宏基因组学的研究

合集下载

宏基因组学在微生物研究中的应用

宏基因组学在微生物研究中的应用

宏基因组学在微生物研究中的应用宏基因组学是指将高通量测序技术应用于微生物群体的基因组研究。

相较于传统的基因组学研究方式,宏基因组学可以同时对大量微生物基因组进行研究,且无需对微生物进行单个细胞的分离处理,因此可以更全面地了解微生物群体中的基因组组成、功能和相互关系。

首先,宏基因组学的应用使得研究人员可以更全面地了解到微生物群体的生物多样性。

在传统的微生物群体研究中,研究人员只能通过培养、显微观察和生化鉴定等手段,对微生物群体中存在的细菌种类进行分析。

然而,在实际的微生物群体中,由于很多菌株的生长特性和生态位置等原因,很难对它们进行分离培养和鉴定。

而宏基因组学的出现,则可以通过对样品中所有的DNA序列进行高通量测序,并通过基因组序列比对的方式,分析得到样品中所有的微生物基因组序列。

这样,研究人员就可以了解到在实际的微生物群体中,存在的微生物种类和数量,并可以对微生物群体进行更准确的分类。

其次,宏基因组学的应用,还可以为微生物群体中的代谢和适应能力等方面的研究提供更大的数据支持。

实际上,除了微生物的多样性研究,微生物群体的代谢和适应能力等方面的研究也一直是微生物学研究的热点。

但是传统的微生物学研究方式,往往只能从单个细胞或单个菌株的角度进行研究,过程较为繁琐且耗时。

而宏基因组学的出现,则可以通过将样品中的DNA序列进行高通量测序,并通过基因组序列的注释和功能预测等方式,得到微生物群体中所有的基因功能信息。

这样,研究人员就可以更全面地了解微生物群体在代谢和适应等方面的能力和机制,并可以根据这些信息,开展更深入的微生物群体研究。

再次,宏基因组学的应用,还可以为微生物生态学研究提供更深入的支持。

微生物是地球上最丰富的生物资源之一,在地球生态系统中扮演着重要角色。

另外,微生物群体中的细菌之间,往往存在着相互作用。

而传统的微生物群体研究方式,则只能了解到群体中的单个物种,并只能从单个物种的角度进行研究,无法全面了解微生物群体的真实生态环境和群体间的相互作用。

微生物宏基因组学

微生物宏基因组学
宏转录组学研究:通过RNA测序技术,研究微生物宏转录组,探索微生物在不同环境中的基因表达模式和代谢途径。
微生物宏基因组学的研究成果在农业、环境保护、医学等领域有着广泛的长的影响,为土壤微生物管理和作物生产提供理论依据。在医学领域,宏基因组学可以用于研究肠道微生物的群落结构和功能,探索肠道微生物与健康之间的关系,为肠道微生态调控提供新的思路。
微生物宏基因组学是指对微生物宏基因组的研究,也就是研究微生物整个基因组的结构、功能和进化。相比于微生物单个基因的研究,宏基因组学可以更全面、深入地了解微生物的生物学特性和生态系统中的作用。
微生物宏基因组学的研究方法主要包括以下几个方面:
DNA提取和测序:从样品中提取微生物的DNA,并利用高通量测序技术对其进行测序。当前常用的测序技术有Illumina、PacBio和Oxford Nanopore等。
数据处理和分析:利用生物信息学工具对测序数据进行处理和分析,包括去除低质量序列、去除宿主DNA、基因组组装、基因注释、代谢通路分析等。
比较基因组学分析:对多个微生物的基因组进行比较,分析它们之间的共同点和差异性,探索微生物进化和适应性的规律。
功能基因组学研究:对微生物宏基因组进行代谢通路和功能基因组分析,揭示微生物在生态系统中的作用和代谢特性。

