像素级和特征级遥感图像融合方法研究与应用

像素级和特征级遥感图像融合方法研究与应用
像素级和特征级遥感图像融合方法研究与应用

像素级和特征级遥感图像融合方法研究与应用传感器技术的发展丰富了人类获取信息的手段,而遥感在今天已成为人类获取地面信息的最重要的方式之一。卫星遥感系统为对地观测和地球科学相关领域研究提供的遥感图像数据,类型多样同时包含了丰富的信息。

如何利用图像融合技术,对不同来源不同类型的遥感图像数据进行综合利用,准确而高效地提取图像中包含的有用信息,已成为遥感技术应用中的一个关键性问题。针对这一问题,本文展开了对遥感图像融合方法和相关理论的研究。

本文的研究工作主要包含以下三个方面的内容:1、提出一种用于实现多光谱遥感图像分辨率增强的全色锐化图像融合方法。像素级的图像融合方法以提升图像数据质量为目标,而空间分辨率则是遥感图像质量的一个重要指标。

传感器捕获辐射能量有限以及观测受到噪声信号干扰的客观条件限制,使得遥感图像的空间分辨率和光谱分辨率成为一对天然的矛盾。利用全色锐化图像融合技术,对具有高空间分辨率的全色图像和具有高光谱分辨率的多光谱图像进行融合,则可以得到同时具有高空间分辨率和高光谱分辨率的合成图像。

为得到高质量的全色锐化融合结果,本文对多光谱图像数据和全色图像数据进行线性回归,并基于标准正交变换设计一种颜色空间变换,在此基础上将成分替换与多分辨率分析的思想相结合,完成对融合方法的构造。研究中通过对比实验,验证了该融合方法性能上的优越性。

2、提出一种用于实现热红外遥感图像分辨率增强的热红外锐化图像融合方法。热红外图像提供的地表温度信息,在遥感量化分析的应用中十分关键。

热红外锐化主要通过热红外图像和可见光近红外图像间的像素级融合实现,由于热红外图像与可见光近红外图像具有不同的成像性质,使得一般的像素级图

像融合方法不能适用于这两类图像间的融合。另一方面,如何在融合过程中充分利用多波段的可见光近红外图像所包含的空间细节信息,也是热红外锐化方法设计中的关键问题。

本文利用快速高效的极限学习机神经网络算法建立回归模型,并以回归模型为核心构造了热红外锐化的融合方法。研究中利用实际遥感数据进行实验,验证了所提热红外锐化融合方法的有效性。

3、提出一种特征级的遥感图像融合方法,实现地表蒸散发特征信息的量化分析。像素级的图像融合是提升图像数据质量的过程,而特征级的图像融合则是由图像数据集提取信息的过程。

从遥感图像提取出反映地面状态的特征参数的过程称为遥感量化分析,蒸散发量等地表特征信息的量化分析是遥感应用技术研究的一类重要问题。蒸散发特征信息的量化过程涉及到众多中间特征参数,需要通过多步复合的特征融合来实现。

同时以地表各特征参数间的物理关系和地表结构模型为基础,来构造融合过程中的融合规则。研究中将特征融合得到的结果与地表实测数据对比以验证本文所提特征融合方法的有效性,并利用所提方法来处理湿地遥感图像序列,从而对湿地生态系统状态变化情况进行全面的分析。

遥感图像融合方法比较

1 绪论 1.1研究目的及意义 20世纪90年代中后期以后,搭载许多新型传感器的卫星相继升空,使得同一地区的遥感数据影像数目不断增多。如何有效地利用这些不同时相、不同传感器、不同分辨率的遥感数据便成为了遥感工作者研究的瓶颈问题,然而解决这一问题的关键技术就是遥感影像数据融合。 遥感数据融合就是对多个遥感器的图像数据和其他信息的处理过程,它着重于把那些在空间或时间上冗余或互补的多源数据,按一定法则(算法)进行处理,获得比单一数据更精确、更丰富的信息,生成一幅具有新的空间、波谱和时间特征的合成图像。 遥感是不同空间、时间、波谱、辐射分辨率提供电磁波谱不同谱段的数据。由于成像原理不同和技术条件的限制,任何一个单一遥感器的遥感数据都不能全面的反映目标对象的特征,也就是有一定的应用范围和局限性。各类非遥感数据也有它自身的特点和局限性。影像数据融合技术能够实现数据之间的优势互补,也能实现遥感数据与地理数据的有机结合。数据融合技术是一门新兴的技术,具有十分广阔的应用前景。所以,研究遥感影像数据融合方法是非常必要的。 1.2研究现状及发展的趋势 1.2.1研究现状 20世纪美国学者提出“多传感器信息融合”的概念认为在多源遥感影像数据中能够提取出比单一遥感影像更丰富、更有效、更可靠的信息。之后由于军事方面的要求,使得遥感影像数据融合技术得到了很大的发展,美、英,德等国家已经研制出了实用的遥感数据融合处理的系统和软件,同时进行了商业应用。 1)、融合结构 融合的结构可分为两类:集中式和分布式。集中式融合结构:各传感器的观测数据直接被送到中心,进行融合处理,用于关联、跟踪、识别等。分布式融合结构:每个传感器独立完成关联、识别、跟踪,然后由融合中心完成配准、多源关联的融合。 2)、融合的层次 图像融合可分为:像元级融合、特征级融合和决策级融合。 像元级融合是最低级的信息融合,可以在像素或分辨单位上进行,又叫做数据级融合。它是对空间配准的遥感影像数据直接融合,然后对融合的数据进行特征提取和属性说明。 特征级融合是由各个数据源中提取特征信息进行综合分析和处理的过程,是中间层次的融合。特征级融合分为目标状态信息融合和目标特征融合。 决策级融合是在信息表示的最高层次上进行融合处理。首先将不同传感器观测同一目标获得的数据进行预处理、特征提取、识别,以建立对所观测目标的初步理论,然后通过相关处理、决策级融合判别,最终获得联合推断结果,从而为决策提供依据。

