =-=,解得4a =-;当0a >时,24()f a a ==,解得2a =±,因为0a >,所以2a =,综上,4a =-或2,故答案选B 8.(2021·全国高一)函数()f x x =+的值域是( )A .1,2éö+¥÷êëøB .1,2æù-¥çúèûC .(0,)+¥D .[1,)+¥【答案】A【解析】t =,且0t ³,则212t x +=,函数转化为2211(1)22t y t t +=+=+由0t ³,则12y ≥,即值域为1,2éö+¥÷êëø故选:A.9.(2021·浙江高一课时练习)下列函数中,不满足:(2)2()f x f x =的是( )A .()f x x =B .()f x x x=-C .()1f x x =+D .()f x x=-【答案】C 【解析】A 中()()2222f x x x f x ===,B 中()()2222f x x x f x =-=,C 中()()2212f x x f x =+¹,D 中()()222f x x f x =-=10.(2021·浙江高一课时练习)设函数()f x 的定义域是[0,1],则函数()(2)(01)f x a f x a a +++<<的定义域为( )A .1,22a a -éù-êúëûB .,12a a éù--êúëûC .[,1]a a --D .1,2a a -éù-êúëû【答案】A 【解析】由1011021220101a x ax a a a x a x a a --ì+ìï-ïï+Þ-ííïï<<î<<ïî……………………得122a a x --……故选:A 二、多选题11.(2021·广东禅城 佛山一中高一月考)下列四个图形中可能是函数y =f (x )图象的是( )A .B .C .D .【答案】AD 【解析】在A ,D 中,对于定义域内每一个x 都有唯一的y 与之相对应,满足函数关系,在B ,C 中,存在一个x 有两个y 与x 对应,不满足函数对应的唯一性,故选AD.12.(2021·历下 山东师范大学附中高一学业考试)已知()221f x x +=,则下列结论正确的是( )A .()34f -=B .()2214x x f x -+=C .()2f x x=D .()39f =【答案】AB 【解析】由()221f x x +=,令21x t +=,可得12t x -=,可得:()222(1)2124t t t f t --+==,即:()2214x x f x -+=,故C 不正确,B 正确;可得:()2(31)344f ---==,故A 正确;()2(31)314f -==故D 不正确;故选:AB.13.(2021·江苏姑苏 苏州中学高一期中)下列各组函数中,两个函数是同一函数的有( )A .()||f x x =与()g x =B .()1f x x =+与21()1x g x x -=-C .||()x f x x =与1,0()1,0x g x x >ì=í-<îD .()f x =()g x =【答案】AC 【解析】对A, ()g x x ==,故A 正确.对B, ()1f x x =+定义域为R ,21()1x g x x -=-定义域为{}|1x x ¹,故B 错误.对C, 1,0()1,0x xf x x x >ì==í-<î,故C 正确.对D, ()f x =210x -³,解得1x £-或1x ³.()g x =定义域为1010x x +³ìí-³î即1x ³.故D 错误.故选:AC14.(2021·全国高一课时练习)已知函数()22,1,12x x f x x x +£-ì=í-<<î,关于函数()f x 的结论正确的是( )A .()f x 的定义域为RB .()f x 的值域为(),4-¥C .()13f =D .若()3f x =,则x E.()1f x <的解集为()1,1-【答案】BD 【解析】由题意知函数()f x 的定义域为(),2-¥,故A 错误;当1x £-时,()f x 的取值范围是(],1-¥,当12x -<<时,()f x 的取值范围是[)0,4,因此()f x 的值域为(),4-¥,故B 正确;当1x =时,()2111f ==,故C 错误;当1x £-时,23x +=,解得1x =(舍去),当12x -<<时,23x =,解得x =或x =,故D 正确;当1x £-时,21x +<,解得1x <-,当12x -<<时,21x <,解得11x -<<,因此()1f x <的解集为()(),11,1-¥--U ;故E 错误.故选:BD.三、填空题15.