组织 宏基因组

组织 宏基因组

组织宏基因组宏基因组(Metagenomics)是一种研究微生物群落的基因组学技术,通过直接测序样本中的DNA或RNA,可以获取到整个微生物群落的遗传信息。

相比于传统基因组学研究,宏基因组具有无需纯化培养、能够捕获全部生物多样性以及发掘未知微生物等优势。

本文将从宏基因组的定义、研究方法、应用领域和未来发展等方面进行探讨。

一、宏基因组的定义宏基因组是指通过对环境样本中的微生物群落进行直接测序,获取到该群落中所有微生物的遗传信息。

相比于传统基因组学的研究,宏基因组不需要纯化培养,可以直接获取到微生物群落的遗传信息,从而了解微生物在不同环境中的遗传多样性和功能。

二、宏基因组的研究方法1. DNA提取和测序:通过从环境样品中提取总DNA,可以获取到微生物群落的全部遗传信息。

随后,利用高通量测序技术对提取的DNA进行测序,得到海量的DNA序列数据。

2. 数据处理和分析:对测序得到的数据进行质控、去除污染序列、去除宿主DNA等步骤,得到高质量的宏基因组数据。

随后,利用生物信息学工具和数据库进行序列比对、功能注释和分类学分析等,从而了解微生物群落的组成、功能和多样性。

三、宏基因组的应用领域1. 生态学研究:宏基因组可以揭示不同环境中微生物群落的组成和功能,从而了解微生物在生态系统中的作用和相互作用。

比如,通过宏基因组可以了解海洋中的浮游生物群落结构和功能,揭示陆地上不同生态系统中微生物的多样性和功能。

2. 健康医学:宏基因组可以用于研究人体内的微生物群落,了解微生物与人体健康之间的关系。

比如,通过对肠道微生物群落的宏基因组研究,可以揭示肠道菌群与肠道疾病、免疫系统和代谢相关性。

3. 生物资源开发:宏基因组可以用于挖掘未知微生物的新基因和新代谢产物。

通过对环境样品的宏基因组测序,可以发现新的微生物和新的功能基因,为新药开发和生物资源利用提供新的可能。

四、宏基因组的未来发展1. 单细胞宏基因组:随着单细胞测序技术的发展,可以对单个微生物细胞进行宏基因组测序,揭示微生物群落中的个体差异和功能多样性。

宏基因组rc

宏基因组rc

宏基因组rc
宏基因组学是研究直接从环境或临床样本中回收遗传物质的研究领域,也被称作环境基因组学、生态基因组学、群落基因组学或微生物组学。

宏基因组研究本质上还是微生物学研究,只是传统微生物学研究的一个扩展。

所以研究目的与其他生物学研究类似,同样是关注基因型、表型与环境之间的相互关系以及相互作用,不过微生物与环境之间有更强的相互作用关系。

具体来说,宏基因组学的研究目的包括:
1. 定性分析:确定样品中包含哪些微生物,如原核生物、真菌、病毒、显微藻类、原生动物等。

2. 定量分析:分析不同微生物之间的丰度,即样品中每种微生物所占的比例,并探索这些比例变化与表型之间的关联。

3. 功能分析:检测样品中包含哪些基因,以及这些基因实现哪些代谢功能。

将整个样品当做一个基因集合,对这些基因的功能和代谢进行分析。

4. 比较分析:研究不同样品之间的差异,包括它们包含的微生物种类、基因和代谢功能等方面的差异。

以上信息仅供参考,如果您想了解更多信息,建议查阅相关文献或咨询专业人士。

宏基因组学的原理及应用

宏基因组学的原理及应用

宏基因组学的原理及应用1. 简介宏基因组学是研究宏生物结构与功能之间关系的学科,它通过对生态系统中的微生物群落进行高通量测序分析,揭示微生物群落的组成、功能和相互关系。

宏基因组学是基因组学的一个分支领域,其发展得益于高通量测序技术的快速发展和大数据分析的进步。

2. 宏基因组学的原理宏基因组学的研究主要基于以下两个原理:2.1 16S rRNA测序16S rRNA是细菌和古菌中高度保守的基因,在细菌的核糖体上起到了支持核糖体结构和功能的重要作用。

