宏基因组学研究方法及应用概述

合集下载

宏基因组分析技术及其在微生物群落研究中的应用

宏基因组分析技术及其在微生物群落研究中的应用

宏基因组分析技术及其在微生物群落研究中的应用宏基因组学是一种综合性的技术,主要用于研究微生物群落的遗传信息。

与传统的小基因组学不同,宏基因组学更注重群体层面的分析,而非单个生物体。

该技术在发现新菌种和理解微生物群落功能上有着重要的应用价值。

宏基因组分析技术的基本原理是先从环境样品中提取DNA,然后利用高通量测序技术将DNA进行测序,最后通过基因组装和注释等步骤进行分析。

与小基因组学相比,宏基因组学需要处理的数据量更大,分析过程也更复杂。

宏基因组学在微生物群落的研究中有着广泛的应用。

首先,它可以发现新菌种。

由于微生物群落的组成极其复杂,相当一部分细菌无法通过传统的培养方法获得。

但是,这些细菌在环境中发挥着重要作用。

宏基因组学可以通过对环境样品进行测序分析,发现新的细菌种类,极大地拓宽了我们对微生物世界的认识。

其次,宏基因组学能够揭示微生物群落的功能与互作关系。

微生物群落中的细菌种类繁多,宏基因组学可以通过测序分析来研究它们各自的代谢通路、生长模式、对环境的响应等方面的信息,从而了解它们在群体中的功能互补和协同作用。

例如,我们可以研究在某个水体中,肠杆菌和水藻之间的互作关系,从而揭示它们之间的作用。

这对环境保护和微生物生态学等领域有着重要的意义。

另外,宏基因组学还可以被用于研究宏生物与微生物间的相互作用关系。

微生物与宏生物之间存在着复杂的相互作用,而且宏生物的健康状况与微生物群落的正常与否呈现高度的相关性。

例如,在研究人类肠道菌群时,我们可以通过分析肠道微生物的基因组,了解它们对宿主的身体机能有何作用,这样就可以预防腹泻等肠道疾病的发生。

总的来说,宏基因组学的分析技术为微生物群落的研究提供了有力的工具,对拓宽我们对微生物世界的认识和揭示微生物群落的功能互作关系具有深远的意义。

在未来,我们相信宏基因组学的应用将会在环境科学、医学和农业等领域得到进一步的拓展和深入研究。

微生物宏基因组学

微生物宏基因组学
宏转录组学研究:通过RNA测序技术,研究微生物宏转录组,探索微生物在不同环境中的基因表达模式和代谢途径。
微生物宏基因组学的研究成果在农业、环境保护、医学等领域有着广泛的长的影响,为土壤微生物管理和作物生产提供理论依据。在医学领域,宏基因组学可以用于研究肠道微生物的群落结构和功能,探索肠道微生物与健康之间的关系,为肠道微生态调控提供新的思路。
微生物宏基因组学是指对微生物宏基因组的研究,也就是研究微生物整个基因组的结构、功能和进化。相比于微生物单个基因的研究,宏基因组学可以更全面、深入地了解微生物的生物学特性和生态系统中的作用。
微生物宏基因组学的研究方法主要包括以下几个方面:
DNA提取和测序:从样品中提取微生物的DNA,并利用高通量测序技术对其进行测序。当前常用的测序技术有Illumina、PacBio和Oxford Nanopore等。
数据处理和分析:利用生物信息学工具对测序数据进行处理和分析,包括去除低质量序列、去除宿主DNA、基因组组装、基因注释、代谢通路分析等。
比较基因组学分析:对多个微生物的基因组进行比较,分析它们之间的共同点和差异性,探索微生物进化和适应性的规律。
功能基因组学研究:对微生物宏基因组进行代谢通路和功能基因组分析,揭示微生物在生态系统中的作用和代谢特性。

