表面粗糙度的成因及其影响因素分析
机械加工影响表面粗糙度的因素及改善措施

机械加工影响表面粗糙度的因素及改善措施摘要:零件表面粗糙度是判断一个制造品是否符合工业标准的重要指标,直接决定其能否在机械中发挥正常功能,因此,研究机械加工影响表面粗糙度的因素十分重要,文中结合实际加工经验,探析了哪些因素对零件表面粗糙度有显著影响,并且根据这些影响因素给出合理的解决方案。
关键词:机械加工;表面粗糙度;改善措施引言在机械使用过程中,大多因为零件的破损导致其部分功能无法正常使用,工业产品的使用时间,产品质量和产品性能取决于组成零件的加工质量,而零件本身的质量由可靠性,耐磨性,表面粗糙度等因素决定,而其中的重要因素就是表面粗糙度,表面粗糙度即是零件加工表面较小间距和微小峰谷的不平度的表述,波峰和波谷的距离差距会影响机械零件的性能。
因此研究表面粗糙度的影响因素十分重要,能够帮助改善零件的性能和机械设备的整体性能。
1.零件表面粗糙度的影响因素分析1.1切削加工带来的影响使用刀具给零件加工时,会在表面存留切削的残留面,这种残留面具有微观几何误差,进给量,主副偏角和刀尖圆弧的半径都会对残留面的大小,调整好加工时的进给量,角度就可以减小零件的变形程度和切割面积,另外,加工零件时应该选择符合材质特性的润滑剂和刀具。
材料的选择也是至关重要的,因为材料加工发生切屑分离时,会产生塑性变形,这种塑性变形程度是和材料的弹力极限有关系,如果材料不好,残留塑形面积就会扩大,最终导致零件不符合工业标准。
刀具的后刀面和已经加工的工件表面的摩擦也会对表面粗糙度产生影响,外力作用增大也会增加表面粗糙度。
1.2磨削加工带来的影响磨削加工用于机械精细加工,磨粒的硬度很高,具有白锐性,可以用加工各种材料,在加工过程中,磨削转速一般是30到35m/s,转速非常高。
但是磨削加工可以获得很高的加工精度和表面粗糙度值。
正是因为磨削加工的优势,在具体加工过程中,温度可达1000摄氏度到1500摄氏度,会加深塑性变形,而且磨粒的负前角磨削比较薄,磨削时大多挤压零件表面,面对塑性变形过程,磨粒侧边会产生塑性热流,进而在零件上划出微小粗糙,高温会更近一步加深表面粗糙度。
表面粗糙度及其影响因素

表面粗糙度及其影响因素一、切削加工中影响表面粗糙度的因素影响表面粗糙度的因素主要有几何因素和物理因素。
1.几何因素:式中 f ——进给量。
Kr ——主偏角。
Kr’——副偏角考虑刀尖圆弧角:式中 f ——进给量。
r ——刀尖圆弧半径。
如图11-8、9所示,用刀尖圆弧半径r=0的车刀纵车外圆时,每完成一单位进给量f后,留在已加工表面上的残留面积,它的高度Rmax即为理论粗糙度的轮廓最大高度Ry。
图11- 8 图11- 9图11- 10 加工后表面实际轮廓和理论轮廓切削加工后表面粗糙度的实际轮廓形状,一般都与纯几何因素所形成的理论轮廓有较大的差别,如图11-10。
这是由于切削加工中有塑性变形发生的缘故。
生产中,若使用的机床精度高和材料的切削加工性好,选用合理的刀具几何形状、切削用量和在刀具刃磨质量高、工艺系统刚性足够情况下,加工后表面实际粗糙度接近理论粗糙度,这样减小表面粗糙度数值、提高加工表面质量的措施,主要是减小残留面积的高度Ry。
2.物理因素多数情况下是在已加工表面的残留面积上叠加着一些不规则的金属生成物、粘附物或刻痕。
形成它们的原因有积屑瘤、鳞刺、振动、摩擦、切削刃不平整、切屑划伤等。
3.积屑瘤的影响积屑瘤的生成、长大和脱落将严重影响工件表面粗糙度。
同时,由于部分积屑瘤碎屑嵌在工件表面上,在工件表面上形成硬质点。
见图11-11。
图11- 11 图11- 12鳞刺的影响鳞刺的出现,使已加工表面更为粗糙不平。
鳞刺的形成分为:抹拭阶段:前一鳞刺已经形成,新鳞刺还未出现;而切屑沿着前刀面流出,切屑以刚切离的新鲜表面抹拭刀——屑摩擦面,将摩擦面上有润滑作用的吸附膜逐渐拭净,以致摩擦系数逐渐增大,并使刀具和切屑实际接触面积增大,为这两相摩擦材料的冷焊创造条件,如图11-12(a)。
导裂阶段:由于在第一阶段里,切屑将前刀面上的摩擦面抹拭干净,而前刀面与切屑之间又有巨大的压力作用着,于是切屑与刀具就发生冷焊现象,切屑便停留在前刀面上,暂时不再沿前刀面流出。