通过对16S rRNA基因进行测序,可以获得微生物群落中不同菌株的信息。

在宏基因组学中,常用的方法是对16S rRNA基因的V3-V4区域进行PCR扩增,然后使用高通量测序技术进行测序。

2.2 基因功能注释除了对微生物群落的组成进行研究外,宏基因组学还关注微生物群落的功能。

基因功能注释是指根据DNA序列,通过比对到已知的基因库,预测DNA序列可能对应的功能。

这种方法可以通过分析微生物群落中不同基因的相对丰度,进一步推断微生物群落的功能。

3. 宏基因组学的应用宏基因组学在生态学、环境科学、医学等领域有着广泛的应用:3.1 生态系统研究宏基因组学可以揭示不同生态系统中微生物群落的组成与功能,帮助我们了解生态系统中的物种多样性和生态过程。

通过研究微生物群落的分布和相互作用,宏基因组学可以促进生态学的发展,并为生态系统的保护和管理提供科学依据。

3.2 环境监测宏基因组学可以应用于环境监测,帮助我们了解环境中的微生物群落变化及其对环境污染的响应。

通过对微生物群落的分析,可以监测水体、土壤和空气中的微生物污染源,并预测环境变化对微生物群落结构和功能的影响。

3.3 人体微生物组研究宏基因组学在医学领域有着重要的应用,特别是在人体微生物组研究中。

人体微生物组是指人体内的所有微生物群落,包括皮肤、口腔、肠道等。

通过对人体微生物组的研究,可以深入了解人体健康和疾病之间的关系,为疾病的预防和治疗提供依据。

宏基因组学研究进展

宏基因组学研究进展

宏基因组学研究进展在生物学领域,宏基因组学作为一门新兴的前沿学科,为我们揭示了大量未知的生物世界奥秘。

本文将通过介绍宏基因组学的基本概念、研究现状、研究方法、研究成果及其局限性,带领大家全面了解宏基因组学的研究进展。

宏基因组学是一门研究存在于生物群落中的基因及其多样性的学科。

它通过运用高通量测序、生物信息学和系统生物学等技术手段,对整个生态系统中的微生物基因组进行深入研究,旨在揭示微生物群落中隐藏的生物多样性和生态功能。

随着16S rRNA基因测序技术的发展,宏基因组学研究取得了突破性进展。

尤其是近几年,宏基因组学研究在环境微生物多样性、病原菌感染机制以及生物医药等领域表现出巨大的应用前景。

发展趋势表明,宏基因组学将进一步推动生命科学领域的发展,为人类解决一系列生态和健康问题提供有力支持。

在宏基因组学研究中,实验设计、数据分析和模型构建等方面都至关重要。

实验设计需要考虑样品的采集、处理和文库构建等环节;数据分析则需借助一系列生物信息学技术和算法,对海量数据进行有效挖掘和精准解析;模型构建则需要以数据为基础,构建能准确描述微生物群落结构和功能的数学模型。

宏基因组学研究已经取得了一系列令人瞩目的成果。

例如,通过研究海洋微生物群落,科学家发现了许多新的微生物种类和基因,揭示了海洋生态系统的运行机制;同时,宏基因组学研究还在病原菌感染、生物医药等领域表现出极大的应用潜力,为解决一些重大疾病提供了新的思路和方法。

这些成果不仅丰富了我们对生物世界多样性的认识,也为我们提供了大量宝贵的生物资源。

然而,尽管宏基因组学研究已经取得了显著的成果,但仍存在一定的局限性。

例如,采样过程中可能会受到污染,导致结果出现偏差;另外,数据分析过程中可能存在技术难点,如噪声数据的处理、稀有物种的检测等。

此外,宏基因组学研究还面临着理论和方法上的挑战,例如如何构建更为精准的微生物群落模型,如何将宏基因组学研究成果应用于实践等等。

总之,宏基因组学作为一门新兴的生物学分支,为我们揭示了大量未知的生物世界奥秘。

基于宏基因组学的微生物菌群多样性研究

基于宏基因组学的微生物菌群多样性研究

基于宏基因组学的微生物菌群多样性研究(一)前言微生物菌群,是由微生物在特定环境下的共同生长聚集所形成的一个生态群落,广泛存在于土壤、水体、动植物体内,以及人体内的肠道等处,是生态系统与生物体健康的维持保障。