多聚焦图像融合方法综述

多聚焦图像融合方法综述 摘要:本文概括了多聚焦图像融合的一些基本概念和相关知识。然后从空域和频域两方面将多聚焦图像融合方法分为两大块,并对这两块所包含的方法进行了简单介绍并对其中小波变换化法进行了详细地阐述。最后提出了一些图像融合方法的评价方法。 关键词:多聚焦图像融合;空域;频域;小波变换法;评价方法 1、引言 按数据融合的处理体系,数据融合可分为:信号级融合、像素级融合、特征级融合和符号级融合。图像融合是数据融合的一个重要分支,是20世纪70年代后期提出的概念。该技术综合了传感器、图像处理、信号处理、计算机和人工智能等现代高新技术。它在遥感图像处理、目标识别、医学、现代航天航空、机器人视觉等方面具有广阔的应用前景。 Pohl和Genderen将图像融合定义为:“图像融合是通过一种特定的方法将两幅或多幅图像合成一幅新图像”,其主要思想是采用一定的方法,把工作于不同波长范围、具有不同成像机理的各种成像传感器对同一场景成像的多幅图像信息合成一幅新的图像。 作为图像融合研究重要内容之一的多聚焦图像融合,是指把用同一个成像设备对某一场景通过改变焦距而得到的两幅或多幅图像中清晰的部分组合成一幅新的图像,便于人们观察或计算机处理。图像融合的方法大体可以分为像素级、特征级、决策级3中,其中,像素级的图像融合精度较高,能够提供其他融合方法所不具备的细节信息,多聚焦融合采用了像素级融合方法,它主要分为空域和频域两大块,即: (1)在空域中,主要是基于图像清晰部分的提取,有梯度差分法,分块法等,其优点是速度快、方法简单,不过融合精确度相对较低,边缘吃力粗糙; (2)在频域中,具有代表性的是分辨方法,其中有拉普拉斯金字塔算法、小波变换法等,多分辨率融合精度比较高,对位置信息的把握较好,不过算法比较复杂,处理速度比较慢。 2、空域中的图像融合 把图像f(x,y)看成一个二维函数,对其进行处理,它包含的算法有逻辑滤波器法、加权平均法、数学形态法、图像代数法、模拟退火法等。 2.1 逻辑滤波器法 最直观的融合方法是两个像素的值进行逻辑运算,如:两个像素的值均大于特定的门限值,

红外图像与可见光图像融合笔记

红外图像与可见光图像融合 ——笔记 图像融合是将来自不同传感器在同一时间(或者不同时间)对同一目标获取的两幅或者多幅图像合成为一幅满足某种需求图像的过程。 为了获得较好的融合效果,在研究融合算法之前,对图像预处理理论及方法进行了研究。预处理理论主要包括图像去噪、图像配准和图像增强。图像去噪目的是为了减少噪声对图像的影响。图像配准是使处于不同状态下的图像达到统一配准状态的方法。图像增强是为了突出图像中的有用信息,改善图像的视觉效果,并方便图像的进一步融合。 图像融合评价方法:主观评价和客观评价。指标如:均值、标准差、信息熵等。 针对 IHS 变换和小波变换的优缺点,本文提出了一种基于这两种变换结合的图像融合方法。该算法的具体实现步骤如下:先对彩色可见光图像进行 IHS 变换,对红外图像进行增强,然后将变换后得到的 I 分量与已增强的红外图像进行 2 层小波分解,将获得的低频子带和高频子带使用基于窗口的融合规则,而后对分量进行小波重构和 IHS 逆变换,最后得到融合结果。经仿真实验证明,此结果优于传统 IHS 变换和传统小波变换,获得了较好的融合结果,既保持了可见光图像中的大量彩色信息又保留了红外图像的重要目标信息。 红外传感器反映的是景物温度差或辐射差,不易受风沙烟雾等复杂条件的影响。一般来说,红外图像都有细节信息表现不明显、对比度低、成像效果差等缺点,因此其可视性并不是很理想。 可见光成像传感器与红外成像传感器不同,它只与目标场景的反射有关与其他无关,所以可见光图像表现为有较好的颜色等信息,反应真实环境目标情况,但当有遮挡时就无法观察出遮挡的目标。 利用红外传感器发现烟雾遮挡的目标或在树木后的车辆等。在夜间,人眼不能很好的辨别场景中的目标,但由于不同景物之间存在着一定的温度差,可以利用红外传感器,它可以利用红外辐射差来进行探测,这样所成的图像虽然不能直接清晰的观察目标,但是能够将目标的轮廓显示出来,并能依据物体表面的温度和发射率的高低把重要目标从背景中分离出来,方便人眼的判读。但由于自身成像原理以及使用条件等原因,所形成图像具有噪声大、对比度低、模糊不清、视觉效果差等问题。不利于人眼判读。 可以将两者图像融合在一起,这样可以丰富图像信息,提高图像分辨率,增强图像的光谱信息,弥补单一传感器针对特定场景表达的不全面,实现对场景全面清晰准确的表达。 两者的主要区别有: (1)可见光图像与红外图像的成像原理不同,前者依据物体的反射率的不同进行成像,后者依据物体的温度或辐射率不同进行成像,因此红外图像的光谱信息明显不如可见光图像。