土壤微生物宏基因组

土壤微生物宏基因组

土壤微生物宏基因组土壤微生物宏基因组是研究土壤微生物群落组成和功能的重要手段之一。

宏基因组学的兴起为我们揭示土壤微生物世界的奥秘提供了有力的工具和方法。

本文将从土壤微生物宏基因组的概念、研究方法、应用领域以及未来发展方向等方面进行介绍和探讨。

一、概念土壤微生物宏基因组是指通过高通量测序技术对土壤微生物群落中的全部基因进行测序和分析,以获取该群落的基因组信息。

与传统的微生物学研究方法相比,宏基因组学不仅可以研究单个微生物的基因组,还可以同时研究整个微生物群落的基因组,从而揭示微生物群落的结构和功能。

二、研究方法土壤微生物宏基因组的研究主要包括样品采集、DNA提取、高通量测序、数据分析和功能注释等步骤。

首先,需要在不同的土壤样品中采集微生物样品,并将其保存在适当的条件下,以保证样品的完整性和稳定性。

然后,通过DNA提取技术提取土壤微生物的基因组DNA,这是进行宏基因组测序的前提。

接下来,利用高通量测序技术对提取的DNA进行测序,获得大量的DNA序列数据。

最后,通过数据分析和功能注释等方法,对测序数据进行处理和解读,以获取土壤微生物群落的结构和功能信息。

三、应用领域土壤微生物宏基因组的研究在农业、环境和生态学等领域具有广泛的应用价值。

首先,它可以帮助我们了解土壤微生物的多样性和功能特点,揭示微生物对土壤生态系统的影响和作用机制。

其次,它可以用于评估土壤质量和健康状况,为土壤管理和农业生产提供科学依据。

此外,它还可以用于研究土壤中的微生物致病性和抗性机制,为疾病预防和治理提供理论支持。

此外,宏基因组学还可以应用于环境污染的监测和修复,为环境保护和可持续发展提供技术支持。

四、未来发展方向土壤微生物宏基因组研究在过去几年取得了长足的进展,但仍面临一些挑战和机遇。

未来的研究方向主要包括:1)进一步提高测序技术的准确性和通量,以获取更多的微生物基因组数据;2)开发新的数据分析方法和工具,以提高数据的解读效率和准确性;3)深入研究土壤微生物群落的功能特征和相互作用机制,揭示其对土壤生态系统的影响和调控机制;4)加强与其他学科的交叉和合作,如土壤学、植物学和生物信息学等,以提高土壤微生物宏基因组研究的综合应用能力。

