Linux PCI桥驱动程序源码

Linux PCI桥驱动程序源码
Linux PCI桥驱动程序源码

* Copyright (c) 2001 Red Hat, Inc. All rights reserved.

*

* This software may be freely redistributed under the terms

* of the GNU public license.

*

* You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software

* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

*

* Author: Arjan van de Ven

*

*/

/*

* Generic PCI driver for PCI bridges for powermanagement purposes *

*/

#include

#include

#include

#include

#include

static struct pci_device_id bridge_pci_table[] __devinitdata = {

{/* handle all PCI bridges */

class: ((PCI_CLASS_BRIDGE_PCI << 8) | 0x00),

class_mask: ~0,

vendor: PCI_ANY_ID,

device: PCI_ANY_ID,

subvendor: PCI_ANY_ID,

subdevice: PCI_ANY_ID,

},

,

};

static int bridge_probe(struct pci_dev *pdev, const struct pci_device_id *id); static int pci_bridge_save_state_bus(struct pci_bus *bus, int force);

int pci_generic_resume_compare(struct pci_dev *pdev);

int pci_bridge_force_restore = 0;

static int __init bridge_setup(char *str)

{

if (!strcmp(str,"force"))

pci_bridge_force_restore = 1;

else if (!strcmp(str,"noforce"))

pci_bridge_force_restore = 0;

return 0;

}

__setup("resume=",bridge_setup);

static int pci_bridge_save_state_bus(struct pci_bus *bus, int force)

{

struct list_head *list;

int error = 0;

list_for_each(list, &bus->children) {

error = pci_bridge_save_state_bus(pci_bus_b(list),force);

if (error) return error;

}

list_for_each(list, &bus->devices) {

pci_generic_suspend_save(pci_dev_b(list),0);

}

return 0;

}

static int pci_bridge_restore_state_bus(struct pci_bus *bus, int force) {

struct list_head *list;

int error = 0;

static int printed_warning=0;

list_for_each(list, &bus->children) {

error = pci_bridge_restore_state_bus(pci_bus_b(list),force);

if (error) return error;

}

list_for_each(list, &bus->devices) {

if (force)

pci_generic_resume_restore(pci_dev_b(list));

else {

error = pci_generic_resume_compare(pci_dev_b(list));

if (error && !printed_warning++) {

printk(KERN_WARNING "resume warning: bios doesn't restore PCI state properlyn");

printk(KERN_WARNING "resume warning: if resume failed, try booting with resume=forcen");

}

if (error)

return error;

}

}

return 0;

}

static int bridge_suspend(struct pci_dev *dev, u32 force)

{

pci_generic_suspend_save(dev,force);

if (dev->subordinate)

pci_bridge_save_state_bus(dev->subordinate,force);

return 0;

}

static int bridge_resume(struct pci_dev *dev)

{

pci_generic_resume_restore(dev);

if (dev->subordinate)

pci_bridge_restore_state_bus(dev->subordinate,pci_bridge_force_restore); return 0;

}

MODULE_DEVICE_TABLE(pci, bridge_pci_table);

static struct pci_driver bridge_ops = {

name: "PCI Bridge",

id_table: bridge_pci_table,

probe: bridge_probe,

suspend: bridge_suspend,

resume: bridge_resume

};

static int __devinit bridge_probe(struct pci_dev *pdev, const struct

pci_device_id *id)

{

return 0;

}

static int __init bridge_init(void)

{

pci_register_driver(&bridge_ops);

return 0;

}

static void __exit bridge_exit(void)

{

pci_unregister_driver(&bridge_ops);

}

module_init(bridge_init)

module_exit(bridge_exit)