图像融合的研究背景和研究意义

图像融合的研究背景和研究意义 1概述 2 图像融合的研究背景和研究意义 3图像融合的层次 像素级图像融合 特征级图像融合 决策级图像融合 4 彩色图像融合的意义 1概述 随着现代信息技术的发展,图像的获取己从最初单一可见光传感器发展到现在的雷达、高光谱、多光谱红外等多种不同传感器,相应获取的图像数据量也急剧增加。由于成像原理不同和技术条件的限制,任何一个单一图像数据都不能全面反应目标对象的特性,具有一定的应用范围和局限性。而图像融合技术是将多种不同特性的图像数据结合起来,相互取长补短便可以发挥各自的优势,弥补各自的不足,有可能更全面的反映目标特性,提供更强的信息解译能力和可靠的分析结果。图像融合不仅扩大了各图像数据源的应用范围,而且提高了分析精度、应用效果和使用价值,成为信息领域的一个重要的方向。图像配准是图像融合的重要前提和基础,其误差的大小直接影响图像融合结果的有效性。 作为数据融合技术的一个重要分支,图像融合所具有的改善图像质量、提高几何配准精度、生成三维立体效果、实现实时或准实时动态监测、克服目标提取与识别中图像数据的不完整性等优点,使得图像融合在遥感观测、智能控制、无损检测、智能机器人、医学影像(2D和3D)、制造业等领域得到广泛的应用,成为当前重要的信息处理技术,迅速发展的军事、医学、自然资源勘探、环境和土地、海洋资源利用管理、地形地貌分析、生物学等领域的应用需求更有力地刺激了图像融合技术的发展。 2 图像融合的研究背景和研究意义 Pohl和Genderen对图像融合做了如下定义:图像融合就是通过一种特定算法将两幅或多幅图像合成为一幅新图像。它的主要思想是采用一定的算法,把

像素级图像融合讲解

山东大学(威海)毕业论文 毕业设计(论文)设计(论文)题目像素级图像融合方法 姓名:李桂楠 学号:201100800668 学院:机电与信息工程学院 专业:自动化 年级2011级 指导教师:孙甲冰

目录 摘要 (4) Abstract (5) 第一章绪论 (1) 1.1课题背景及来源 (1) 1.2图像融合的理论基础和研究现状 (1) 1.3图像融合的应用 (1) 1.4图像融合的分类 (1) 第二章像素级图像融合的预处理 (3) 2.1图像增强 (3) 2.2图像校正 (6) 2.3图像配准 (6) 第三章像素级图像融合的方法综述 (8) 3.1加权平均图像融合方法 (8) 3.2 HIS空间图像融合方法 (8) 3.3 主成分分析图像融合方法 (8) 3.4 伪彩色图像融合方法 (9) 第四章基于小波变换的像素级图像融合概述 (10) 4.1 小波变换的基本理论 (10) 4.2 基于小波变换的图像融合 (11) 4.3基于小波变换的图像融合性能分析 (12)

第五章像素级图像融合方法的研究总结与展望 (19) 参考文献 (20) 谢辞................................. 错误!未定义书签。

摘要 近些年,随着科学技术的飞速发展,各种各样的图像传感器出现在人们的视野前,这种样式繁多的图像传感器在不同的成像原理和不同的工作环境下具有不同功能。而因为多传感器的不断涌现,图像融合技术也越来越多的被应用于医学、勘探、海洋资源开发、生物学科等领域。 图像融合主要有像素级、决策级和特征级三个层次,而像素级图像融合作为基础能为其他层次的融合提供更准确、全面、可依赖的图像信息。本文的主要工作是针对像素级的图像融合所展开的。 关键词 图像融合理论基础、加权平均、图像融合方法、小波变换、

遥感影像融合处理方法

遥感影像融合处理方法 摘要:本文介绍了遥感影像数据融合技术,并给出了融合的一些基本理论、融合处理一般步骤以及常用融合处理方法,最后简要描述了融合评价的方式方法等。 关键词:遥感影像融合融合评价 1、前言 将高分辨率的全色遥感影像和低分辨率的多光谱遥感影像进行融合,获得色彩信息丰富且分辨率高的遥感融合影像的过程,成为遥感影像融合。全色影像一般具有较高空间分辨率,多光谱影像光谱信息较丰富,为提高多光谱影像的空间分辨率,可以将全色影像融合进多光谱影像。通过影像融合既可以提高多光谱影像空间分辨率,又能保留其多光谱特性。 2、遥感影像融合一般步骤 遥感影像信息融合一般流程主要分为两个阶段:图像预处理,图像融合变换。 图像预处理主要包括:几何校正及影像配准。几何校正主要在于去除透视收缩、阴影等地形因素以及卫星扰动、天气变化、大气散射等随机因素对成像结果一致性的影响;影像配准的目的在于消除由不同传感器得到的影像在拍摄角度、时相及分辨率等方面的差异。 3 常用融合方式 3.1 IHS融合 IHS(亮度I、色度H、饱和度S)变换就是将影像从RGB彩色空间变换到IHS空间来实现影像融合的一种方法。由光学、热红外和雷达(微波)等方式得到的不同波段遥感数据,合成的RGB颜色空间是一个对物体颜色属性描述系统,而IHS色度空间提取出物体的亮度、色度、饱和度,它们分别对应每个波段的平均辐射强度、数据向量和的方向及其等量数据的大小。RGB颜色空间和IHS 色度空间有着精确的转换关系。IHS变换法只能用三个波段的多光谱影像融合和全色影像融合。 3.2 小波融合 小波变换,基于遥感影像的频域分析进行的,由于同一地区不同类型的影像,低频部分差别不大,而高频部分相差很大,通过小波变换对变换区实现分频,在分频基础上进行遥感影像的融合,常用于雷达影像SAR与TM影像的融合。