宏基因组学在环境工程领域的应用及研究进展

宏基因组学在环境工程领域的应用及研究进展

宏基因组学在环境工程领域的应用及研究进展宏基因组学在环境工程领域的应用及研究进展引言:随着环境问题日益严重,环境工程领域的研究和应用也成为了社会关注的焦点。

宏基因组学作为一项前沿的研究技术,已经在环境工程领域得到了广泛的应用。

通过分析环境样品中的大量DNA序列,宏基因组学可以对微生物群落的结构、功能以及与环境的相互关系进行全面细致的研究和探索。

本文将介绍宏基因组学在环境工程领域的应用及研究进展。

一、宏基因组学在环境监测中的应用1. 微生物群落结构的研究宏基因组学可以通过测序环境样品中的16S或18S rRNA基因,揭示微生物群落结构的多样性和组成。

通过比较不同环境样本中的微生物群落差异,我们可以了解微生物在不同环境条件下的分布情况,进而研究微生物间的相互关系以及与环境因子的相关性。

这对于环境保护、生态系统功能维护具有重要意义。

2. 生物地球化学循环的研究宏基因组学可以帮助我们研究生物地球化学循环过程中微生物参与的角色和作用。

通过分析微生物编码的功能基因,我们可以了解微生物的代谢途径、能量来源以及元素循环过程。

例如,通过研究土壤微生物群落的宏基因组,可以了解土壤中的氮、磷循环过程及微生物在其中的作用。

3. 污染物降解的研究宏基因组学可以通过研究微生物的代谢能力和基因组编码的降解功能基因,揭示微生物降解污染物的机制和潜力。

通过分析环境样品中微生物群落的宏基因组,可以筛选出具有降解能力的微生物,并发现新型的降解基因。

这对于环境污染治理和修复具有重要的意义。

二、宏基因组学在环境工程领域的研究进展1. 技术进步随着高通量测序技术的不断发展,宏基因组学分析的效率和准确度得到了显著提高。

新一代测序技术的应用,如Illumina HiSeq和PacBio等,使得大规模宏基因组研究成为可能。

同时,生物信息学分析工具的发展也为宏基因组学提供了更加强大的支持。

2. 多组学数据的整合宏基因组学不仅可以分析微生物的基因组,还可以结合其他组学数据,如宏转录组学和宏蛋白质组学等,全面了解微生物的结构和功能。

宏基因组学的原理及应用

宏基因组学的原理及应用

宏基因组学的原理及应用1. 简介宏基因组学是研究宏生物结构与功能之间关系的学科,它通过对生态系统中的微生物群落进行高通量测序分析,揭示微生物群落的组成、功能和相互关系。

宏基因组学是基因组学的一个分支领域,其发展得益于高通量测序技术的快速发展和大数据分析的进步。

2. 宏基因组学的原理宏基因组学的研究主要基于以下两个原理:2.1 16S rRNA测序16S rRNA是细菌和古菌中高度保守的基因,在细菌的核糖体上起到了支持核糖体结构和功能的重要作用。

通过对16S rRNA基因进行测序,可以获得微生物群落中不同菌株的信息。

在宏基因组学中,常用的方法是对16S rRNA基因的V3-V4区域进行PCR扩增,然后使用高通量测序技术进行测序。

2.2 基因功能注释除了对微生物群落的组成进行研究外,宏基因组学还关注微生物群落的功能。

基因功能注释是指根据DNA序列,通过比对到已知的基因库,预测DNA序列可能对应的功能。

这种方法可以通过分析微生物群落中不同基因的相对丰度,进一步推断微生物群落的功能。

3. 宏基因组学的应用宏基因组学在生态学、环境科学、医学等领域有着广泛的应用:3.1 生态系统研究宏基因组学可以揭示不同生态系统中微生物群落的组成与功能,帮助我们了解生态系统中的物种多样性和生态过程。

通过研究微生物群落的分布和相互作用,宏基因组学可以促进生态学的发展,并为生态系统的保护和管理提供科学依据。

3.2 环境监测宏基因组学可以应用于环境监测,帮助我们了解环境中的微生物群落变化及其对环境污染的响应。

通过对微生物群落的分析,可以监测水体、土壤和空气中的微生物污染源,并预测环境变化对微生物群落结构和功能的影响。

3.3 人体微生物组研究宏基因组学在医学领域有着重要的应用,特别是在人体微生物组研究中。

人体微生物组是指人体内的所有微生物群落,包括皮肤、口腔、肠道等。

通过对人体微生物组的研究,可以深入了解人体健康和疾病之间的关系,为疾病的预防和治疗提供依据。

宏基因组学研究进展

宏基因组学研究进展

宏基因组学研究进展在生物学领域,宏基因组学作为一门新兴的前沿学科,为我们揭示了大量未知的生物世界奥秘。

本文将通过介绍宏基因组学的基本概念、研究现状、研究方法、研究成果及其局限性,带领大家全面了解宏基因组学的研究进展。

宏基因组学是一门研究存在于生物群落中的基因及其多样性的学科。

它通过运用高通量测序、生物信息学和系统生物学等技术手段,对整个生态系统中的微生物基因组进行深入研究,旨在揭示微生物群落中隐藏的生物多样性和生态功能。

随着16S rRNA基因测序技术的发展,宏基因组学研究取得了突破性进展。

尤其是近几年,宏基因组学研究在环境微生物多样性、病原菌感染机制以及生物医药等领域表现出巨大的应用前景。

发展趋势表明,宏基因组学将进一步推动生命科学领域的发展,为人类解决一系列生态和健康问题提供有力支持。

在宏基因组学研究中,实验设计、数据分析和模型构建等方面都至关重要。

实验设计需要考虑样品的采集、处理和文库构建等环节;数据分析则需借助一系列生物信息学技术和算法,对海量数据进行有效挖掘和精准解析;模型构建则需要以数据为基础,构建能准确描述微生物群落结构和功能的数学模型。