关于表面粗糙度对机械零件使用性能的影响分析

关于表面粗糙度对机械零件使用性能的影响分析表面粗糙度是指在工作面上由于加工、磨削、切削等加工工艺所形成的一种微观形貌。
在机械零件中,表面粗糙度对零件的使用性能有着重要的影响。
粗糙度的大小会直接影响零件的摩擦、磨损、疲劳等性能,在工程设计中需要根据零件的实际使用情况来控制和选择合适的表面粗糙度,以确保零件的使用寿命和性能。
一、表面粗糙度的影响因素表面粗糙度是由材料的硬度、强度、加工工艺、刀具磨损等因素共同影响的。
在加工工艺中,切削刀具的尺寸、材料、刀具背角等都会对表面粗糙度产生影响。
在材料的硬度和强度上,材料硬度较高的话,在加工过程中产生的切削屑也就比较难削除,从而产生较大的表面粗糙度。
而加工工艺的参数设置不当也会直接影响到表面粗糙度,如切削速度、进给量、切削深度等都会对表面粗糙度的大小产生重要的影响。
二、表面粗糙度对机械零件使用性能的影响1. 摩擦阻力表面粗糙度的大小对零件摩擦阻力起着直接的影响。
通常来说,表面粗糙度越小,零件的摩擦阻力也就越小,这对于一些需要进行摩擦工作的机械零件来说是非常重要的。
在汽车发动机中的气缸套和活塞环之间的摩擦,要求表面粗糙度尽量小,以减小摩擦阻力,提高发动机的工作效率和性能。
2. 磨损表面粗糙度对机械零件的磨损也有着直接的影响。
通常情况下,表面粗糙度越大,零件的磨损也就越严重。
在机械零件运动过程中,表面粗糙度大会导致零件与零件之间产生过大的磨损,在严重的情况下会导致零件的失效。
对于一些需要长时间运转的机械零件来说,需要通过控制表面粗糙度来控制磨损的程度,延长零件的使用寿命。
3. 疲劳在一些需要长时间进行往复运动的机械零件中,表面粗糙度也会对零件的疲劳性能产生影响。
在往复运动中,表面粗糙度大会导致零件在应力集中区域产生较大的应力集中,从而降低零件的疲劳寿命。
而通过控制表面粗糙度,使零件表面平整度提高,表面裂纹的产生和扩展都得到一定的抑制,进而延长零件的使用寿命。
三、表面粗糙度的有效控制在实际的工程设计中,对于表面粗糙度需要进行有效的控制,以保证零件的使用性能。
影响表面粗糙度的因素

.影响表面粗糙度的因素1.切削加工中影响表面粗糙度的因素1)?几何因素2)物理因素切削加工后表面粗糙度的实际轮廓形状一般都与由纯几何因素形成的理想轮廓有较大的差别。
这是由于存在与被加工材料的性质及切削机理有关的物理因素的缘故。
采用低切削速度加工塑性金属材料(如低碳钢、铬钢、不锈钢、高温合金、铝合金等)时,容易出现积屑瘤与鳞刺,使加工表面粗糙度严重恶化,成为影响加工表面质量的主要因素。
刀具与被加工材料的挤压与磨擦使金属材料发生塑性变形,也会增大表面粗糙度。
切削加工中的振动,使工件的表面粗糙度增大。
从物理因素看,降低表面粗糙度的主要措施是减少加工时的塑性变形,避免产生积屑瘤和鳞刺。
其主要影响因素有切削速度、被加工材料的性质、刀具的几何形状、材料性质和刃磨质量。
适当增大刀具的前角,可以降低被切削材料的塑性变形;降低刀具前刀面和后刀面的表面粗糙度可以抑制积屑瘤的生成;增大刀具后角,可以减少刀具和工件的摩擦;合理选择冷却润滑液,可以减少材料的变形和摩擦,降低切削区的温度;采取上述各项措施均有利于减小加工表面的粗糙度。
2.磨削中影响表面粗糙度的因素三.影响加工表面金属层物理力学性能的因素加工过程中,由于切削力和切削热的作用,工件表面金属层的物理力学性能会发生很大的变化,导致表面层金属和基体材料的性能有很大的差异。
其影响因素主要表现为三个方面。
1.表面层金属材料的加工硬化切削(磨削)过程中产生的塑性变形,会使表层金属的晶格发生畸变,晶粒间产生剪切滑移,晶粒被拉长,甚至破碎,从而使表层金属的硬度和强度提高,这种现象称为加工硬化。
加工硬化的程度取决于塑性变形的程度。
影响加工硬化的因素(1)?切削力越大,塑性变形越大,硬化程度也越大。
因此,当进给量、背吃刀量增大,刀具前角减小时,都会因切削力增大而使加工硬化程度增大。
(2)?切削温度越高,会使加工硬化作用减小。
如切削速度增大,会使切削温度升高,加工硬化程度将会减小。
影响机械加工表面粗糙度

表面粗糙度不行的原因在哪?