高分辨率遥感图像融合方法的比较正式

包头师范学院 本科学年论文 论文题目:高分辨率遥融图像融合方法比较院系:资源与环境学院 专业:地理信息系统 学号:0912430022 姓名:郭殿繁 指导教师:同丽嘎 撰写学年:2010 至2011 学年 二零一零年十二月

摘要:目前,遥感中高分辨率全色遥感影像和低空间分辨率的多光谱遥感影像融合是影像融合技术应用的主流。本文通过对遥感影像四种融合方法的研究,并且用呼和浩特市快鸟影像图像融合举例,加深对四种融合方法的理解和理论应用,最后通过截取呼和浩特市快鸟影像的原始多波段彩色影像和原始高分辨率全色波段影像的一部分进行四种融合方法来进行精度的比较,以ENVI4.7软件作为平台,最终得出,Gram-Schmidt变换效果最好,HSV变换融合效果最差。 关键词:图像融合;PCA变换;Gram-Schmidt变换;Brovey变换;HSV变换;精度比较 Abstract: At present, the remote sensing high resolution full-color remote sensing image and low spatial resolution multi-spectral remote sensing image fusion is image fusion technology application of mainstream. This article through to four kinds of remote sensing image fusion method with the principle and analysis, and in Hohhot, fast image image fusion for example, the bird to deepen the understanding of four fusion method and theory, and finally by intercepting the original image Hohhot fast bird multichannel color image and primitive high-resolution full-color band image on the part of four fusion method for precision compared to ENVI4.7 software as a platform to finally arrive, the best effect, Schmidt transform - the worst. Fusion result transformation HSV. Key words: image fusion, PCA transform; Schmidt transform; the - Brovey transform; HSV transform; Precision;

ENVI中的融合方法

ENVI下的图像融合方法 图像融合是将低空间分辨率的多光谱影像或高光谱数据与高空间分辨率的单波段影像重采样生成成一副高分辨率多光谱影像遥感的图像处理技术,使得处理后的影像既有较高的空间分辨率,又具有多光谱特征。图像融合的关键是融合前两幅图像的精确配准以及处理过程中融合方法的选择。只有将两幅融合图像进行精确配准,才可能得到满意的结果。对于融合方法的选择,取决于被融合图像的特征以及融合目的。 ENVI中提供融合方法有: ?HSV变换 ?Brovey变换 这两种方法要求数据具有地理参考或者具有相同的尺寸大小。RGB输入波段必须为无符号8bit数据或者从打开的彩色Display中选择。 这两种操作方法基本类似,下面介绍Brovey变换操作过程。 (1)打开融合的两个文件,将低分辨率多光谱图像显示在Display中。 (2)选择主菜单-> Transform -> Image Sharpening->Color Normalized (Brovey),在Select Input RGB对话框中,有两种选择方式:从可用波段列表中和从Display窗口中,前者要求波段必须为无符号8bit。 (3)选择Display窗口中选择RGB,单击OK。 (4) Color Normalized (Brovey)输出面板中,选择重采样方式和输入文件路径及文件名,点击OK输出结果。 对于多光谱影像,ENVI利用以下融合技术: ?Gram-Schmidt ?主成分(PC)变换 ?color normalized (CN)变换 ?Pan sharpening 这四种方法中,Gram-Schmidt法能保持融合前后影像波谱信息的一致性,是一种高保真的遥感影像融合方法;color normalized (CN)变换要求数据具有中心波长和FWHM,;Pansharpening融合方法需要在ENVI Zoom中启动,比较适合高分辨率影像,如QuickBird、IKONOS等。 这四种方式操作基本类似,下面介绍参数相对较多的Gram-Schmidt操作过程。 (1)打开融合的两个文件。

利用ENVI软件进行遥感图像的融合和增强实习报告

遥感图像处理实习报告 实验内容:影像融合与增强 班级:测绘1102班 学号:13 姓名: 指导老师:陈晓宁、黄远程、竞霞、史晓亮 西安科技大学 测绘科学与技术学院 二零一三年一月 实习三影像融合与增强

一、实习内容: 1.掌握ENVI中各种影像融合方法,并比较各方法的优缺点; 2.熟悉ENVI图像增强操作; 3.本实习的数据源为上节已经过校正的资源三号多光谱和全色影像。 二、实习目的: 1.了解和认识各种图像融合方法的原理、内容及要点; 2.熟悉、熟练操作ENVI软件中各种图像融合的方法、步骤并学会加以比较; 3.学习利用ENVI软件进行各种图像增强处理操作; 4.学会定性、定量分析比较图像融合的差异。 三、实习步骤: 1.图像融合: 三波段融合: HSV和Color Normalized (Brovey)变换: 1)从ENVI主菜单中,选择File → Open Image File,分别加载校正后的资源三号多光谱与全色影像到可用波段列表Available Bands List中; 2)选择多光谱3,2,1波段(可以根据需要选择)对应R,G,B,点击Load RGB将多光谱影像加载到显示窗口display#1; 3)在ENVI的主菜单选择Transform → Image Sharpening → HSV; 4)在Select Input RGB Input Bands对话框中,选择Display #1,然后点击OK。 5)从High Resolution Input File对话框中选择全色影像,点击OK。 6)从HSV Sharpening Parameters对话框中,选择重采样方法,并输入输出路径和文件名,点击OK。即可完成HSV变换融合;