(2021·全国高一课时练习)下列对应或关系式中是A 到B 的函数的序号为________.①,ÎÎA R B R ,221x y +=;②A ={1,2,3,4},B ={0,1},对应关系如图:③,==A R B R ,1:2®=-f x y x ;④,==A Z B Z ,:®=f x y .【答案】②【解析】①,ÎÎA R B R ,221x y +=,存在x 对应两个y 的情况,所以不是A 到B 的函数;②符合函数的定义,是A 到B 的函数;③,==A R B R ,1:2®=-f x y x ,对于集合A 中的2x =没有对应y ,所以不是A 到B 的函数;④,==A Z B Z ,:®=f x y ,对于集合A 中的{|0,}x x x z £Î没有对应y ,所以不是A 到B的函数.故答案为:②16.(2021·浙江南湖 嘉兴一中高一月考)已知,若()()10f f a =,则a =______________.【答案】32【解析】0x >时,()20f x x =-<,∴由()10f x =知0x £,∴2110x +=,3x =-,而2()11f x x =+³,因此由()3f a =-知0a >,即23a -=-,32a =.故答案为:32.17.(2021·全国高一课时练习)已知()1,00,0x f x x ³ì=í<î则不等式()2xf x x +£的解集是________.【答案】{}|1x x £【解析】当0x ³时,()1f x =,代入()2xf x x +£,解得1x £,∴01x ££;当0x <时,()0f x =,代入()2xf x x +£,解得2x £,∴0x <;综上可知{}|1x x £.故答案为:{}|1x x £.四、双空题18.(2021·全国高一课时练习)已知f(x)=11x+ (x≠-1),g(x)=x 2+2,则f (2)=________,f(g (2))=________.【答案】13 17【解析】因为()11f x x =+,故可得()123f =;又()22g x x =+,故可得()22226g =+=;故()()()1267f g f ==.故答案为:13;17.19.(2021·安达市第七中学高一月考)设[]x 表示不超过x 的最大整数,已知函数[]()f x x x =-,则(0.5)f -=________ ;其值域为_________.【答案】0.5 [)0,1 【解析】作出函数[]()f x x x =-的图像,如图所示,由图可知(0.5)0.5(1)0.5f -=---=,其值域为[)0,1,故答案为(1). 0.5 (2). [)0,120.(2021·浙江高一期中)设函数()(2141x f x x ì<ï=í³ïî,则((0))f f =____,使得()4f a a ³的实数a 的取值范围是_____.【答案】4 1a £ 【解析】因为()(2141x f x x ì<ï=í³ïî,所以()01f =,因此((0))(1)4f f f ==;当1a <时,()4f a a ³可化为2(1)4+³a a ,即2(1)0a -³显然恒成立,所以1a <;当1a ³时,()44f a a =³,解得1a =;综上,1a £.故答案为4;1a £21.(2021·首都师范大学附属中学高一期中)已知函数22,(),x x x af x x x a ì-+£=í>î.(1)当a =1时,函数()f x 的值域是___________;(2)若函数()f x 的图像与直线y a =只有一个公共点,则实数a 的取值范围是_______________.【答案】R []0,1【解析】(1)当a =1时,22,1(),1x x x f x x x ì-+£=í>î当1x >时,()1f x x =>当1x £时,22()2(1)11f x x x x =-+=--+£所以函数()f x 的值域是(1,)(,1]R+¥-¥=U (2)因为当x a >时,()f x x a =>,所以只需函数2()2,()f x x x x a =-+£的图像与直线y a =只有一个公共点,当22x x x -+³,即01x ££时,所以当01a ££时,函数2()2,()f x x x x a =-+£的图像与直线y a =只有一个公共点,当22x x x -+<,即1x >或0x <时,所以当1a >或0a <,即2a x x >-+,从而函数2()2,()f x x x x a =-+£的图像与直线y a =无公共点,因此实数a 的取值范围是[]0,1故答案为:(1). R (2). []0,1五、解答题22.