宏基因组学研究已经取得了一系列令人瞩目的成果。

例如,通过研究海洋微生物群落,科学家发现了许多新的微生物种类和基因,揭示了海洋生态系统的运行机制;同时,宏基因组学研究还在病原菌感染、生物医药等领域表现出极大的应用潜力,为解决一些重大疾病提供了新的思路和方法。

这些成果不仅丰富了我们对生物世界多样性的认识,也为我们提供了大量宝贵的生物资源。

然而,尽管宏基因组学研究已经取得了显著的成果,但仍存在一定的局限性。

例如,采样过程中可能会受到污染,导致结果出现偏差;另外,数据分析过程中可能存在技术难点,如噪声数据的处理、稀有物种的检测等。

此外,宏基因组学研究还面临着理论和方法上的挑战,例如如何构建更为精准的微生物群落模型,如何将宏基因组学研究成果应用于实践等等。

总之,宏基因组学作为一门新兴的生物学分支,为我们揭示了大量未知的生物世界奥秘。

宏基因组的原理和应用

宏基因组的原理和应用

宏基因组的原理和应用1. 引言宏基因组(metagenomics)是近年来发展起来的一项研究领域,它通过对环境样品中的全部基因组进行广泛而深入的测序和分析,来揭示微生物群落的结构、功能以及与宿主之间的相互作用。

宏基因组学的原理和应用在生物学、医学和环境科学等领域都有着重要的意义。

2. 原理2.1 反应堆模型宏基因组学的基本原理是将环境样品中的全部DNA提取出来,并对其进行高通量测序。

在宏基因组学中,通过构建反应堆模型来模拟整个微生物群落的基因组组成。

这种方法可以突破传统微生物学研究中的限制,不再依赖于培养出单一菌株,而能够对整个微生物群落进行研究。

2.2 DNA测序技术宏基因组学的发展得益于DNA测序技术的进步。

传统的Sanger测序方法费时费力且昂贵,难以应用于大规模宏基因组学研究。

而近年来发展起来的高通量测序技术,如454测序、Illumina测序和Ion Torrent测序等,大大降低了测序成本,提高了测序速度和准确性,极大地促进了宏基因组学的发展。

2.3 生物信息学分析宏基因组学中的数据处理和分析是至关重要的一步。

通过生物信息学方法,可以从大量的测序数据中获取有价值的信息,如微生物群落的物种组成、功能特征、代谢途径等。

常用的生物信息学分析方法包括序列质量控制、序列拼接、序列比对、基因注释、功能预测等。

3. 应用3.1 环境微生物群落研究宏基因组学被广泛应用于环境微生物群落的研究。

通过对不同环境样品中的宏基因组进行测序和分析,可以了解到微生物群落的多样性、功能特征以及与环境之间的相互作用关系。

这对于理解和预测生态系统的功能和稳定性具有重要意义。

3.2 人体微生物组研究宏基因组学也被应用于人体微生物组的研究。

人体是一个复杂的生态系统,人体内的微生物群落与宿主之间存在着密切的相互作用。

通过对人体样品中的宏基因组进行测序和分析,可以揭示微生物群落与人体健康、疾病之间的关系,为个性化医学的发展提供重要参考。

宏基因组及其应用

宏基因组及其应用

宏基因组及其应用学习笔记吕涛15010906一、宏基因组及宏基因组学1.概念宏基因组( Metagenome)(也称微生物环境基因组Microbial EnvironmentalGenome, 或元基因组)是由Handelsman 等1998 年提出的新名词,其定义为“the genomes of the total microbiota found in nature” , 即环境中全部微小生物遗传物质的总和。