三种图像融合方法实际操作与分析

摘要:介绍了遥感影像三种常用的图像融合方式。进行实验,对一幅具有高分辨率的SPOT全色黑白图像与一幅具有多光谱信息的SPOT图像进行融合处理,生成一幅既有高分辨率又有多光谱信息的图像,简要分析比较三种图像融合方式的各自特点,择出本次实验的最佳融合方式。 关键字:遥感影像;图像融合;主成分变换;乘积变换;比值变换;ERDAS IMAGINE 1. 引言 由于技术条件的限制和工作原理的不同,任何来自单一传感器的信息都只能反映目标的某一个或几个方面的特征,而不能反应出全部特征。因此,与单源遥感影像数据相比,多源遥感影像数据既具有重要的互补性,也存在冗余性。为了能更准确地识别目标,必须把各具特色的多源遥感数据相互结合起来,利用融合技术,针对性地去除无用信息,消除冗余,大幅度减少数据处理量,提高数据处理效率;同时,必须将海量多源数据中的有用信息集中起来,融合在一起,从多源数据中提取比单源数据更丰富、更可靠、更有用的信息,进行各种信息特征的互补,发挥各自的优势,充分发挥遥感技术的作用。[1] 在多源遥感图像融合中,针对同一对象不同的融合方法可以得到不同的融合结果,即可以得到不同的融合图像。高空间分辨率遥感影像和高光谱遥感影像的融合旨在生成具有高空间分辨率和高光谱分辨率特性的遥感影像,融合方法的选择取决于融合影像的应用,但迄今还没有普适的融合算法能够满足所有的应用目的,这也意味着融合影像质量评价应该与具体应用相联系。[2] 此次融合操作实验是用三种不同的融合方式(主成分变换融合,乘积变换融合,比值变换融合),对一幅具有高分辨率的SPOT全色黑白图像与一幅具有多

光谱信息的SPOT图像进行融合处理,生成一幅既有高分辨率又有多光谱信息的图像。 2. 源文件 1 、 imagerycolor.tif ,SPOT图像,分辨率10米,有红、绿、两个红外共四个波段。 2 、imagery-5m.tif ,SPOT图像,分辨率5米。 3. 软件选择 在常用的四种遥感图像处理软件中,PCI适合用于影像制图,ENVI在针对像元处理的信息提取中功能最强大,ER Mapper对于处理高分辨率影像效果较好,而ERDAS IMAGINE的数据融合效果最好。[3] ERDAS IMAGINE是美国Leica公司开发的遥感图像处理系统。它以其先进的图像处理技术,友好、灵活的用户界面和操作方式,面向广阔应用领域的产品模块,服务于不同层次用户的模型开发工具以及高度的RS/GIS(遥感图像处理和地理信息系统)集成功能,为遥感及相关应用领域的用户提供了内容丰富而功能强大的图像处理工具。 2012年5月1日,鹰图发布最新版本的ERDAS IMAGINE,所有ERDAS 2011软件用户都可以从官方网站上下载最新版本 ERDAS IMAGINE 11.0.5. 新版本包括之前2011服务包的一些改变。相比之前的版本,新版本增加了更多ERDAS IMAGINE和GeoMedia之间的在线联接、提供了更为丰富的图像和GIS产品。用户使用一个单一的产品,就可以轻易地把两个产品结合起来构建一个更大、更清

遥感图像的假彩色合成

北京化工大学 学士学位论文 遥感图像的假彩色合成 姓名:刘晓璐 班级:信息与计算科学0304班 学号:200362102

遥感图像的假彩色合成 摘要:遥感,作为采集地球数据及其变化信息的重要技术手段,在世界范围内及其我国的许多政府部门,科研单位和公司得到了广泛的应用。在遥感数据源向着更高光谱分辨率和更高空间分辨率发展的同时,处理技术也更加成熟;在应用上,结合了地理信息系统(GIS)和全球定位系统(GPS),向着更系统化,更定量化方向发展,使遥感数据的应用更加广泛和深入。 假彩色增强是将一幅彩色图像映射为另一幅彩色图像,从而达到增强彩色对比,使某些图像达到更加醒目的目的。 本文的主要目的就是大遥感的多光谱图像用自然彩色显示。在遥感的多光谱图像中,有些是不可见光波段的图像,如近红外,红外,甚至是远红外波段。因为这些波段不仅具有夜视能力,而且通过与其他波段的配合,易于区分地物。 用假彩色技术处理多光谱图像,目的不在于使景物恢复自然的彩色,而是从中获得更多的信息。为了实现这样的目的,本文采用了MATLAB数学软件编程的方法以及运用Envi4.2 软件直接编辑图像这两种方法,并对其进行对比,得出最优的合成图像。 关键词:图像融合,假彩色合成,彩色增强,灰度级,RGB图像,