影响机械加工表面粗糙度的因素
影响因素很多,主要是几何因素、物理因素和加工中工艺系 统的振动。
1、几何因素:减小进给量f,减小主、副偏角,增大刀尖圆角 半径,都能减小残留面积的高度H,也就减小了零件的表面粗 糙度。
2、物理因素: (1)切削力和摩擦力大,表面粗糙。 (2)积屑瘤的形成严重影响表面粗糙度提高。 (3)切屑在前刀面停留、挤拉、撕裂形成鳞刺导致表面粗糙。 措施:选择合适的切屑速度,改善材料的切削性能,选择正
尖刀切削时
H
f
cotr cotr
带圆角半径的刀切削时
H
f2
8r0
由公式可知,减小进给量f,减小主、副偏角,
增大刀尖圆角半径,都能减小残留面积的高度H,
也就减小了零件的表面粗糙度。
二、影响机械加工表面粗糙的物理因素
⒈切削力和摩擦力的影响
(刀刃圆角及后刀面挤压和摩擦材料,韧性材料材料发生塑性变形,Βιβλιοθήκη 性材料崩碎)00处不为零怎么办
球刀对刀对哪里?
⒉积屑瘤的影响(其形成、长大、脱落严重影响,看图,提高或降低切削速度,切削液,对材料进
行热处理)
⒊鳞刺的影响(切屑在前刀面产生周期停留、挤拉、撕裂,切削速度、切削深度、刀具的前角、工
件的材质和切削液。 )
从物理因素看、必须减少切削力引起的塑性变形,避免积屑瘤和鳞刺。 措施:选择合适的切屑速度,改善材料的切削性能,选择正确的切削液
确的切削液 3、振动使工艺系统的各种成形运动受到干扰和破坏,使加工
表面出现振纹,降低了零件的加工精度和增大表面粗糙度。
第二节 影响机械加工表面粗糙度的因素
影响因素很多,主要是几何因素、物理因素和加工中工艺系统的振动
制造过程中的表面粗糙度控制研究

制造过程中的表面粗糙度控制研究导言表面粗糙度控制是制造工艺中非常重要的一环。
无论是电子产品、机械设备还是汽车零部件,表面粗糙度的控制都直接关系到产品的质量和性能。
本文将深入探讨制造过程中的表面粗糙度控制研究。
一、表面粗糙度的定义和影响因素表面粗糙度是指在制造过程中形成的表面微观形貌中的几何尺寸和形状不规则程度。
表面粗糙度的大小和形状会对产品的摩擦、密封、光学特性等方面产生直接影响。
1.1 表面粗糙度的定义表面粗糙度通常由平均粗糙度(Ra)和最大峰值高度(Rz)来描述。
平均粗糙度指的是表面所有峰值与谷底高度的平均值,而最大峰值高度则是指表面上最高的峰值高度。
1.2 影响因素表面粗糙度的大小和形状受多种因素的影响。
其中,材料特性、加工过程以及机械参数等是主要的影响因素。
例如,材料的硬度和塑性等性能决定了加工时的切削力和变形程度,从而影响了表面粗糙度。
加工过程中的切削速度、进给量以及切削液的使用情况等也会直接影响表面粗糙度的大小。
二、表面粗糙度控制方法为了满足不同产品的要求,制造过程中需要采取一定的方法来控制表面粗糙度。
常见的表面粗糙度控制方法包括机械加工、化学处理以及喷涂等。
2.1 机械加工机械加工是最经典的表面粗糙度控制方法之一。
通过刀具对材料进行切削、研磨或抛光等操作,可以有效地改变表面粗糙度。
不同的切削工艺和切削参数会对表面粗糙度产生不同的影响。
2.2 化学处理化学处理是一种常用的表面粗糙度控制方法,通过在材料表面进行腐蚀、溶解或沉积等化学反应,可以改变表面的形貌和粗糙度。
例如,金属表面经过阳极氧化处理可以形成致密的氧化膜,从而提高表面的耐磨性和耐腐蚀性。
2.3 喷涂喷涂是一种广泛使用的表面粗糙度控制方法。
通过将涂料喷涂在材料表面,可以覆盖原有的粗糙结构,从而实现表面的平整和光滑。
喷涂技术在汽车制造和建筑行业中得到广泛应用。
三、表面粗糙度检测与评估表面粗糙度的控制需要依靠精确的检测和评估方法。
影响不锈钢加工表面粗糙度的因素及改善措施