微生物菌群的多样性研究,是解决环境保护、食品安全、生态修复、人类健康等问题的重要基础。

本文主要介绍基于宏基因组学的微生物菌群多样性研究,以及相关的技术和方法。

(二)宏基因组学简介宏基因组学是一种研究宏观生态系统中微生物基因组、生态群落结构和其功能特性的新兴技术。

与传统分子生态学技术(如16S rRNA序列分析)相比,宏基因组学具有以下优势:1. 能够同时分析多个样品中的大量DNA序列。

2. 能够分析整个基因组,而非仅仅是某一个单一的基因。

3. 能够对微生物群落中的功能基因进行研究,而非仅仅是微生物的分类和数量。

4. 能够深入了解微生物群落的生态系统特性、相互作用、适应性等。

(三)微生物菌群多样性研究的方法1. DNA提取和建库在宏基因组学中,首先需要从样品中提取DNA,并构建DNA文库。

DNA提取可采用商业试剂盒或自主研发的方法。

建库则通过PCR扩增,将样品中的DNA片段连接到测序引物,生成用于高通量测序的文库。

2. 高通量测序宏基因组学中常见的高通量测序技术有Illumina、454和Ion Torrent等。

这些技术均基于质量流量测序(Sanger测序)的原理,但在成本、输出量、准确度、读长等方面存在差异。

其中,Illumina测序的特点是高通量、低成本、高准确度、短读长,适用于对微生物群落的高通量测序分析。

3. 数据分析宏基因组学的数据分析包括序列质量控制、去除嵌合体、序列比对、物种注释、功能预测、差异分析等步骤。

其中,微生物群落的物种注释可以通过基于比对的方法和基于组装的方法进行。

4. 统计分析统计分析是微生物菌群多样性研究的重要环节。

通过统计分析,可以对微生物群落的多样性、相互作用、适应性等进行深入了解。

宏基因组学和元基因组学的研究进展

宏基因组学和元基因组学的研究进展

宏基因组学和元基因组学的研究进展宏基因组学和元基因组学是生物学研究中的两个新领域。

前者是指研究微生物群体组成和功能的广泛基因组学,后者是指研究基因组序列数据的分析和解释。

这两个领域在近年来得到了快速发展,为微生物学的研究提供了更全面的视野。

在本文中,我们将讨论宏基因组学和元基因组学的研究进展,以及这些新方法如何改变微生物学的研究方法。

宏基因组学宏基因组学是一种广泛的微生物群落分析方法,用于刻画合成群落系统的多样性、种类以及功能。

它涉及从环境样品中提取和分离DNA 并通过高通量测序来分析和比较各种基因组,例如芽孢杆菌、屈曲菌和厌氧菌等微生物的发掘从而进行系统深入的基因组学研究。

以前,研究者通常只特异研究一个菌株,因此不可避免地忽略其生活环境中其他菌株对这个菌株维持生存所起的作用。

宏基因组学是一种针对这个研究上的瓶颈的全面性方法。

它可以将整个微生物社区视为一个整体去探究和发掘,而不仅仅是单独针对菌株的研究。

宏基因组学的发展极大地促进了微生物学的研究。

借助这种新方法,研究者现在可以研究广泛的微生物群体,比如土库曼池盐湖这样的一种强胁迫环境的微生物群体,曾经这样的微生物群体难以研究。

利用此方法,研究者们能够找到一些在生存环境具有重要功能或者新颖特性的微生物,并对它们的性质进行详细的探究。

因此,宏基因组学为微生物群落的发现和鉴定提供了一种快捷有效的途径。

元基因组学元基因组学是一种研究微生物和其他生物系统在基因组水平上的样品和群体多样性的方法。

与基因组学研究仅仅关注单个物种不同,元基因组学依然适用于研究微观生物群落以及混合分析的方法。

元基因组学研究则首先根据群落中存在的基因逐一进行筛选,进而研究群落中深层隐含的多样性信息和它们之间的关系。

通过分析每个样品内的基因的剖面,元基因组学能够揭示生态和环境对微生物群落结构和功能的影响。