False color mapping for image fusion Abstract: A pixel-based color-mapping algorithm is presented that produces a fused false color rendering of two gray-level images representing different sensor modalities. The resulting images have a higher information content than each of the original images and retain sensor specific image information. The unique component of each image modality is enhanced in the resulting fused color image representation. First, the component of two original input images is determined. Second, the common component of each image. Third, the unique component of each image modality is subtracted from the image of the other modality. This step serves to enhance the representation of sensor-specific details in the final fused result. Finally, a fused color image is produced by displaying the images resulting from the last step through, respectively, the red and green channels of a color display. The method is applied to fuse thermal and visual images. The results show that the color mapping enhances the visibility of certain details and preserves the specificity of the sensor information. The fused images also have a fairly natural appearance. The fusion scheme involves only operations on corresponding pixels. The resolution of the input images. Before fusing, the contrast of the images can be enhanced and their noise can be reduced by standard image processing techniques. The color mapping algorithm is computationally simple. This implies that the investigated approaches can eventually be applied in real time and that the hardware needed is not too complicated or too voluminous(an important consideration when it has to fit in an airplane, for instance). Key words: image fusion, false color mapping, color enhances, gray-level, RGB images

图像融合算法概述

图像融合算法概述 摘要:详细介绍了像素级图像融合的原理,着重分析总结了目前常用的像素级图像融合的方法和质量评价标准,指出了像素级图像融合技术的最新进展,探讨了像素级图像融合技术的发展趋势。 关键词:图像融合; 多尺度变换; 评价标准 Abstract:This paper introduced the principles based on image fusion at pixel level in detail, analysed synthetically and summed up the present routine algorithm of image fusion at pixel level and evaluation criteria of its quality. It pointed out the recent development of image fusion at pixel level, and discussed the development tendency of technique of image fusion at pixel level. Key words:image fusion; multi-scale transform; evaluation criteria 1.引言: 图像融合是通过一个数学模型把来自不同传感器的多幅图像综合成一幅满足特定应用需求的图像的过程, 从而可以有效地把不同图像传感器的优点结合起来, 提高对图像信息分析和提取的能力[ 1] 。近年来, 图像融合技术广泛地应用于自动目标识别、计算机视觉、遥感、机器人、医学图像处理以及军事应用等领域。图像融合的主要目的是通过对多幅图像间冗余数据的处理来提高图像的可靠性; 通过对多幅图像间互补信息的处理来提高图像的清晰度。根据融合处理所处的阶段不同,图像融合通常可以划分为像素级、特征级和决策级。融合的层次不同, 所采用的算法、适用的范围也不相同。在融合的三个级别中, 像素级作为各级图像融合的基础, 尽可能多地保留了场景的原始信息, 提供其他融合层次所不能提供的丰富、精确、可靠的信息, 有利于图像的进一步分析、处理与理解, 进而提供最优的决策和识别性能. 2.图像融合算法概述 2.1 图像融合算法基本理论

图像融合层次

图像融合的层次 根据信息表征层次的不同和融合在处理流程中所处的阶段,图像融合由低到高分为3个层次:像素级,特征级和决策级。 (1)像素级图像融合 其结构如图1.2所示,即在严格的配准条件下,对多源图像直接进行信息的综合分析。像素级图像融合是在基础数据层面上进行的信息融合,其主要完成的任务是对多源图像中目标和背景等信息直接进行融合处理。像素级图像融合是最低层次的图像融合,能够保持尽可能多的现场数据,提供其他融合层次所不能提供的细节信息。但需处理的信息量最大,对设备的要求较高。 图1.2像素级图像融合 (2)特征级图像融合 其结构如图1.3所示,即对预处理和特征提取后获取的特征信息如边缘、形状、纹理和区域等进行综合与处理。特征级融合是在中间层次上进行的信息融合,它既保留了足够数量的重要信息,又可对信息进行压缩,有利于实时处理。但相对于像素级图像融合,特征级融合信息丢失最多。

图1.3 特征级图像融合 (3)决策级图像融合 其结构如图1.4所示,即在每个传感器已完成目标提取与分类之后,融合系统根据一定的准则以及每个决策的可信度作出决策融合处理。此种融合实时性好, 并且具有一定的容错能力。决策级融合方法主要是基于认知模型的方法,需要大型数据库和专家决策系统进行分析、推理、识别和判决。 像素级融合和特征层融合都需要对多源信息进行关联和配准,决策层融合只需要对数据进行关联。只是它们进行相关联和识别的顺序不同,像素级融合直接对原始数据进行配准和关联,特征层融合对特征向量进行配准和关联,然后再进行识别,而决策层融合则是先进行识别,再对各个决策结果进行关联,得到融合的判决结果。决策层融合对传感器依赖性较小,传感器可以是同质的,也可以是异质的。除非传感器的信号是独立的,否则,决策层融合的分类性能可能低于特征层融合。 对于特定的应用选择在哪一个层次进行融合是一个系统工程问题,需要综合考虑通信带宽、信源的特点、可用的计算资源等方面的因素影响应所不存在能够适