Linux设备驱动程序举例

Linux设备驱动程序设计实例2007-03-03 23:09 Linux系统中,设备驱动程序是操作系统内核的重要组成部分,在与硬件设备之间 建立了标准的抽象接口。通过这个接口,用户可以像处理普通文件一样,对硬件设 备进行打开(open)、关闭(close)、读写(read/write)等操作。通过分析和设计设 备驱动程序,可以深入理解Linux系统和进行系统开发。本文通过一个简单的例子 来说明设备驱动程序的设计。 1、程序清单 //MyDev.c 2000年2月7日编写 #ifndef __KERNEL__ #define __KERNEL__//按内核模块编译 #endif #ifndef MODULE #define MODULE//设备驱动程序模块编译 #endif #define DEVICE_NAME "MyDev" #define OPENSPK 1 #define CLOSESPK 2 //必要的头文件 #include //同kernel.h,最基本的内核模块头文件 #include //同module.h,最基本的内核模块头文件 #include //这里包含了进行正确性检查的宏 #include //文件系统所必需的头文件 #include //这里包含了内核空间与用户空间进行数据交换时的函数宏 #include //I/O访问 int my_major=0; //主设备号 static int Device_Open=0; static char Message[]="This is from device driver"; char *Message_Ptr; int my_open(struct inode *inode, struct file *file) {//每当应用程序用open打开设备时,此函数被调用 printk ("\ndevice_open(%p,%p)\n", inode, file); if (Device_Open) return -EBUSY;//同时只能由一个应用程序打开 Device_Open++; MOD_INC_USE_COUNT;//设备打开期间禁止卸载 return 0; } static void my_release(struct inode *inode, struct file *file)

仓库管理系统代码

系统主界面(frmMain.cs) using System; using System.Collections.Generic; using https://www.360docs.net/doc/907925339.html,ponentModel; using System.Data; using System.Drawing; using System.Text; using System.Windows.Forms; using System.Diagnostics; namespace warehouse { public partial class frmMain : Form { public frmMain() { InitializeComponent(); } private void frmMain_Load(object sender, EventArgs e) { tsslUser.Text = "操作用户权限:" + frmLogin.M_str_right.ToString().Trim(); tsslDate.Text = DateTime.Today.ToLongDateString(); tsslTime.Text = "登录系统时间:" + DateTime.Now.ToShortTimeString(); if (frmLogin.M_str_right.ToString().Trim() == "普通用户") { 入库管理ToolStripMenuItem.Enabled = false; 出库管理ToolStripMenuItem.Enabled = false; 借货还货ToolStripMenuItem.Enabled = false; 供货商设置ToolStripMenuItem.Enabled = false; 货物档案设置ToolStripMenuItem.Enabled = false; 仓库设置ToolStripMenuItem.Enabled = false; 权限设置ToolStripMenuItem.Enabled = false; 用户管理ToolStripMenuItem.Enabled = false; btnIS.Enabled = false; btnOS.Enabled = false; btnBR.Enabled = false; btnPI.Enabled = false; btnGI.Enabled = false; btnSI.Enabled = false; btnRI.Enabled = false; btnUM.Enabled = false; } } private void btnIS_Click(object sender, EventArgs e)//入库管理

一个简单的演示用的Linux字符设备驱动程序.

实现如下的功能: --字符设备驱动程序的结构及驱动程序需要实现的系统调用 --可以使用cat命令或者自编的readtest命令读出"设备"里的内容 --以8139网卡为例,演示了I/O端口和I/O内存的使用 本文中的大部分内容在Linux Device Driver这本书中都可以找到, 这本书是Linux驱动开发者的唯一圣经。 ================================================== ===== 先来看看整个驱动程序的入口,是char8139_init(这个函数 如果不指定MODULE_LICENSE("GPL", 在模块插入内核的 时候会出错,因为将非"GPL"的模块插入内核就沾污了内核的 "GPL"属性。 module_init(char8139_init; module_exit(char8139_exit; MODULE_LICENSE("GPL"; MODULE_AUTHOR("ypixunil"; MODULE_DESCRIPTION("Wierd char device driver for Realtek 8139 NIC"; 接着往下看char8139_init( static int __init char8139_init(void {

int result; PDBG("hello. init.\n"; /* register our char device */ result=register_chrdev(char8139_major, "char8139", &char8139_fops; if(result<0 { PDBG("Cannot allocate major device number!\n"; return result; } /* register_chrdev( will assign a major device number and return if it called * with "major" parameter set to 0 */ if(char8139_major == 0 char8139_major=result; /* allocate some kernel memory we need */ buffer=(unsigned char*(kmalloc(CHAR8139_BUFFER_SIZE, GFP_KERNEL; if(!buffer { PDBG("Cannot allocate memory!\n"; result= -ENOMEM;