大大地能够促进微生物全球生态对环境的种类、多样性、遗传偏移、阶层、以及生物地理学模式等方面的了解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宏基因组学的研究宏基因组学研究进展及其应用摘要:本文先简要介绍了当前生物化学的一些研究热点,再针对宏基因组学展开论述,介绍了宏基因组学的产生背景和概念,当前的研究进展及应用。

宏基因组学尝试通过免培方法获得微生物的纯培养,主要技术包括DNA的提取、文库的构建和目标基因克隆的筛选,可用于开发新型酶、发现新基因、筛选医药等方面。

关键字:宏基因组学;宏基因组学基本策略;文库构建与筛选;宏基因组学研究进展及其应用引言:微生物是地球上种类最多、数量最大、分布最广的生物群。

仅原核生物(细菌和古细菌)即构成地球生物总量的的25~50 %[1]。

自然条件下,包括病毒在内的微生物,通过群落广泛参与C、N、O 和S等重要元素的循环转化,在人体的食物消化、毒素降解及机体免疫反应,环境污染物降解等方面发挥着重要作用[2]。

人们对于微生物的研究主要是建立在纯培养基础上,后来人们发现通过纯培养方法估计的环境微生物多样性只占总量的0.1%~1%[3],多达99%以上的微生物是不可培养的, 其中蕴含着巨大的应用潜能——其代谢产物中可能有众多具有应用开发价值的化合物[4]。

为了研究不能培养的微生物,一个全新的理念——宏基因组学应运而生,该技术不需预先培养就能开发这些微生物基因组,目前已广泛应用于微生物活性物质的开发与利用、环境微生物种群分布及动态变化分析等方面的研究[5]。

宏基因组学的提出为解决上述问题提供了一个可行途径。

宏基因组学以生境中全部DNA作为研究对象,通过克隆、异源表达来筛选有用基因及其产物。

由于突破了传统研究领域无法涵盖不可培养微生物的瓶颈,宏基因组学概念及研究方法一经提出,就被广泛接受。

尽管在方法上还存在一定缺陷,但并不妨碍不同领域学者利用该方法来研究各种生境中微生物生态以及筛选功能基因的热情,有关宏基因组学研究的文章逐年增多[4]。

1.宏基因组学的概念宏基因组( metagenome) 的概念是指从生境样本中取得全部微生物的基因组, 而不是采用传统的培养微生物的基因组。

宏基因组的样本既包括可培养的微生物,也包括更大量的传统方法无法研究的不可培养微生物[6]。

而所谓宏基因组学(也称元基因组学Metagenomics 、微生物环境基因组学Microbial Environmental Genomics、生态基因组学Ecogenomics ) 就是一种以环境样品中的微生物群体基因组为研究对象,以功能基因筛选和测序分析为研究手段,以微生物多样性、种群结构、进化关系、功能活性、相互协作关系及与环境之间的关系为研究目的的新的微生物研究方法,一般包括克隆、构建文库和功能分析筛选等工作[7]。

2.宏基因组学的基本策略及方法2.1宏基因组学的基本策略宏基因组学的研究还处于初期发展阶段,但其研究的基本过程和基本策略已基本清楚。

在此要强调的是,宏基因组学研究有着明确的指导思想,它是在反向生物学原则指导下,基于特定生态环境基础上,依据整体、系统、动态变化和相互作用的观点,运用特殊的技术路线和方法,对研究范围中所有基因组展开研究的学科。

宏基因组学是一种整体性的研究策略,它建立在微生物基因组学的迅速发展和聚合酶链式反应广泛应用的基础之上,是一种不依赖于人工培养的微生物基因组分析技术,涵盖了生物信息统计分析和基因组两方面的意义和技术,其策略是从特定环境中直接分离所有微生物DNA,将大片段的DNA 克隆到受体菌中表达,然后根据某些生物活性筛选有应用价值的克隆。