(2021·全国高一课时练习)求下列函数的定义域.(1)y =3-12x ;(2)y =(3)y(4)y 1x.【答案】(1)R ;(2)10,7éùêúëû;(3)()()2,11,---+¥U ;(4)()3,00,22éö-÷êëøU .【解析】(1)因为函数y =3-12x 为一次函数,所以该函数的定义域为全体实数R ;(2)由题意可得0170x x ³ìí-³î,解得107x ££,所以该函数的定义域为10,7éùêúëû;(3)由题意得1020x x +¹ìí+>î,解得2x >-且1x ¹-,所以该函数的定义域为()()2,11,---+¥U ;(4)由题意得230200x x x +³ìï->íï¹î,解得322x -£<且0x ¹,所以该函数的定义域为()3,00,22éö-÷êëøU .23.(2021·全国高一课时练习)已知2,11()1,11,1x x f x x x ì-££ï=>íï<-î(1)画出f(x)的图象;(2)若1()4f x =,求x 的值;(3)若1()4f x ³,求x 的取值范围.【答案】(1)作图见解析;(2)12x =±;(3)11,,22æùéö-¥-È+¥ç÷úêèûëø【解析】(1)函数2y x =的对称轴0x =,当0x =时,0y =;当1x =-时,1y =;当1x =时,1y =,则f(x)的图象如图所示.(2)1()4f x=等价于21114xx-££ìïí=ïî①或1114x>ìïí=ïî②或1114x<-ìïí=ïî③解①得12x=±,②③的解集都为Æ∴当1()4f x=时,12x=±.(3)由于1124fæö±=ç÷èø,结合此函数图象可知,使1()4f x³的x的取值范围是11,,22æùéö-¥-È+¥ç÷úêèûëø24.(2021·全国高一课时练习)根据下列条件,求f(x)的解析式.(1)f(x)是一次函数,且满足3f(x+1)-f(x)=2x+9;(2)f(x+1)=x2+4x+1;(3)12()(0) f f x x xxæö+=¹ç÷èø.【答案】(1)f(x)=x+3;(2)f(x)=x2+2x-2;(3)2()(0)33xf x xx=-¹【解析】(1)解由题意,设f(x)=ax+b(a≠0)∵3f(x+1)-f(x)=2x+9∴3a(x+1)+3b-ax-b=2x+9,即2ax+3a+2b=2x+9,由恒等式性质,得22 329 aa b=ìí+=î∴a=1,b=3∴所求函数解析式为f(x)=x+3.(2)设x+1=t,则x=t-1f(t)=(t-1)2+4(t-1)+1即f(t)=t2+2t-2.∴所求函数解析式为f(x)=x2+2x-2.(3)解1 ()2f x f xxæö+=ç÷èøQ,将原式中的x与1x互换,得112()f f xx xæö+=ç÷èø.于是得关于f(x)的方程组()()12112f x f x x f f x x x ìæö+=ç÷ïïèøíæöï+=ç÷ïèøî解得2()(0)33x f x x x =-¹.25.(2021·全国高一课时练习)已知函数22,2()2,2x x f x x x £ì=í+>î(1)若0)(8f x =,求0x 的值;(2)解不等式()8f x >.【答案】(1)0x =;(2){|>x x .【解析】(1)当02x £时,由02=8x ,得04x =,不符合题意;当02x >时,由2028+=x,得0x =0x =舍去),故0x =(2)()8f x >等价于228x x £ìí>î ——①或2228x x >ìí+>î——②解①得x f Î,解②得>x ,综合①②知()8f x >的解集为{|>x x .26.(2021·全国高一)已知(1)f x +的定义域为(2,4),(1)求()f x 的定义域;(2)求(2)f x 的定义域【答案】(1)(3,5);(2)35,22æöç÷èø.【解析】(1))1(f x +Q 的定义域为(2,4),24x \<<,则315x <+<,即()f x 的定义域为(3,5);(2)()f x Q 的定义域为(3,5);\由325x <<得3522x <<,即(2)f x 的定义域为35,22æöç÷èø.27.(2021·全国高一)若函数()f x =的定义域为R ,则m 的取值范围为多少?【答案】112mm ìü>íýîþ∣.【解析】Q 函数()f x =的定义域为R ,230mx x \++¹,若0m =,则3x ¹-,不满足条件.,若0m ¹,则判别式1120m D =-<,解得112m >,即1|12m m ìü>íýîþ。