仓库管理系统VBAccess源代码

仓库管理系统 V B A c c e s s源代码 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

仓库管理系统 项目的建立 这是本人利用闲暇之余在上制作的一个简陋的类库管系统,现图文结合的方式一步一步展现制作过程。由于本人是个初学者,里面存在很多不足之处望得到高手们的指导。此文可作供初学者们学习交流。作者联系方式:E-mail 最终运行效果 打开软件出现如下登录界面 输入系统预设用户名及密码( 1 1 )单击“登录”或单击“新用户”添加新用户进入如下主界面:

建立工程 1、创建标准EXE 2、按“打开”

3、添加MDI窗体——打开 4、编辑菜单 在空白处右击——点击“菜单编辑器”

在“标题”里输入“系统”,在“名称”里输入“Sys”(注意此处不能为汉字) 点击“下一个”再点击“” “确定”退到MDI界面点击“系统”——“退出”如下,然后编写代码。 代码如下: Private Sub Exit_Click() End End Sub

数据库的建立 中可以创建Access数据库。如下建立一个“用户表”的数据库,用来存放用户信息及一些出入库管理信息。如下图单击“外接程序” 再单击“可视化数据管理器”出现如图 点击“文件”——“新建”——“Microsoft Access”——“Version MDB”输入数据库名,“保存”出现如下图 在数据窗口中右击——“新建表”,最终如下 往数据表里添加数据在这里就不罗嗦了,请查阅相关书籍。 登录界面窗口的建立 最终界面如下:

Linux驱动程序工作原理简介

Linux驱动程序工作原理简介 一、linux驱动程序的数据结构 (1) 二、设备节点如何产生? (2) 三、应用程序是如何访问设备驱动程序的? (2) 四、为什么要有设备文件系统? (3) 五、设备文件系统如何实现? (4) 六、如何使用设备文件系统? (4) 七、具体设备驱动程序分析 (5) 1、驱动程序初始化时,要注册设备节点,创建子设备文件 (5) 2、驱动程序卸载时要注销设备节点,删除设备文件 (7) 参考书目 (8) 一、linux驱动程序的数据结构 设备驱动程序实质上是提供一组供应用程序操作设备的接口函数。 各种设备由于功能不同,驱动程序提供的函数接口也不相同,但linux为了能够统一管理,规定了linux下设备驱动程序必须使用统一的接口函数file_operations 。 所以,一种设备的驱动程序主要内容就是提供这样的一组file_operations 接口函数。 那么,linux是如何管理种类繁多的设备驱动程序呢? linux下设备大体分为块设备和字符设备两类。 内核中用2个全局数组存放这2类驱动程序。 #define MAX_CHRDEV 255 #define MAX_BLKDEV 255 struct device_struct { const char * name; struct file_operations * fops; }; static struct device_struct chrdevs[MAX_CHRDEV]; static struct { const char *name; struct block_device_operations *bdops; } blkdevs[MAX_BLKDEV]; //此处说明一下,struct block_device_operations是块设备驱动程序内部的接口函数,上层文件系统还是通过struct file_operations访问的。

仓库管理系统源代码

仓库管理系统源代码 #include #include #include #include #include struct cangku { int num; char name[20]; char introdution[50]; float square; }; typedef struct cangku Cangku; int Input(Cangku t[]); void List(Cangku t[],int n); void SearchOnName(Cangku t[],int n); int DeleteRecord(Cangku t[],int n); int AlterRecord(Cangku t[],int n); int AddRecord(Cangku t[],int n); void SortOnName(Cangku t[],int n); void SortOnSquare(Cangku t[],int n); void SaveRecord(Cangku t[],int n); int LoadRecord(Cangku t[]); int LoadRecord1(Cangku t[]); void Save(Cangku t[],int n); void Load(Cangku t[],int n); void Load1(Cangku t[]); int Menu_select(); void main()

{ Cangku ck[50]; int i,l,length,w=1; int q[4]={5,2,1,0}; system("cls"); printf("请输入第1个密码:\n"); for (i=0;i<4;i++) { scanf("%d",&l); system("cls"); if(l==q[i]) printf("正确,继续输入第%d个密码:.\n",i+2); else { w=0; printf ("输入错误!\n"); break; } } while(w) { switch(Menu_select()) { case 1: length=Input(ck);