[8]2.2宏基因组学研究的基本方法宏基因组学以基因组技术为基础,基本程序包括:环境样品中宏基因组的提取,将DNA克隆到载体中;载体转化宿主细菌建立环境基因组文库,环境基因组文库分析和筛选。

近年来,随着新一代高通量、低成本测序仪的问世,宏基因组的研究可对特定生境中的基因组片段直接进行测序而不用构建文库,从而避免了在文库构建过程中利用细菌对样品进行克隆以及克隆中引起的偏差,简化了宏基因组研究的基本操作,提高了测序效率,极大地促进了宏基因组学发展[9]。

2.2.1宏基因组DNA 的提取环境样品DNA的提取是文库构建中最重要、最关键的一步,不仅要尽可能地将环境中所有微生物的DNA提取出来,还要保证一定的DNA片段长度和完整性。

另外,环境样品中都含有一定的杂质(如土壤中的腐殖酸类物质),这些物质可抑制分子克隆中多种酶的活性,因此必须将其除去[10]。

目的样品的采集须严格遵循取样规则,使样品能最好地代表自然状态下的微生物状态[9]。

根据提取宏基因组前是否分离细胞,提取方法可分为原位裂解法和异位裂解法。

原位裂解法主要是通过去污剂处理(如SDS),酶解法(如蛋白酶K)等直接破碎样品中的微生物而使DNA 得以释放。

由于无须对样品微生物进行复性,且黏附于颗粒上的微生物细胞亦能被裂解,原位裂解所得DNA 能更好地代表样品微生物的多样性,且操作简单,成本低,DNA 提取率高。

但该法提取的DNA 片段较小(1~50 kb) ,通常适用于构建小片段文库的DNA 提取[11]。

异位裂解法先用物理方法将微生物从样品中分离出来,然后采用较温和的方法抽提DNA,可获得纯度较高的大片段DNA(20~500kb) ,但该法操作繁琐,一些微生物基因组在分离过程中可能丢失,温和条件下一些细胞壁较厚的微生物DNA抽提不出来,提取率较低且成本高,通常适用于构建大片段插入文库的DNA 提取[12 ]。

2.2.2宏基因组文库构建与筛选宏基因组文库的构建沿用了分子克隆的基本原理和技术方法,并根据具体环境样品的特点和建库目的采取了一些特殊的步骤和策略。

构建宏基因组文库的技术主要包括:提取和纯化环境微生物DNA、选取合适的克隆载体以及选择宿主菌株。

基本原则是以分离独立基因或者一些编码新代谢功能的小操纵子为目的时,以小插入片段载体( 如质粒) 构建文库,提取和纯化DNA 时只需考虑纯度和物种的丰度[13];而大插入片段文库(如Cosmid、Fosmid 或者BAC)适合于获取编码复杂生物合成途径的大基因片段或者基因簇,但是构建这种文库需要提取和纯化更高长度和纯度质量要求的DNA。

2.2.2.1载体选择DNA 提取后就可以构建文库。

在文库构建过程中,载体是文库构建所必需的因素,而且在活性物质筛选是也发挥极其重要的作用。

载体选择的原则主要考虑是否有利于目标基因扩增、表达及在筛选细胞毒类物质时表达量的调控等。

筛选目标物不同,其载体不同,筛选技术手段也有所不同。

由于活性物质多是微生物的次生代谢物,其代谢途径由多基因调控。

因此,有必要尽量插入大片段DNA以获得完整的代谢途径多基因簇,以期达到预期目的。

2.2.2.2宿主选择宿主在筛选目标物的过程中起到至关重要的作用。

选择宿主主要考虑重组体在宿主细胞中的稳定性、转化效率、宏基因表达量、筛选的目标性状缺陷型(如溶血或抗菌)等因素。

GUNNAR HAGELI NA 等[14]指出,微生物种类不同,其所产生的活性物质类型明显不同。

因此,应结合不同的研究目的和筛选不同的活性物质考虑选择与其相适应的宿主菌株。

2.2.2.3宏基因文库的筛选目前对环境宏基因组文库筛选有3种途径: 功能的筛选( function driven screening)、序列的筛选( sequence driven screening)和底物诱导基因表达技术的筛选( substrate induced gene expression screening ,SIGEX )。