影响加工表面粗糙度的因素及改善措施一、切削加工中影响表面粗糙度的因素机械加工中,形成表面粗糙度的主要原因可归纳为三个方面:一是刀刃和工件相对运动轨迹所形成的残留面积——几何因素;二是加工过程中在工件表面产生的塑性变形、积屑瘤、鳞刺和振动等物理因素;三是与加工工艺相关的工艺因素。
1.几何因素在理想切削条件下,由于切削刃的形状和进给量的影响,在加工表面上遗留下来的切削层残留面积就形成了理论表面粗糙度。
由图5— 3中的关系可得:刀尖圆弧半径为零时,刀尖圆弧半径为rε时,由上式可见,进给量f、刀具主偏角Кr、副偏角Кr'越大、刀尖圆弧半径rε越小,则切削层残留面积就越大,表面就越粗糙。
以上两式是理论计算结果,称为理论粗糙度。
切削加工后表面的实际粗糙度与理论粗糙度有较大的差别,这是由于存在着与被加工材料的性能及与切削机理有关的物理因素的缘故。
2.物理因素切削过程中由于刀具的刃口圆角及后刀面的挤压与摩擦使金属材料发生塑性变形,从而使理论残留面积挤歪或沟纹加深,促使表面粗糙度恶化。
在加工塑性材料而形成带切屑时,在前刀面上容易形成硬度很高的积屑瘤。
它可以代替前刀面和切削刃进行切削,是刀具的几何角度、背吃刀量发生变化。
其轮廓很不规则,因而使工件表面上出现深浅和宽窄不断变化的刀痕,有些积屑瘤嵌入工件表面,增加了表面粗糙度。
切削加工时的振动,使工件表面粗糙度值增大,有关切削加工时振动的内容将在本章第四节加以说明。
3.工艺因素与表面粗糙度有关的工艺因素有:切削用量、工件材质及与切削刀具有关的因素。
二、降低表面粗糙度值的工艺措施由于表面粗糙度的成因与切削刀具之间的特殊关系,现就切削加工和磨削加工分别叙述降低表面粗糙度值的工艺措施。
1.选择合理的切削用量(1)切削速度切削速度对表面粗糙度的影响比较复杂,一般情况下在低速或高速切削时,不会产生积屑瘤,故加工后表面粗糙度值较小。
在切削速度为20~50m/min加工塑性材料(如低碳钢、铝合金等)时,常容易出现积屑瘤和鳞刺,再加上切屑分离时的挤压变形和撕裂作用,使表面粗糙度更加恶化。
影响表面粗糙度的因素
影响表面粗糙度的因素表面粗糙度是衡量已加工表面质量的重要标志之一,它对零件的耐磨性、耐腐蚀性、疲劳强度和配合性质都有很大影响。
但是,在加工中表面粗糙度影响因素有很多,为了达到良好的表面粗糙度,我们就来了解一下这些因素有哪些。
影响表面粗糙度的因素一、加工表面粗糙的原因1、残留面积:残留面积是刀具的主、副切削刃切削后,残留在已加工表面上的一些尚未被切去的面积。
2、鳞刺:用高速钢刀具低速或中速切削塑性金属材料时,如低碳钢、中碳钢、不锈钢、铝合金等,常在已加工表面上产生鱼鳞片状的毛刺,称为鳞刺。
出现鳞刺会显著增大已加工表面的表面粗糙度。
3、积屑瘤:在切削过程中,当产生积屑瘤时,其突出的部分能代替切削刃切入工件,在已加工表面上划出深浅不一的沟纹;当积屑瘤脱落时,部分积屑瘤碎片粘附在已加工表面上,形成细小毛刺,造成表面粗糙度增大。
4、振动:在切削加工时,由于工艺系统产生周期性振动,使已加工表面出现条痕或波纹痕迹,使表面粗糙度值明显增大。
二、影响表面粗糙度的因素凡影响残留面积、积屑瘤、鳞刺、振动的因素都影响加工表面粗糙度。
1、切削用量:进给量对残留面积的影响最大。
进给量减小,残留面积减小。
切削塑性金属时,当切削速度很低或很高时,表面粗糙度值较小。
这是因为低速时积屑瘤不易产生;切削速度较高时,塑性变形减小,可消除鳞刺的产生。
在切削脆性材料时,切削速度的影响较小,因为材料变形小,故表面粗糙度值也减小。
2、刀具几何参数:刀具的刀尖圆弧半径、主偏角和副偏角对残留面积和振动有较大的影响。
一般当刀尖圆弧半径增大,主偏角和副偏角减小时,表面粗糙度值小,但如果机床刚度低,刀尖圆弧半径过大或主偏角过小,会由于切削力增大而产生振动,使表面粗糙度值增大。
3、刀具材料:刀具材料不同,刃口圆弧半径的大小和保持锋利的时间是不同的。