wdm驱动开发之路

WDM驱动开发之路 写在前面:在专栏的前几期中,我们一起初步学习了vxd的开发技术。Vxd技术是很深奥的,不是一篇两篇文章能讲清楚,但你已经入了门,剩下的就要看你的修行了。多看书,多泡论坛(当然是上咱们的驱动开发网论坛了:->),多写程序…我的手不够用了。功到自然成嘛。不过话又说回来,vxd只是权宜之计,WDM才符合当今的潮流(程序员都是时髦人士,君不见先是VB、VC然后是asp、JSP、PHP,数也数不过来呀),Win9x寿终正寝时也就是vxd的末日,你不想随它而去吧(开个玩笑),那就随我来。 按笔者的想法,这篇文章写成连载形式,一次讲一个主题,并且必要时带着例子,让大伙step by step地把WDM驱动弄个透底,不想让大家觉得稀里糊涂,也不想让大家觉得白买杂志了。 今天我们一起讨论第一部分,了解篇。 (一)了解篇 WDM模型(Windows Driver Model)是微软公司为当前主流操作系统Windows98和Windows 2000的驱动程序设计的一种构架。它和传统的win3.x和win95使用的vxd的驱动是完全不同的体系结构。不过对于最终用户来说,WDM驱动程序在Windows98和Windows2000下的表现很相似。作为驱动开发人员来说,它在两者中有很多的不同。并且Windows98中的WDM只能算是Windowss2000中的WDM的一个了集。在Windows98中有一些驱动程序只能使用VXD来实现,如串行通讯驱动等。 要写驱动程序,首先要了解操作系统的结构。在WDM体系中,windows2000操作系统中是最标准的实现方式,Windows98则是部分兼容WDM结构。照微软的说法,Windows98和Windows2000 X86(Intel 架构)版本实现二进制码兼容(参见98DDK),Windows2000 x86版本与其它CPU平台版本实现源码级兼容(因为Windows 2000是基本NT相似的结构,最底层是硬件抽象层HAL,所有我们相信它们之间能源码级兼容)。但实际上,Windows2000的WDM实现中有很多例程在Windows98中没有实现,一旦试图加载这样的WDM驱动程序到Windows98中,则不能正常加载,当然我们也有办法实现它,那就是利用“桩”技术。具体可参见Walter Oney写的《Programming the Microsoft Windows Driver Model》一书。我们首先来看看Windows 2000的系统结构,然后再来看看Windows 98的。 图一是Windows 2000的系统结构图。从图中我们可以看出:整个系统被分为两个态,用户态和核心态。 从图中可以明显看出I/O操作最后是怎样作用到硬件上的。用户态应用程序对Windows 子系统进行win32 API调用,这个调用由系统服务接口作用到I/O管理器(严格地说,在Windows 系统中不存在I/O管理器这样的独立模块,这个只是为了方便叙述而将各种核心功能调用的集合称作I/O管理器,业界人士都这样称呼这个部分),I/O管理器进行必要的参数匹配和操作安全性检查,然后由这个请求构造出合适的IRP(IO Request Package,I/O请求包),并把此IRP传给驱动程序。简单情况下,驱动程序直接执行这个请求包,并与硬件打交道,从而完成I/O请求工作,最后由I/O管理器将执行结果返回给用户态程序。但在WDM体系结构中,大部分实行分层处理。即在图中“设备驱动“这部分,分成了若干层,典型地分成高层驱动程序、中间层驱动程序、底层驱动程序。每层驱动再把I/O请求划分成更简单的请求,以传给更下层的驱动执行。以文件系统驱动为例,最高层驱动只知道文件如何在磁盘上表示,但不知到怎样得到数据。最低层驱动程序只知道怎样从磁盘取出512B为单的数据块,但不知道文件怎样表示。举个更具体的生活例子。主人(最高层驱动)知道(并且需要)笔计本电脑,但不知道具体放在什么位置;而仆人(最底层驱动)却知道它放在具体什么地方,但

基于linux的led驱动程序实现

基于linux的led驱动程序实现 一. 博创开发平台硬件LED的实现 博创开发平台设置了3个GPIO控制的LED和一个可直接产生外部硬件中断的按键,LED分别使用了S3C2410的GPC5,GPC6,GPC7三个GPIO,按键接到INT5中断。下面对S3C2410 GPIO的各个寄存器作出说明,用GPIO控制的LED就是通过操作GPIO的各个寄存器进行配置和操作的。S3C2410包含GPA 、GPB 、……、GPH 八个I/O端口。它们的寄存器是相似的:GPxCON 用于设置端口功能(00 表示输入、01表示输出、10 表示特殊功能、11 保留不用),GPxDAT 用于读/写数据,GPxUP 用于决定是否使用内部上拉电阻(某位为0 时,相应引脚无内部上拉;为1时,相应引脚使用内部上拉)。这里要稍微注意一点的地方是PORTA和其他几组端口的使用不太一样,这里不讨论A口,B到H组口的使用完全相同。以下是S3C2410手册上的数据[13]: 图1.1 S3C2410端口 GPC口有16个IO口,查datasheet《S3C2410》所用的地址为: 图1.2 C组GPIO的地址 即GPCCON 地址为0x56000020,GPCDAT地址为0x56000024,各位的设置具体见下图,则对应的GPCCON寄存器的位为:

图1.3 GPCCON寄存器相应的位 这里用到了5,6,7三个口,CON寄存器要完成对对应口的设置工作,将相应的口设置为输出状态,其他的口不用考虑,设置为输出的话就是0x15<<10,这样3个IO口就设置为了输出。下面就可以通过向DATA口写入低电平来点亮LED,GPCDAT的各位分布如下,每一个bit对应一个口。 图1.4 GPCDAT的位分布 GPCDAT有16位,我们这里要用到的就是5,6,7三位即将这3位设置为低电平点亮LED。具体使用情况见驱动的实现。 这三个LED的硬件原理图如下: 图1.5 GPIO控制的LED硬件原理图 二.通过GPIO控制的LED驱动程序 本驱动中没有用到内核提供的write_gpio宏,对硬件地址的操作完全自己实现,可分为以下几部分: ①模块的初始化和退出: int led_init(void)

Linux设备驱动程序学习(18)-USB 驱动程序(三)

Linux设备驱动程序学习(18)-USB 驱动程序(三) (2009-07-14 11:45) 分类:Linux设备驱动程序 USB urb (USB request block) 内核使用2.6.29.4 USB 设备驱动代码通过urb和所有的 USB 设备通讯。urb用 struct urb 结构描述(include/linux/usb.h )。 urb以一种异步的方式同一个特定USB设备的特定端点发送或接受数据。一个USB 设备驱动可根据驱动的需要,分配多个 urb 给一个端点或重用单个 urb 给多个不同的端点。设备中的每个端点都处理一个 urb 队列, 所以多个 urb 可在队列清空之前被发送到相同的端点。 一个 urb 的典型生命循环如下: (1)被创建; (2)被分配给一个特定 USB 设备的特定端点; (3)被提交给 USB 核心; (4)被 USB 核心提交给特定设备的特定 USB 主机控制器驱动; (5)被 USB 主机控制器驱动处理, 并传送到设备; (6)以上操作完成后,USB主机控制器驱动通知 USB 设备驱动。 urb 也可被提交它的驱动在任何时间取消;如果设备被移除,urb 可以被USB 核心取消。urb 被动态创建并包含一个内部引用计数,使它们可以在最后一个用户释放它们时被自动释放。 struct urb

struct list_head urb_list;/* list head for use by the urb's * current owner */ struct list_head anchor_list;/* the URB may be anchored */ struct usb_anchor *anchor; struct usb_device *dev;/* 指向这个 urb 要发送的目标 struct usb_device 的指针,这个变量必须在这个 urb 被发送到 USB 核心之前被USB 驱动初始化.*/ struct usb_host_endpoint *ep;/* (internal) pointer to endpoint */ unsigned int pipe;/* 这个 urb 所要发送到的特定struct usb_device 的端点消息,这个变量必须在这个 urb 被发送到 USB 核心之前被 USB 驱动初始化.必须由下面的函数生成*/ int status;/*当 urb开始由 USB 核心处理或处理结束, 这个变量被设置为 urb 的当前状态. USB 驱动可安全访问这个变量的唯一时间是在 urb 结束处理例程函数中. 这个限制是为防止竞态. 对于等时 urb, 在这个变量中成功值(0)只表示这个 urb 是否已被去链. 为获得等时 urb 的详细状态, 应当检查 iso_frame_desc 变量. */ unsigned int transfer_flags;/* 传输设置*/ void*transfer_buffer;/* 指向用于发送数据到设备(OUT urb)或者从设备接收数据(IN urb)的缓冲区指针。为了主机控制器驱动正确访问这个缓冲, 它必须使用 kmalloc 调用来创建, 不是在堆栈或者静态内存中。对控制端点, 这个缓冲区用于数据中转*/ dma_addr_t transfer_dma;/* 用于以 DMA 方式传送数据到 USB 设备的缓冲区*/ int transfer_buffer_length;/* transfer_buffer 或者 transfer_dma 变量指向的缓冲区大小。如果这是 0, 传送缓冲没有被 USB 核心所使用。对于一个 OUT 端点, 如果这个端点大小比这个变量指定的值小, 对这个USB 设备的传输将被分成更小的块,以正确地传送数据。这种大的传送以连续的 USB 帧进行。在一个 urb 中提交一个大块数据, 并且使 USB 主机控制器去划分为更小的块, 比以连续地顺序发送小缓冲的速度快得多*/