由于宏基因组的高度复杂性, 需要通过高通量和高灵敏度的方法来筛选和鉴定文库中的有用基因。

筛选技术大致可分为 3 类[ 15],基于核酸序列差异分析的筛选、基于克隆子的特殊代谢活性(功能驱动)的筛选、基于底物诱导基因的表达的筛选,也叫SIGEX 法( Substrate induced gene expression screening method)[16]。

2.2.3宏基因组文库的分析根据不同的研究目的,宏基因组文库的分析可以从生物活性水平、化合物结构水平以及DNA 序列水平设计不同的筛选方案,可分为功能分析和序列分析。

2.2.3.1功能分析根据重组克隆产生的新活性进行筛选,可用于检测编码新型酶的全部新基因或者获取新的生物活性物质。

例如从文库中筛选能表达抗菌物质的克隆。

功能分析法根据重组克隆产生的新活性进行筛选,可用于检测编码新型酶的全部新基因或者获取新的生物活性物质[8]。

2.2.3.2序列分析有2 种主要方法: 一种是根据已知保守序列设计引物或探针,通过PCR 扩增或杂交来筛选目的克隆。

另一种方法是对含有16S rRNA 等系统进化锚定基因的克隆进行测序。

一个典型的宏基因组分析涉及多个轮次,以确保从生态环境标本中分离到目的基因,及尽可能多地分析DNA 序列所编码的信息。

2.2.3.3宏基因组序列分析技术的进步近年发展起来的高通量基因组测序技术[17],不需要克隆或PCR便能获取大量的DNA序列信息,相应地需要有新的方法来比较这些宏基因组数据,不断进步的序列分析技术以及众多生物信息学工具和数据库[18]的出现将为宏基因组数据的分析提供便利,如针对原核微生物宏基因组进行分析的软件J Coast[19]、可对多组宏基因组数据进行交互分析和比较的宏基因组分析工具MEGAN等[20]。

由于宏基因组技术提取的是环境总DNA,所以给基因的鉴定归属带来很大困难(这一过程被称为binning) ,现今只有 5 kb以上的片段可进行有效的鉴定归类,DNA条形码技术已被用来尝试解决这一问题[21]此外,比较宏基因组技术、基因芯片技术等均可用于分析宏基因组序列[22]。

3.宏基因组学研究进展及其应用近年来,宏基因组学研究已渗透到各个研究领域,包括海洋、土壤、热液口、热泉、人体口腔及胃肠道,并在医药、替代能源、环境修复、生物技术、农业、生物防御及伦理学等各方面显示出重要价值。

在酶学发展方面宏基因组学显示出强大的生命力,在发现新型酶以及有新型功能的已知酶方面已经取得一些进展[23]。

3.1应用宏基因组开发新型酶传统的新型酶的筛选方法大大限制了筛选的广泛性和有效性[24]。

宏基因组学则克服了这一限制,通过直接从环境中提取DNA 样品,尽可能为后面的筛选提供更加全面和多样的基因资源,从而有效地提高了新酶的筛选效率。

一般来说,新功能酶的筛选主要还是基于活性筛选。

这种不依赖于序列的方法总体上可对所有新酶的活性或特异性进行鉴定[24]。

虽然,基于序列的筛选方法可能不像功能筛选那样具有较强的目标性但通过有目的地设计杂交探针或PCR引物,可一定程度地减少文库的容量,缩小筛选的范围[25]。

3.2应用宏基因发现新基因由于自然界中大多数微生物物种及其生物量是未知的,其中存在大量不可培养的微生物,无法通过培养法进行研究,而宏基因组学的策略则突破了这一束缚。

相关文档
最新文档