高速钢刀具能刃磨得很锋利,但保持的时间较短,所以在低速切削时表面粗糙度值较小。
硬质合金刀具刃磨后刃口圆弧半径较大,在高速度下切削表面粗糙度值较小。
机械加工影响表面粗糙度的因素及应对措施
机械加工影响表面粗糙度的因素及措施!1、机械加工零件表面粗糙度的概述那么为了较好的提高零件的性能就需要减小零件表面粗糙度,其方法是针对影响零件粗糙度的因素而采取相应的措施,这样会取得更好的效果。
2、影响表面粗糙度的因素在零件的加工过程中会使得零件表面形成一定的粗糙程度,这非常不利于零件的正常使用。
影响零件表面粗糙度的因素有刀具几何形状的影响、积削瘤的影响、工件材料的影响、加工条件的影响以及振动的影响,下面将详述影响零件表面粗糙度的因素。
2.1刀具几何形状的影响刀具是用来切割零件的工具,在切割的过程中刀具与零件的接触最为充分,那么刀具对零件的表面粗糙度影响也最大,适当的增加刀具几何形状的前角可以在较大程度上减小零件表面粗糙度,但是过度增加刀具几何形状的前角反而会使得表面粗糙度增加。
这在实际的过程中很难进行控制,容易使得零件的表面粗糙度受到较大的影响。
当前角一定时,后角越大刀具就越锋利,也更加容易进行切割。
适当的增加后角可以减小刀面与零件表面的摩擦和挤压,这样就可以有效的减小零件的表面摩擦度。
但是后角过大时就会发生切削振动,从而使得零件的表面摩擦度增加。
但是适当的后角在实际操作中也很难进行把握,所以在实际的操作中容易使得零件的表面粗糙度增加。
此外刀具的前刀面与后刀面对零件的表面粗糙度也有一定的影响,如果刀具的前刀面和后刀面粗糙值较小,那么零件的表面粗糙度就越小。
因为刀具的前后刀面越光滑就越锋利,在切割的过程中就不容易产生缺口,从而使得零件的表面粗糙度减小。
由此可见刀具的几何形状对于零件表面粗糙度的大小有着非常重要的影响,所以在降低零件表面粗糙度的过程中药着重考虑这个影响因素。
2.2积削瘤的影响积削瘤所指的是在金属切削过程中,会有一些从工件上掉下来的金属冷焊并层积在前刀面上,这样就会形成一个非常坚硬的金属堆积物,这个金属堆积物的硬度是工件硬度的2~3倍,能够代替刀刃进行切削,但是在不断的切削过程中会逐渐掉落,这个金属堆积物所指的就是积削瘤。
影响表面粗糙度的因素
一.影响表面粗糙度的因素:(1)工件刚性差,加工表面粗糙度增大。
(2)刀具前角o γ为小值时,塑性变形增大,表面粗糙度也将增大。
过小的后角o α将增大摩擦,表面粗糙度也将增大。
刃倾角s λ为负,加工表面的表面粗糙度增大。
刀具材料软和刃磨质量差,刀具磨损,加工表面粗糙度增大。
(3)切削用量的影响1)切削塑性材料时,切削速度v 在一定的速度范围内(20~80m/min )易产生积屑瘤和鳞刺。
2)进给量f 大,加大了表面粗糙度值,或f 过小会增加刀具与工件表面的挤压次数,使塑性变形增大,反而加大了表面粗糙度值。
3)背吃刀量p α过小或大 ,在精密加工中加大了表面粗糙度值。
二.有锥度 : 车刀明显磨损,车刀松动,车刀架松动,尾座轴线与主轴轴线偏移三.圆度超差,圆柱度超差:主轴径向跳动大,刀具移动方向与主轴不平行,车刀磨损由于刀杆刚性差,产生“让刀”而使内孔成为锥孔,这时需降低切削用量重新镗孔。
镗孔刀磨损严重时,也会产生锥孔,这时需重磨车刀后再进行镗孔。