它包含了可培养的和未可培养的微生物的基因,目前主要指环境样品中的细菌和真菌的基因组总和。

2.宏基因组学宏基因组( Metagenome)(也称微生物环境基因组Microbial EnvironmentalGenome, 或元基因组)是由Handelsman 等1998 年提出的新名词,其定义为“the genomes of the total microbiota found in nature” , 即环境中全部微小生物遗传物质的总和。

它包含了可培养的和未可培养的微生物的基因,目前主要指环境样品中的细菌和真菌的基因组总和。

3.发展历程环境基因组学——微生物基因组学——宏基因组学——人类基因组学人类基因组学:把人体内所有微生物菌群基因组的总和称为“人体宏基因组”(humanmetagenome)。

人类宏基因组学(human metagenomics)研究人体宏基因组结构和功能、相互之间关系、作用规律和与疾病关系的学科。

它不仅要把总体基因组序列信息都测定出来,而且还要研究与人体发育和健康有关的基因功能。

人类宏基因组计划目标是:把人体内共生菌群的基因组序列信息都测定出来,而且要研究与人体发育和健康有关的基因功能。

4.研究步骤5.研究方法二、宏基因组学的应用1.水体宏基因组学●海表层水样为研究海洋生命的代谢潜力和海洋生态学提供了前所未有的原始素材;海洋蕴藏着巨大的生物多样性和复杂性,宏基因组学将极大地促进人们对他的认识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宏基因组学研究方法及应用概述彭昌文 (山东省济宁学院生物学系 273155) 颜 梅 (山东省曲阜师范大学生命科学学院 273165)摘 要 本文简要介绍了宏基因组的概念,概述了其原理及应用。

关键词 宏基因组 宏基因组学 环境基因组学 基因文库的构建 迄今,人们对微生物世界的认识基本都来源于对占细菌总种数不到1%的微生物的单个种群的孤立研究结果。

然而微生物是通过其群落而非单一种群来执行在自然界物质与能量循环中的作用的,对微生物群落作为整体的功能认识远远落后于对其个体的认识。

这种状况不利于全面认识微生物在自然界所扮演的重要角色。

为了获得完整的环境微生物基因表达产物,早在1978年许多学者就提出了直接从环境中提取微生物DNA的思路,1998年,AR I A D phar maceutical公司的科学家Handels man等首次提出宏基因组的概念[1]。

宏基因组(the genomes of the total m icrobi ota found in nature)是指生境中全部微生物基因的总和[2]。

它包含了可培养的和未培养的微生物的基因总和,微生物主要包括环境样品中的细菌和真菌。

而宏基因组学就是一种以环境样品中的微生物群体基因组为研究对象,以功能基因筛选和测序分析为研究手段,以微生物多样性、种群结构、进化关系、功能活性、相互协作关系及与环境之间的关系等为研究目的的新的微生物研究方法,也称为微生物环境基因组学、元基因组学或生态基因组学。

它主要研究从环境样品获得的基因组中所包含的微生物的遗传组成及其群落功能,为充分认识和开发利用非培养微生物,并从完整的群落水平上认识微生物的活动、最大限度地挖掘微生物资源,提供了可能,已成为国际生命科学技术研究的热点和前沿。