中职数学课件:函数的概念

中职数学课件:函数的概念

余弦函数:y=cos(x)
正切函数:y=tan(x)
余切函数:y=cot(x)
正割函数:y=sec(x)
余割函数:y=csc(x)
函数的运算
第三章
函数的加法、减法、乘法、除法
加法:将两个函数相加,得到新的函数 减法:将两个函数相减,得到新的函数 乘法:将两个函数相乘,得到新的函数 除法:将两个函数相除,得到新的函数
函数的实际应用
第四章
函数在实际问题中的应用
数学建模:函数是数学建模的重要 工具,可以用于描述和解决实际问 题
经济问题:函数在经济学中用于描 述和预测经济现象,如供需关系、 价格波动等
添加标题
添加标题
添加标题
添加标题
物理问题:函数在物理问题中广泛 应用,如力学、光学、热力学等
工程问题:函数在工程问题中用于 描述和优化设计,如结构设计、控 制系统设计等
绘制函数图像 标注关键点和特殊点 检查图像是否正确
函数图像的变换
平移变换:函 数图像沿x轴或 y轴移动
伸缩变换:函 数图像沿x轴或 y轴拉伸或压缩
旋转变换:函 数图像绕原点 旋转一定角度
对称变换:函 数图像关于x轴 或y轴对称
复合变换:以 上变换的组合, 如先平移再旋 转等
函数图像的几何意义
函数图像是函 数值的集合, 表示函数在某 一范围内的取
第二章
一次函数
定义:形如y=kx+b的函数,其中 k和b为常数
应用:广泛应用于物理、化学、生 物等学科
添加标题
添加标题
添加标题
添加标题
性质:直线函数,斜率为k,截距 为b
例子:y=2x+1,y=3x-2等
二次函数

函数的概念及其表示_课件

函数的概念及其表示_课件

知识讲解 函数概念的理解 (4)符号y=f(x)的理解:
①x是自变量,它是对应关系所施加的对象 ;②f是对应关系, 它可以是一个或几个表达式,可以是图象,表格, 也可以是文字描述; ③y=f(x)仅仅是函数符号,不是表示“y等于f与x的乘积”,f(x) 也不一定是解析式.
(5)常用函数符号: ƒ(x) ,g(x), h(x), F(x), G(x)等.
高.下表是我国谋生城镇居民恩格尔系数变化情况,从中可以看
出,该省城镇居民的生活质量越来越高.
年份y
恩格尔系数人(% )
200
6 36.6
9
200
7 36.8
1
200
8 38.1
7
200
9 35.6
9
201
0 35.1
5
201
1 33.5
3
201
2 33.8
7
201
3 29.8
9
201
4 29.3
5
201
知识讲解
区间的概念
设a,b是两个实数,而且a,我们规定:
(1)满足不等式
的实数x的集合叫做闭区间,表示
为[a,b]
(2)满足不等式a的实数x的集合叫做开区间,表示为(a,b

(3)满足不等式

的实数x的集合佳作半
开半闭区间,表示为[a,b)或(a,b】
知识讲解 这里的实数a与b都叫做相应区间的端点 。
(3) (6)
拓展练习
3.下列说法中,不正确的是( B ) A、函数值域中的每一个数都有定义域中的一个数与之对 应 B、函数的定义域和值域一定是无限集合 C、定义域和对应关系确定后,函数值域也就确定 D、若函数的定义域只有一个元素,则值域也只有一个元 素

函数的概念及其表示(第三课时教学设计)-高中数学人教A版2019必修第一册

函数的概念及其表示(第三课时教学设计)-高中数学人教A版2019必修第一册

3.1函数的概念及其表示(第三课时)教学设计一、内容及内容解析(一)教学内容1.函数的表示法;2.分段函数。

(二)教学内容解析学生在初中阶段已经接触了函数的三种表示,本节课直接给出函数的三种表示方法,并通过典型例题训练学生选择适当的方法表示函数,并且通过例题引进分段函数。