遥感图像融合的应用研究

龙源期刊网 https://www.360docs.net/doc/902648642.html, 遥感图像融合的应用研究 作者:付和 来源:《科技创新导报》2011年第09期 摘要:针对遥感测绘工程实际应用中的图像融合技术需求,本论文重点对遥感图像融合技术进行了分析研究,在简单介绍了遥感图像融合的基础上,重点对遥感图像融合实际应用进行了分析,探讨了面向特征信息的多源图像融合模型,并给出了遥感图像融合技术在遥感测绘工程中的实际应用,对于进一步提高遥感测绘工程的应用水平具有一定借鉴意义。 关键词:遥感测绘工程图像融合 中图分类号:P237 文献标识码:A 文章编号:1674-098X(2011)03(c)-0001-01 1 引言 本论文重点对多源遥感图像融合展开分析研究,以期从中找到可靠有效的遥感图像融合方法,并以此和广大同行分享。 2 遥感图像融合概述 图像融合是数据融合的一种重要形式。对于多源遥感数据,融合的定义可描述为:将不同类型传感器获取的图像数据经预处理后,采用一定的算法将各幅图像中所包含的信息优势或互补 性信息有机地结合起来,以产生新的数据,来获得对同一事物或目标的更客观、更本质的认识。从而大大提高融合图像的信息含量并使其在特征提取、分类、目标识别以及目视效果等方面更为有效。 按照数据抽象的三个层次,融合可分为三级,即象素级融合、特征级融合和决策级融合。 像素级融合是指将配准后的图像对象素点直接进行融合。例如,加、乘、梯度、线性平 均、比值、多元回归等运算。一般来说,融合的结果可以得到一幅信息含量更大、更全面的图像,有利于下一步的图像分析和理解。像素级融合对传感器配准的精度要求较高。其优点是保 留了尽可能多的信息,具有较高精度。缺点是处理信息量大、费时、实时性差。 特征级融合是指将经过配准的数据先进行特征提取,然后进行关联处理,使每一种传感器得到同一目标的特征向量,最后融合这些特征向量,进行图像分类或目标识别。一般来说,提取的特

遥感图像融合质量评价方法

遥感图像融合质量评价方法 武坚李崇伟王积武李相全 (68011部队甘肃兰州 730020) 摘要:图像融合可为摄影测量与遥感提供高质量的遥感融合图像。遥感融合图像质量如何是图像使用者关心的一个重要问题。本文运用主观评价、客观评价、几何质量等三种评价方法对融合后的遥感图像的质量展开讨论。实践表明这些评价方法能够保证融合后图像高质量地应用于摄影测量与遥感生产。 关键词:主观评价客观评价几何质量质量评价 1.前言 摄影测量与遥感[1]是以数字影像为基础,来确定被摄物体的形状、大小、空间位置及其性质。遥感图像是摄影测量与遥感最原始、最基本的资料。高质量的遥感图像是完成摄影测量与遥感的基础。遥感影像融合[2]是将多传感器、多时相、多光谱和多分辨率影像的各自局部优势信息整合处理,以提供高分辨率、多光谱的单一图像,解决遥感影像解译过程中信息不足的问题。由此看出,图像融合可以为摄影测量与遥感提供高质量的遥感影像。 2.图像融合的评价方法 当前对融合后图像的质量评价主要是主观目视与统计相关信息参数相结合的办法,即:利用目视效果和信息熵、清晰度、平均梯度、偏差指数、均方根误差等参数统计分析,而对融合后图像的几何量测性则关注较少。对于摄影测量与遥感应用,几何精度是一个很重要的因素。本文结合摄影测量与遥感应用角度,来对分析融合后图像的质量做出评价。 站在通用图像处理角度,目前大多数对影像质量评价分为主观评价和客观评价,并结合起来使用。主观评价是通过目视观察进行分析,客观评价是利用图像的统计参数进行判定。严格意义上讲,融合图像的主客观评价应该是一致的,即图像的统计参数特征应该符合人眼的目视感觉。但由于遥感图像融合具有特殊性,它不仅仅要求提高融合图像的空间分辨率,而且要尽可能制约[2]。因此,对遥感融合图像的质量评价,应综合考虑空间细节的增强和光谱保持原始图像的光谱特征。此外,这两个要求在很大程度上是不太相容,相互信息的保持两个方面,利用图像的统计参数结合目视观察来分析与评价。 对于摄影测量与遥感而言,影像的几何质量(影像的可量测性)是很重要的一个因素,它将决定融合图像能否达到数字地形图生产的精度限差[4]。因此,从主观、客观、几何质量等三个方面对做出质量评价可以保证融合后图像高质量地应用于摄影测量与遥感生产。