1 宏基因组学的研究方法宏基因组学的研究过程一般包括从环境样品中提取基因组DNA,克隆DNA到合适的载体,导入宿主菌体,筛选目的转化子等工作,可分为三个步骤。

1.1 宏基因组的提取 在宏基因组筛选过程中,目的基因是整个核苷酸链中的一部分,因此样品前期的富集能够提高筛选命中率。

DNA的提取是宏基因文库构建的关键步骤。

提取步骤通常需要满足两个条件:既要尽可能提取样品所有微生物的基因,又要保持片段的完整和纯度。

目前所开发的DNA提取方法有两种:细胞提取法和直接裂解法。

直接裂解法包括物理法(冻融法、超声法、玻璃球珠击打法、液氮碾磨法)、化学法(常用化学试剂有表面活性剂、盐类、有机溶剂等)及酶裂解法。

另外,依据提取样品总DNA前是否分离细胞,可以分为原位裂解法和异位裂解法。

原位裂解法可以直接破碎样品中的微生物细胞而使DNA 得以释放,由于无需对样品微生物进行复苏,且黏附颗粒上的微生物细胞亦能被裂解,所得DNA能更好地代表样品微生物的多样性。

此法操作容易、成本低,DNA 提取率高,但由于机械剪切作用较强,所提取的DNA 片段小(1~50kb),通常适用于构建小片段插入文库(以质粒和λ噬菌体为载体)的DNA提取。

异位裂解法则先采用物理方法将微生物从样品中分离出来,然后采用较温和的方法抽提DNA。

此法条件温和,可获得大片段DNA(20~500kb),纯度高,但操作繁琐、成本高、得率低,通常适用于构建大片段插入文库(以柯斯质粒或者细菌人工染色体为载体)的DNA提取。

1.2 宏基因组文库的构建 宏基因组文库的构建需适宜的克隆载体。

通常用于DNA克隆的载体主要包括质粒、黏粒和细菌人工染色体等。

质粒一般用于克隆小于10kb的DNA片段,适用于单基因的克隆与表达。

黏粒的插入片段可达40kb左右,细菌人工染色体插入片段可达350kb,可用来制备由多基因簇调控的微生物活性物质的完整代谢途径的相关片段文库。

1.3 目的基因的筛选 目的基因的筛选方法包括序列分析和功能分析两种。

序列分析适用于小片段DNA文库的基因筛选;而功能分析通常适用于大片段DNA文库的筛选。

序列分析筛选不依赖于重组基因在外源宿主中的表达,因为所使用的寡聚核苷酸引物是直接通过DNA序列中的保守区域设计的,反映了氨基酸序列的保守性,可获得未知序列的目的基因。

该方法对DNA量的要求不高,筛选到新活性物质的可能性较大。

序列分析的另一个手段是对宏基因组克隆测序,无论是全部或随机测序都是发现新基因的有效手段。

对于功能分析而言,首先需获得目的克隆,然后通过序列和生化分析对其进行表征。

此法能快速鉴定出全新且有开发价值的活性物质,可用于医药、工农业等行业。

由于此法检出率较低,工作量较大,且受检测手段的限制,所以常要借助于高通量筛选。

2 宏基因组学的应用2.1 在生态学方面的应用 当今微生物生态学研究的主要目的之一是将微生物与其所在环境中的代谢过程相联系。

应用16s r DNA作为系统发育锚去鉴定属于某种微生物的克隆,然后对基因进行测序,从而获得美国AP生物学课程简介及对我国高中生物学教学的启示杜程鹏 (复旦大学附属中学 上海 200433) 李幽兰 (华东师范大学生命科学学院 上海 200062)摘 要 本文介绍了美国AP生物学课程的知识框架、实验安排及考核方式,并结合生命科学教学实践,提出了对我国高中生命科学教学的建议。

关键词 AP生物学课程 AP生物学考试 探究性实验1 美国AP课程概览AP课程是Advanced Placement Pr ogram的(简称),在我国被译成“先修课程”。