学习函数的表示,不仅是研究函数本身和应用函数模型解决实际问题的需要,而且是进一步理解函数概念,深化对具体函数模型的认识需要。

同时,基于高中所涉及的函数大多数均可用几种不同的方式表示,因此学习函数的表示也是向学生渗透数形结合的思想,培养学生直观想象素养的重要过程。

(三)教学重点函数的三种表示法及各自的优缺点,分段函数。

二、教学目标1.通过研究实例,能总结出函数三种表示法各自的特点,体会数形结合的思想.2.通过用图象法表示一些函数,能利用函数图象探索解决问题的思路,体会利用图象简化代数运算的过程.3.通过具体实例,能认识分段函数,并能简单应用.三、教学问题诊断分析问题:提炼函数的三种表示法各自的优缺点。

突破:课本3.1.1中四个实例为学习函数的三种表示方法做了铺垫。

在实际教学中,先引导学生比较三种表示方法各自的特点,再师生一起进行评价并总结。

四、教学支持条件为了增加学生对分段函数的理解,可以利用GGB软件,作出图像,让学生观察各段图象函数解析式.五、教学过程设计上一节我们已经学习过了函数的概念,那么函数的具体表示方法有哪些呢,在不同的情境中函数如何表示呢?带着这样的疑问来深入学习一下本节课的内容吧.问题1:我们在初中已经接触过函数的三种表示法,分别是什么?如何表示?师生活动:教师提出问题,学生观察思考后回答问题.根据学生的回答,教师进行必要的补充.解析法,就是用数学表达式表示两个变量之间的对应关系.列表法,就是列出表格来表示两个变量之间的对应关系.图象法,就是用图象表示两个变量之间的对应关系.设计意图:本节课就是学习函数的三种表示方法,通过回顾初中函数表示的三种方法,为后面的学习奠定基础。

中职教育数学《函数的概念及其表示法》教案

中职教育数学《函数的概念及其表示法》教案

中职教育数学《函数的概念及其表示法》教案一、教学目标1. 理解函数的定义和概念;2. 掌握函数的表示法及其应用;3. 能够用图像和公式表示函数。

二、教学内容函数的概念及其表示法三、教学过程Step 1 引入教师可以通过一个简单的例子引入函数的概念,如身高和体重的关系。

身高是自变量,体重是因变量,通过身高可以确定体重,这就是一个函数关系。

Step 2 函数的定义函数是一种关系,它使一个集合中的每一个元素,都与另一个集合中的唯一一个元素相对应。

函数的定义可以用自然语言描述,也可以用数学符号表示。

Step 3 函数的符号表示函数可以用多种符号表示,包括函数定义域、值域、函数图像、函数公式等。

3.1 函数定义域函数定义域指自变量的取值范围,一般用符号表示。

例如,对于函数y = f(x),定义域可以表示为x ∈ R。

3.2 函数值域函数值域指因变量的取值范围,一般用符号表示。

例如,对于函数y = f(x),值域可以表示为y ∈ R。

3.3 函数图像函数图像是用平面直角坐标系表示函数的一种方法,可以直观地观察函数的性质。

通过绘制函数的图像,可以分析函数的单调性、奇偶性等特征。

3.4 函数公式函数公式是用数学符号表示函数的一种方法,通过函数公式可以直接计算函数在特定自变量取值下的因变量值。

例如,y = f(x)可以表示一个函数。

Step 4 函数的应用函数在实际问题中有很多应用,如经济学、物理学、生物学等领域。

教师可以通过一些实际问题引导学生分析和解决问题,培养学生运用函数概念的能力。

Step 5 练习与巩固教师可以设计一些练习题,帮助学生巩固函数的概念和表示法。

例如,给定一个函数的图像或函数公式,让学生确定定义域、值域等。

四、教学资源1. 平面直角坐标系;2. 函数图像绘制工具;3. 练习题。

五、课堂总结在本节课中,我们学习了函数的概念及其表示法。

通过掌握函数的定义、函数的符号表示和函数的应用,我们可以更好地理解和运用函数概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数及其表示方法
1.函数的概念:
一般的,设A ,B 是 非空实数集,如果按照某种确定的 对应关系f ,使对于集合A 中的 每一个实数,在集合B 中都有 唯一确定的实数)(x f y =和x 对应,那么就称 f 为从集合A 到集合B 的一个函数,记作 )(x f y = , 其中 x 叫做自变量,x 的取值范围A 叫做 定义域 ,与x 的值相对应的y 值叫做 函数值 ,函数值的集合 叫做函数的 值域,显然,值域是集合B 的子集。