图像融合算法的分析与比较

摘要:图像拼接技术一直是计算机视觉、图像处理和计算机图形学的热点研究方向。图像融合算法是图像拼接过程中非常重要的一个步骤,本文介绍了几种常用图像融合算法,并且结合实验对它们的进行了分析和比较。 关键词:图像融合;图像拼接 一、引言图像拼接(image stitching)技术是由于摄像设备的视角限制,不可能一次拍出很大图片而产生的。图像拼接技术可以解决由于相机等成像仪器的视角和大小的局限,不可能一次拍出很大图片而产生的问题。它利用计算机进行自动匹配,合成一幅宽角度图片,因而在实际使用中具有很广泛的用途,同时对它的研究也推动了图像处理有关的算法研究。图1 图像拼接流程图图像拼接技术的基本流程如图1-1所示,首先获取待拼接的图像,然后是图像配准和图像融合,最终得到拼接图。图像拼接技术主要包括两个关键环节,即图像配准和图像融合。图像配准主要指对参考图像和待拼接图像中的匹配信息进行提取,在提取出的信息后寻找图像间的变换模型,然后由待拼接图像经变换模型向参考图像进行对齐,变换后图像的坐标将不再是整数,这就涉及到重采样与插值的技术。图像拼接的成功与否主要是图像的配准。待拼接的图像之间,可能存在平移、旋转、缩放等多种变换或者大面积的同色区域等很难匹配的情况,一个好的图像配准算法应该能够在各种情况下准确找到图像间的对应信息,将图像进行匹配。图像融合的任务就是把配准后的两幅图像根据对准的位置合并为一幅图像。由于两幅相邻图像之间存在重叠区域,因此,采用配准算法可以实现图像的对齐。然而图像拼接的目的是要得到一幅无缝的拼接图像[1]。所谓无缝,就是说在图像拼接结果中,不应该看到两幅图像在拼接过程中留下的痕迹,即不能出现图像拼接缝隙。由于进行拼接的两幅图像并不是在同一时刻采集的,因此,它们不可避免地会受到各种不定因素的影响。由于这些无法控制的因素的存在,如果在图像整合过程结束之后,只是根据该过程中所得到的两幅相邻图像之间的重叠区域信息,将两幅图像简单的叠加起来,那么,在它们的结合部位必然会产生清晰的拼接缝隙,这也就达不到图像拼接所要求的无缝的要求。如何处理图像整合过程中无法解决的拼接缝隙问题,实现真正意义上的无缝拼接,正是图像融合过程中所要解决的问题。对于重叠部分,如果只是简单的取第一幅图像或第二幅图像的数据进行叠加,会造成图像的模糊和拼接的痕迹,这是不能容忍的。图像融合就是要消除图像光强或色彩的不连续性。它的主要思想是让图像在拼接处的光强平滑过渡以消除光强的突变。二、常见的图像融合算法 1、平均值法令,,分别表示第一幅图像、第二幅图像和融合图像在点处的像素值,则融合图像中各点的像素值按式(4-1)确定。 (1) 式(4-1)中,表示第一幅图像中未与第二幅图像重叠的图像区域,表示第一幅图像与第二幅图像重叠的图像区域,表示第二幅图像中未与第一幅图像重叠的图像区域。取两幅图像的平均值的算法速度很快,但效果一般不能令人满意,在融合部分有明显的带状感觉,用眼睛能够观察出区别。本文以左图像所在的坐标系为参考坐标空间,将右图像经过变换矩阵向参考图坐标进行映射,由于双线性插值法在计算效率和精度方面可以达到一个很好的平衡,因此在变换过程中本文采用双线性插值。然后采用平均值法对图像重叠区进行融合,得到图2(a)和图2(b)。从图中可以看出由于采用本文的配准方法拼接出来的图像在拼接点处结合得很好,但是由于重叠区域采用了简单的平均值法来进行融合,有明显的拼缝。 (a) 校园广场图片(b)足球场图片图2 采用平均值法来对图像进行融合 2、重叠区线性过渡为了消除重叠区的拼缝问题,目前采用较多的是重叠区线性过渡的方法. 实现的具体方法是假设重叠区域宽度为l。取过渡因子是()。两幅图像重叠区的x轴和y轴最大和最小值分别为、和、,则过渡因子,重叠区的像

遥感图像融合技术的发展现状

遥感图像融合技术的发展现状及趋势 1 引言 多源图像融合属于多传感器信息融合的范畴, 是指将不同传感器获得的同一景物的图像或同一传感器在不同时刻获得的同一景物的图像, 经过相应处理后, 再运用某种融合技术得到一幅合成图像的过程。多幅图像融合可克服单一传感器图像在几何、光谱和空间分辨率等方面存在的局限性和差异性, 提高图像的质量, 从而有利于对物理现象和事件进行定位、识别和解释。与单源遥感图像相比, 多源遥感图像所提供的信息具有冗余性、互补性和合作性。因此,将多源遥感图像各自的优势结合应用, 获得对环境正确的解译是极为重要的。多源遥感图像融合则是富集这些多种传感器遥感信息的最有效途径之一,是现代多源数据处理和分析中非常重要的一步。本文基于遥感图像融合的研究现状、分析了图像融合研究的困境和不足, 最后提出了未来的发展趋势和热点, 以期达到抛砖引玉的作用。 2 遥感图像融合研究现状 随着信息科学技术的发展, 在20 世纪七八十年代诞生了一个称为数据融合的全新概念。这一概念不断扩展, 处理的对象由一般的数据发展到数字图像。1979 年, Daliy 等人首先将雷达图像和LandsatMSS 图像的复合图像应用于地质解译, 被认为是最早的图像

融合。20 世纪80 年代, 图像融合技术逐渐应用到遥感图像的分析和处理中。90年代以后, 图像融合技术成为研究的热点, 并成为很多遥感图像应用的一个重要预处理环节。目前, 遥感图像融合已经发展为像素级、特征级和决策级3个层次, 如表1。需要指出的是, 融合层次并没有划分融合算法严格的界限, 因为本质上各个融合层次都是信息融合的范畴。像素级图像融合技术已被广泛研究和应用, 并取得了一定的成果。特征级融合是一种中等层次的信息融合, 利用从各个传感器图像的原始信息中提取的特征信息,进行综合分析及融合处理, 不仅增加从图像中提取特征信息的可能性, 还可能获取一些有用的复合特征, 尤其是边缘、角、纹理、相似亮度区域、相似景深区等。在特征级融合中, 对图像配准的要求不如像素级图像融合对配准要求那么严格。决策级图像融合是一种更高层次的信息融合, 其结果将为各种控制或决策提供依据。在进行融合处理前, 先对图像进行预处理、特征提取、识别或判决, 建立对同一目标的初步判决和结论, 然后对各个图像的决策进行相关处理, 最后进行决策级的融合。从特点来看,不同层次的融合各有优缺点, 难以在信息量和算法效率方面都同时满足需求。 表一:遥感图像融合三个层次的对比 融合层次融合算法特点

相关文档
最新文档