gitlab使用指南

gitlab使用指南 1 gitlab介绍 GitLab 是一个用于仓库管理系统的开源项目,使用Git作为代码管理工具,并在此基础上搭建起来的web服务。 GitLab是基于网络的Git仓库管理工具,且具有wiki和issue跟踪功能。使用Git作为代码管理工具,并在此基础上搭建起来的web服务。 GitLab,它使用Ruby语言写成。后来,一些部分用Go语言重写。 2应用特点 1.Web框架使用RubyonRails。 2.基于MIT代码发布协议。 3.需要gitolite协同工作 3优点 GitLab为整个DevOps生命周期提供解决方案 1.管理 统计和分析功能。 GitLab提供统计数据和洞察力,以帮助提高GitLab在组织中的价值。 2.计划 项目计划和管理功能。 使用GitLab灵活的项目管理工具可视化,确定优先级,协调和跟踪进度。 3.创造 源代码以及数据创建和管理功能。 将源代码整合到一个易于管理和控制的分布式版本控制系统中,而不会影响工作流程。GitLab的Git存储库附带分支工具和访问控制,可为项目和代码的协作提供可扩展的单一事实来源。 4.校验 测试,代码质量和持续集成功能。 内置的静态代码分析,代码测试,代码质量,依赖项检查和Review Apps可以更快地发现错

误,提高安全性并缩短反馈周期。自定义您的批准工作流控件,自动测试代码质量,并为每个代码更改启动过渡环境。 GitLab持续集成是下一代测试系统,可以扩展以更快地运行测试。 5.包 Docker容器注册表。 GitLab软件包允许组织将GitLab用作各种常见软件包管理器的专用存储库。用户能够构建和发布程序包,这些程序包可以很容易地作为下游项目中的依赖项使用。 6.发布 应用程序发布和交付功能。 花更少的时间配置工具,而花更多的时间创建工具。无论要部署到一台服务器还是数千台服务器,都可以通过GitLab内置的持续交付和部署来自信,安全地构建,测试和发布代码。 7.配置 应用程序和基础结构配置工具。 使用GitLab Auto DevOps自动执行从构建到部署和监视的整个工作流程。最佳实践模板可帮助您从最小到零的配置开始。然后自定义所有内容,从构建包到CI / CD。 8.监控 应用程序监视和指标功能。 确保应用程序始终响应并可用。 GitLab会收集并显示已部署应用程序的性能指标,因此可以立即知道代码更改如何影响生产环境。 9.安全 安全功能功能。 检查应用程序是否存在安全漏洞,这些漏洞可能导致未经授权的访问,数据泄漏和服务拒绝。GitLab将对应用程序代码执行静态和动态测试,查找已知缺陷并在合并请求中报告这些缺陷,以便可以在合并之前修复它们。安全团队可以使用仪表板来获得项目和组的高级视图,并在需要时启动补救过程。 4运行gitlab gitlab-ctl start

从零开始搭建Linux驱动开发环境

参考: 韦东山视频第10课第一节内核启动流程分析之编译体验 第11课第三节构建根文件系统之busybox 第11课第四节构建根文件系统之构建根文件系统韦东山书籍《嵌入式linux应用开发完全手册》 其他《linux设备驱动程序》第三版 平台: JZ2440、mini2440或TQ2440 交叉网线和miniUSB PC机(windows系统和Vmware下的ubuntu12.04) 一、交叉编译环境的选型 具体的安装交叉编译工具,网上很多资料都有,我的那篇《arm-linux- gcc交叉环境相关知识》也有介绍,这里我只是想提示大家:构建跟文件系统中所用到的lib库一定要是本系统Ubuntu中的交叉编译环境arm-linux- gcc中的。即如果电脑ubuntu中的交叉编译环境为arm-linux-