注意: ○
1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; ○
2函数符号“y=f(x)”中的f(x)表示与x 对应的函数值,一个数,而不是f 乘x . 2.构成函数的三要素: 值域 , 定义域 , 对应关系 .
3. 函数相等:若两个函数的 定义域 相同,且 对应关系 在本质上也是相同的,则称两个函数相等。

4、函数的三种表示方法
(1)解析法:_用解析式把把x 与y 的对应关系表述出来,最常见的一种表示函数关系的方法。

举例:如222
321,,2,6y x x S r C r S t ππ=++===等。

优点:⎩⎨⎧函数值;意一个自变量所对应的可以通过解析式求出任量间的关系;简明,全面地概括了变
(2)列表法:用表格的方式把x 与y 的对应关系一一列举出来.比较少用.
举例: 如:平方表,三角函数表,利息表,列车时刻表,国民生产总值表等。

优点:不需要计算,就可以直接看出与自变量的值相对应的函数值。

(3)图象法:在坐标平面中用曲线的表示出函数关系,比较常用,经常和解析式结合起来理解函数的性质.
优点:直观形象地表示自变量的变化。

5、分段函数:在函数的定义域内,对于自变量x 的不同取值区间不同的对应关系,这样的函数通常叫做 分段函数 。

拓展一 判断相同函数
例1、下列函数f (x )与g (x )是表示同一个函数的是? ( )
A. f ( x ) = (x -1) 0;g ( x ) = 1 ;
B. f ( x ) = x ; g ( x ) = 2x C .f ( x ) = x 2;f ( x ) = (x + 1) 2 、D. f ( x ) = | x | ;g ( x ) = 2x 拓展二 函数的判断
例2、下列函数图像中不能作为函数y=f(x)的图像的是 ( )
拓展三 求函数的定义域
函数定义域的一般求法(开偶次方根,分式,零次幂)
例3、(1) ()x x f 2=
+()01+x (2)1()(12)(1)
f x x x =-+;(3)()4f x x =-
复合函数求定义域
若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫x 的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简而言之,所谓复合函数就是由一些初等函数复合而成的函数。

对于有关复合函数定义域问题我们可以分成以下几种类型。

一、已知)(x f 的定义域,求复合函数()][x g f 的定义域
由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。

例4 已知)(x f 的定义域为]30(,,求)2(2
x x f +定义域。

二、已知复合函数()][x g f 的定义域,求)(x f 的定义域
方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。

例5 若函数()x f 23-的定义域为[]2,1-,求函数()x f 的定义域
三、已知复合函数()][x g f 的定义域,求()][x h f 的定义域
结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由()][x g f 定义域求得()x f 的定义域,再由()x f 的定义域求得()][x h f 的定义域。

例6已知)1(+x f 的定义域为)32[,-,求()2-x f 的定义域。

四、已知()x f 的定义域,求四则运算型函数的定义域
若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。

例7 已知函数()x f 定义域为是],[b a ,且0>+b a
求函数()()()m x f m x f x h -++=()0>m 的定义域
拓展四 求函数的值和值域
例8 已知函数f(x)=3+x +2
1+x (1)求函数的定义域;(2)求f(-3),f(
32);(3)当a>0时,求f(a)的值。

已知0(0)()(0)1(0)x f x x x x π<⎧⎪==⎨⎪+>⎩
,作出()f x 的图象,求(1),(1),(0),{[(1)]}f f f f f f --的值。

①函数值域——观察法 函数1+=x y 的值域为___________
②函数值域——配方法、图像法
函数322+-=x x y 的值域为________ ③函数值域——换元法 函数x x y 21--=的值域为_________
③函数值域——分离常数 函数1
12)(++=x x x f 的值域为___________ 拓展五 求函数解析式的最常用的三种方法
(1)换元法
已知f (2x +1)=x 2+1,求
的解析式
(2)待定系数法

为一次函数,()()34+=x x f f ,求的解析式
(3)解方程组法
已知定义在R 上的函数满足,求的解析式。

相关文档
最新文档