四.表面不光洁,有明显波纹或表面粗糙,有切痕,拉毛现象:①进给量过大;②铣削进给时,中途停顿,产生“深啃”;③铣刀安装不好,跳动过大,使铣削不平稳;④铣刀不锋利、已磨损五.平面不平整,出现凹下和凸起:①机床精度差或调整不当,②端铣时主轴与进给方向不垂直;③圆柱铣刀圆柱度不好六.槽的宽度尺寸不对:①键槽铣刀装夹不好,与主轴的同轴度差②铣刀已磨损③刀轴弯曲,铣刀摆差大七.槽底与工件轴线不平行:①工件装夹位置不准确,工件轴心线与工作台面不平行② 铣刀装夹不牢或铣削用量过大时,使铣刀被铣削力拉下八.键槽对称性不好:对刀不仔细,使偏差过大九.封闭槽的长度尺寸不对:①工作台自动进给关闭不及时②纵向工作台移动距离不对十.磨外圆断面不圆:①中心孔不圆,孔内有异物,两中心孔轴线不一致,顶尖与中心孔锥角不一致,顶尖未顶紧等;②用卡盘装夹工件时,头架主轴径向跳动太大;③砂轮主轴与轴承间间隙过大;④磨前工件断面不圆,而且工件刚性又差;⑤工件不平衡时,离心力作用,使较重的一边磨去多;⑥工件热处理后还存在部分内应力,磨削后内应力重新平衡而产生变形十一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南科技学院2009届本科毕业论文(设计)论文题目:表面粗糙度的成因及其影响因素分析学生姓名:霍鹏所在院系:机电学院所学专业:机械设计制造及其自动化导师姓名:马利杰完成时间:2008年5 月28 日摘要表面粗糙度是指零件表面上具有较小间距和微小峰谷所组成的微观几何形状特征。
它主要是由机械加工形成的(表面粗糙度、表面波纹度、表面缺陷、表面几何形状),直接影响机械零件的配合性质,表面的耐磨性、抗腐蚀性、疲劳强度、密封性、导热性及使用寿命。
首先,对表面粗糙度的基础知识进行了简要介绍;其次,着重分析了影响零件表面粗糙度的因素及其影响规律和趋势;在此基础上,探寻改善和提高表面粗糙度的措施和方法;最后,举例说明表面粗糙度的一些选择和测量。
关键词: 粗糙度相关分析控制1Analysis of formation mechanism of surface roughness and it’sinfluence factorAbstractSurface roughness is the distance between the surface and has a smaller peak which consists of tiny micro-geometry characteristics. It is mainly formed by machining (surface roughness, surface waviness, surface defects, surface geometry), a direct impact on the nature of mechanical components with the surface of the wear resistance, corrosion resistance, fatigue strength, tightness, thermal conductivity and useful life.First, the basics of surface roughness have been briefed; Secondly, the focus on an analysis of the impact of parts of the surface roughness factors, and impact of laws and trends; On this basis, ways to improve and enhance the surface roughness of the measures and methods ; Finally, examples of surface roughness and measurement of the number of options.Keywords : Roughness, Relation Analysis, Control2目录1 绪论 (4)1.1表面粗糙度概述 (4)1.1.1表面粗糙度概念 (4)1.1.2表面粗糙度产生原因 (4)1.2表面粗糙度国内外研究现状 (5)1.3表面粗糙度研究的目的及意义 (5)2 表面粗糙度的影响因素分析 (6)2.1表面粗糙度的标准 (6)2.2表面粗糙度的因素 (6)2.2.1 刀具方面 (6)2.2.2切削条件 (7)2.3表面粗糙度的选择原则 (8)3 表面粗糙度的成因及其改善措施 (12)3.1控制目的 (12)3.2切削加工时表面粗糙度的成因与控制 (12)3.2.1形成原因 (12)3.2.2 控制措施 (16)34 结论 (18)谢辞 (18)参考文献 (19)1 绪论1.1表面粗糙度概述1.1.1表面粗糙度概念表面粗糙度[1]是指零件表面上具有较小间距和微小峰谷所组成的微观几何形状特征。
它主要是由机械加工形成的(表面粗糙度、表面波纹度、表面缺陷、表面几何形状),直接影响机械零件的配合性质,表面的耐磨性、抗腐蚀性、疲劳强度、密封性、导热性及使用寿命。
[2]因此,表面粗糙度是评定机器和机械零件量的重要指标之一,是机械零件的生产、加工和验收过程中一项必不可少的质量标准。
1.1.2表面粗糙度产生原因在加工过程中,由于刀具与制件表面之间的摩擦、切削或压制时的塑性变形,以及工艺系统中高频振动等因素的作用,使被加工表面产生微观几何变形。
[3]41.2表面粗糙度国内外研究现状从近年来国内外发表的有关粗糙度方面的论文来看,数量成指数地增加.这表明表面粗糙度测量和表征技术的研究一直处于上升趋势,一方面是由于商用仪器(如:STM、AFM和光学扫描干涉仪等)的发展以及计算机运算能力、控制技术的提高;另一方面是由于尖端技术、国防工业和精密工程等对零件的表面质量提出了越来越高的要求。
[4]表面粗糙度的表征参数都是在某一法向截面所截得的轮廓线上进行评定,只反映高度和横向距离之间的关系,属于‘二维’评定.当表面粗糙度在一小面积区域内评定时,还有纵向距离关系,这就属于‘三维’评定.近年来研制了许多三维表面微观形貌测量仪,才使得在局部表面上三维评定表面粗糙度成为可行,而且国际上方兴未艾. [5]最近,国内外在表征和研究表面粗糙度等方面越来越多地使用分形几何理论这一有力的数学工具。
研究表明很多种机加工表面呈现出随机性、多尺度性和自仿射性,即具有分形的基本特征,因而使用分形几何来研究表面形貌将是合理地、有效地。
确定分形的重要参数有分形维数D和特征长度A,它们可以衡量机加工表面轮廓的不规则性,理论上不随取样长度变化和仪器分辨率变化,并能反映表面形貌本质的特征,能够提供传统的表面粗糙度评定参数(如Ra、Ry、Rz等)所不能提供的信息。
美国TopoMetrix公司生产的扫描探针显微镜(SPM)软件体系中,已将分形维数作为评价表面微观形貌的参数之一。
[6][7][8]随着超光滑表面的粗糙度数值接近纳米级甚至埃级,不同测量方法的测量结果不一致性对表面特征的评价影响越来越大。
为此,美国国家标准和技术研究院制作了一组尺寸范围从29nm一152um的标准台阶高度样块,其‘标准’值取决于本身的实际尺寸.另外还建立了一组高精度标准样块,其尺寸用三种不同的方法校准,如相移干涉显微镜、校准原子力显微镜(C一AFM)和高分辨力的触针式仪器。
如果用这些不同的方法测量台阶高度的精确值,能取得好的一致性,则样块台阶高度将作为精密校准的基准。
[9][10]1.3表面粗糙度研究的目的及意义随着现代化工业生产的不断发展,对产品的质量提出了越来越高的要求.如既要求产品具有长的和没有麻烦的使用寿命,又要利于能源的再利用和环境保护,保证产品的三个阶段.制造—使用—垃圾/再循环,协调发展.各制造商竞相生产具有优势性的零缺陷产品,以增强其市场的竞争能力,对零件表面的物理和几何性能提出了非常苛刻的要求.这就使仪器制造商生产性能更好、更全面,精度更高的检测设备。