二、主机、开发板和虚拟机要三者互通 w IP v2.0》一文中有详细的操作步骤,不再赘述。 linux 2.6.22.6_jz2440.patch组合而来,具体操作: 1. 解压缩内核和其补丁包 tar xjvf linux-2.6.22.6.tar.bz2 # 解压内核 tar xjvf linux-2.6.22.6_jz2440.tar.bz2 # 解压补丁

cd linux_2.6.22.6 patch –p1 < ../linux-2.6.22.6_jz2440.patch 3. 配置 在内核目录下执行make 2410_defconfig生成配置菜单,至于怎么配置,《嵌入式linux应用开发完全手册》有详细介绍。 4. 生成uImage make uImage 四、移植busybox 在我们的根文件系统中的/bin和/sbin目录下有各种命令的应用程序,而这些程序在嵌入式系统中都是通过busybox来构建的,每一个命令实际上都是一个指向bu sybox的链接,busybox通过传入的参数来决定进行何种命令操作。 1)配置busybox 解压busybox-1.7.0,然后进入该目录,使用make menuconfig进行配置。这里我们这配置两项 一是在编译选项选择动态库编译,当然你也可以选择静态,不过那样构建的根文件系统会比动态编译的的大。 ->Busybox Settings ->Build Options

USB键盘驱动程序

/* * $Id: usbkbd.c,v 1.27 2001/12/27 10:37:41 vojtech Exp $ * * Copyright (c) 1999-2001 Vojtech Pavlik * * USB HIDBP Keyboard support */ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Should you need to contact me, the author, you can do so either by * e-mail - mail your message to <>, or by paper mail: * Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic */ #include #include #include #include #include #include #include /* * Version Information */ #define DRIVER_VERSION "" #define DRIVER_AUTHOR "Vojtech Pavlik <>" #define DRIVER_DESC "USB HID Boot Protocol keyboard driver" #define DRIVER_LICENSE "GPL"

行为驱动开发

行为驱动开发 行为驱动开发(简称BDD)是测试驱动开发的升级版。它是一套软件工程实践方法,能帮助研发团队更快地构建和交付更有价值和更高质量的软件产品。采用BDD思想编写的测试读起来更像规格说明书而不是单元测试,所以它是使用测试作为表达和验证行为的一种手段。基于这个特性,BDD也非常适合应用在需求分析中。 一、行为驱动开发的原则 1.聚焦交付业务价值。使用验收标准作为目标,帮助业务实现更实际的可交付的功能。 2.团队共同确定交付标准。业务分析人员,开发人员,测试人员与最终用户一起定义和指定功能。 3.拥抱变化。项目开始时不锁定需求,而是假设需求,从用户那里得到早期的反馈,对需求的理解将在项目的整个生命周期中演进和变更。 4.不仅仅编写自动化测试,而是编写可执行规范和底层规范。团队将验收标准转换为自动化的验收测试,更准确地说是转换为可执行规范。在编写任何代码之前,开发人员将考虑代码实际上应该做什么,并将其表示为底层的可执行规范。可执行规范是一种自动化测试,它演示和验证应用程序如何交付特定的业务需求。自动化测试作为构建过程的一部分运行,并在对应用程序进行更改时运行,进行验收测试和回归测试。 5.交付活文档,并使用活文档来支持后续维护工作。在项目结束后持续维护项目可执行规范。 二、行为驱动开发的优势 1.专注业务目标,避免工程师把工作量浪费在不提供业务价值的功能上,能够降低成本,减少浪费。

2.完整的可执行规范,可充当开发人员的辅助技术文档,更容易理解现有的代码库并进行更改。 3.全面的自动化验收测试和回归测试,不仅可以提升执行效率,也能降低手工测试的出错率,使得迭代速度更快更可靠。 三、行为驱动开发的缺陷 1. 需要多个角色高度参与和协作,涉众如果不愿意或不能参与对话和协作,或者等到项目结束后才给出反馈,就很难充分利用BDD的优点。 2.比较适用于敏捷开发,但不太适用于瀑布式开发。 3.对参与角色能力要求很高,尤其是测试团队,不仅需要精通业务,对业务目标清晰,而且对测试技术能力要求更高,如果编写的自动化测试很烂,会导致更高的测试维护成本。