它是美国大学理事会于20世纪50年代联合部分美国大学和中学建立的一套下放到中学的大学课程与考试项目。

优秀的中学生可以在高中期间选修大学1、2年级的课程。

在满足高中学生对某些知识领域特殊兴趣的同时,AP课程也给了他们提前进入大学就读的机会。

目前AP课程已经进入了世界80多个国家,除了美国的3000多所大学之外,还有40多个国家的600所大学认可并使用AP 成绩作为入学参考标准[1]。

学生入读这些大学后,可将考试通过的AP学分折抵大学学分,减免大学课程,以缩短学时、节省学费、获得奖学金和提前毕业等。

美国教育部的研究报告指出,在高中期间选修了AP课程的学生,大学的毕业率远高于其他学生。

数据显示,上过2门以上AP的美国学生,61%可以在4年以内获得学士学位,上过1门的为45%,而没有上过AP的学生只有29%能够在4年内获得学士学位[2]。

因此,是否在高中阶段修过AP,被绝大多数美国大学所看重。

AP课程共设22个选修科目、37门课程。

主要科目有:A rt(艺术)、Government and Politics(政府和政治)、H istory(历史)、B iology(生物学)、Calculus(微积分)、Human Geography(人文地理)、Italian Language and Culture(意大利语和文化)、Chem istry(化学)、Japanese Language and Culture(日语和文化)、Chinese Language and Culture(中国语言和文化)、Latin(拉丁语)、Com2 puter Science(计算机科学)、Music Theory(音乐理论)、微生物的生理学信息。

在研究的早期,科学家利用宏基因组研究探索海洋中未培养的以浮游生物为食的原核微生物,发现古菌螺旋状RNA和谷氨酸半醛转氨酶,并首次揭示了基因组织形态,这些信息都显示了非培养系统的生物潜能。

随着微生物治理的深入发展,研究者越来越趋向于应用菌群对废水进行生物治理。

宏基因组在生态方面的研究方法主要有宏基因组快照测序法、随机鸟枪测序法和荧光原位杂交法等。

宏基因组在生态学上的应用主要是土壤与水体。

目前宏基因组学在土壤微生物研究中的应用主要包括两方面:一是进行土壤微生物及其资源的挖掘,目前的研究工作已经得到大批新基因,特别是在一些极端环境中的微生物宏基因组的研究中得到了一些具有特殊应用价值的功能酶基因;另一方面是揭示土壤微生物的多样性及其与环境之间的关系[3]。

海洋蕴涵着非常丰富的微生物资源,目前已应用宏基因组技术研究了多种海洋次生代谢产物合成途径,其中最为经典的是研究海洋聚酮类和非核糖体肽类的生物合成基因簇[4]。

2.2 在新型生物催化剂中的应用 新型催化剂主要是酶。

传统的新型酶的筛选方法限制了筛选的广泛性和有效性。

宏基因组学则克服了这一限制,有效地提高了新酶的筛选效率,现已发现了抗生素及维生素生物合成相关基因簇的克隆,以及水解酶类和氧化还原酶类编码的基因。

宏基因组技术通过对环境的直接克隆,为研究和利用占微生物99%以上的非培养微生物提供了新的途径,为微生物的研究和发展提供了全新的策略。

但此技术的开发利用还有许多亟待解决的问题:如上面提及的两种DNA的提取方法各有其缺陷,使获得的DNA不能完全代表样品DNA组成,这就需要进一步优化样品DNA的提取方法。

另外,应根据筛选目的选用合适的载体和宿主菌。

再者,文库的筛选方法有待进一步完善,对于序列筛选法来说主要是测序的速度和费用问题,功能筛选法则需克服从几万到几十万个克隆中只能筛选到几个有活性的基因的状况,应建立更为敏感的高通量筛选方法。

主要参考文献[1]艾芳芳,杨木华,曲媛媛.2007.宏基因组研究及其应用研究进展.环境科学与技术,30(12):100~102[2]冯美琴.2008.宏基因组学的研究进展.安徽农业科学,36(2):415~416[3]钮旭光,韩 梅,韩晓日.2007.宏基因组学:土壤微生物研究的新策略.微生物学通报,(34):576~578[4]李丽娟,张殿昌,龚世园.2007.宏基因组技术在开发未培养微生物资源中的应用.水利渔业,27(3):7~9 。

相关文档
最新文档