在飞速发展的21世纪,信息、生物技术、能源、环境、先进5制造技术和国防的高速发展必然会对零件表面粗糙度提出更高的要求,元器件的智能化、小型化、高集成、高密度存储和超快传输等要求材料的尺寸越来越小。
零件表面粗糙度无疑是研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象。
[11]2表面粗糙度的影响因素分析2.1表面粗糙度的标准为了统一指标、统一方法和统一标准,各国都制定了相应的标准。
我国的表面粗糙度标准制定工作是从50年代开始的,经过几十年的研究发展,已由当初单纯解决图样标准的统一问题开始,逐步完善修订为现在的GB/T 1031《表面粗糙度参数及其数值》、GB/T 131《机械制图表面粗糙度符号、代号及其注法》、GB 3505《表面粗糙度术语表面及其参数》等系列标准,而成为我国重要的工业基础标准之一,并为其他产品标准及相关标准所引用。
GB/T 1031-1995(代替GB 1031-83)规定了表面粗糙度的参数和数值系列,GB/T 131-93(代替GB 131-83)又规定了图样上表面粗糙度的标注方法及代号的含义,只要正确使用这些标准,表面粗糙度要求在图样上是十分清楚的。
但是在其他有关标准及一些技术文件中需要对零件作出表面粗糙度要求时,由于标准和技术文件的编写特点,大多采用文字叙述等加以规定。
这些表述如果不正确,会给理解和执行标准带来麻烦,同时影响到标准自身的质量。
[12]目前我国评定表面粗糙度的参数,根据《GB/T1031-1995表面粗糙度参数及其数值》规定,表面粗糙度参数首先从三项高度参数—轮廓算术平均偏差Ra、微观不平度十点高度Rz和轮廓最大高度Ry中选取。
根据表面功能的需要,在高度参数不能满足要求的情况下,可选用轮廓微观不平度的平均间距Sm、轮廓的单峰平均间距S和轮廓支承长度率Tp。
对表面粗糙度有要求的表面须给出高度参数值和评定时的取样长度。
间距参数Sm、S和形状特性参数Tp一般不单独使用,常作为补充参数与高度参数共同控制零件的表面粗糙度。
2.2表面粗糙度的因素2.2.1 刀具方面(1)刀具几何参数刀具几何参数中对表面粗糙度影响最大的是刀尖圆弧半径、副偏角和修光刃。
刀尖圆弧半径对表面粗糙度有很大影响:半径增大时,残留面积减小,另一方面变形将增加。
由于前一种变形影响较大,所以当刀尖圆弧半径增大时,表面粗糙度将降低。
6因此在刚度允许的条件下.增大刀尖圆弧半径是降低表面粗糙度的好方法。
副偏角越小,表面粗糙度越低。
但减小副偏角容易引起振动,故减小副偏角,必须视机床系统的刚度而定。
当副偏角达到一定值时,再增大半径,也不会使表面粗糙度值增加。
采用一段长度稍大于进给量的修光刃是降低表面粗糙度的有效措施,利用增加修光刃来消除残留面积是实际加工工件中常常采用的方法。
前角对表面粗糙度没有直接的影响,对抑制积屑瘤和麟刺有利,可使刃口回弧半径减小,所以在中、低速范围内适当增大可有利于减小表面粗糙度。
(2)刀具的刃磨质量刀刃前、后刀面,切削刃本身的粗糙度值直接影响被加工面的粗糙度。
一般来说,刀刃前、后刀面的粗糙度比加工面要求的粗糙度小l一2级。
(3)刀具的材料刀具材料与被加工材料金属分子的亲和力大时,被加工材料容易与刀具而生成粘结积屑瘤和鳞刺,且被粘结在刀刃上的金属与被加工表面分离时还会形成附加的粗糙度。
因此凡是粘结情况严重或摩擦严重的,表面粗糙度都大;反之如果粘结和摩擦不严重的,表面粗糙度都小。
2.2.2切削条件(1)切削速度加工塑性材料时,切削速度对积屑瘤和麟刺的影响非常显若。
切削速度较低易产生幼刺,低速至中速易形成积屑瘤,粗糙度也大。
避开这个速度区域,表面粗糙度值会减小。
加工脆性材料时.因为一般不会形成积屑瘤和鳞刺,所以切削速度对表面粗糙度无影响。