linux 设备输入子系统---源代码示例。自动捕获键盘鼠标等外设消息

Linux input 子系统详解与代码示例 李邦柱于杭州2014/01/09 Email:helpylee@https://www.360docs.net/doc/907925339.html, 由于linux的驱动模型增加了input层,导致几乎所有的底层驱动都把数据封装在event里上报给input子系统。由此看来,这种改变让kernel 更具有模块化,各个模块的耦合度更低了。下面我们一起来研究input 层^_^ 1.从用户层的角度看input(event事件) 了解linux的人一定会对/dev,/ sys, /proc这几个目录有所印象,这是从内核导出到用户层的接口(从这里几乎可以观览内核)。kernel为我们导出了input在用户态的接口,就是/dev/input/下的接口,所以我们只关注这个目录下的event*(event0/event1/……)字符设备。 那么这些event*是干什么用的?简单来说就是我们对计算机的输入(包括敲击键盘,移动鼠标等等操作)经过内核(底层驱动,input)处理最后就上报到这些event*里面了。 而这里event0,event1,..就是用来区分各个外设的,可以通过命令来查看外设具体和哪个event相关联:这个命令是:cat /proc/bus/input/devices 所以我们用此命令在linux系统查看外设信息。 2.在linux/input.h中有这些数据的结构: structinput_event { structtimeval time; //事件发生的时间 __u16 type; //事件类类型:按键和移动鼠标就是不同类型 __u16 code; __s32 value; //事件值:按键a和按键b就对应不同值 }; code: 事件的代码.如果事件的类型代码是EV_KEY,该代码code为设备键盘代码.代码植0~127为键盘上的按键代码,0x110~0x116 为鼠标上按键代码,其中0x110(BTN_ LEFT)为鼠标左键,0x111(BTN_RIGHT)为鼠标右键,0x112(BTN_ MIDDLE)为鼠标中键.其它代码含义请参

Linux设备驱动程序学习(20)-内存映射和DMA-基本概念

Linux设备驱动程序学习(20)-内存映射和DMA-基本概念 (2011-09-25 15:47) 标签: 虚拟内存设备驱动程序Linux技术分类:Linux设备驱动程序 这部分主要研究 Linux 内存管理的基础知识, 重点在于对设备驱动有用的技术. 因为许多驱动编程需要一些对于虚拟内存(VM)子系统原理的理解。 而这些知识主要分为三个部分: 1、 mmap系统调用的实现原理:它允许设备内存直接映射到一个用户进程地址 空间. 这样做对一些设备来说可显著地提高性能. 2、与mmap的功能相反的应用原理:内核态代码如何跨过边界直接存取用户空间的内存页. 虽然较少驱动需要这个能力. 但是了解如何映射用户空间内存到内 核(使用 get_user_pages)会有用. 3、直接内存存取( DMA ) I/O 操作, 它提供给外设对系统内存的直接存取. 但所有这些技术需要理解 Linux 内存管理的基本原理, 因此我将先学习VM子 系统的基本原理. 一、Linux的内存管理 这里重点是 Linux 内存管理实现的主要特点,而不是描述操作系统的内存管理理论。Linux虚拟内存管理非常的复杂,要写可以写一本书:《深入理解Linux 虚拟内存管理》。学习驱动无须如此深入, 但是对它的工作原理的基本了解是必要的. 解了必要的背景知识后,才可以学习内核管理内存的数据结构. Linux是一个虚拟内存系统(但是在没有MMU的CPU中跑的ucLinux除外), 意味着在内核启动了MMU 之后所有使用的地址不直接对应于硬件使用的物理地址,这些地址(称之为虚拟地址)都经过了MMU转换为物理地址之后再从CPU的内存总线中发出,读取/写入数据. 这样 VM 就引入了一个间接层, 它是许多操作成为可能: 1、系统中运行的程序可以分配远多于物理内存的内存空间,即便单个进程都可拥有一个大于系统的物理内存的虚拟地址空间. 2、虚拟内存也允许程序对进程的地址空间运用多种技巧, 包括映射程序的内存到设备内存.等等~~~ 1、地址类型 Linux 系统处理几种类型的地址, 每个有它自己的含义: 用户虚拟地址:User virtual addresses,用户程序见到的常规地址. 用户地址在长度上是 32 位或者 64 位, 依赖底层的硬件结构, 并且每个进程有它自己 的虚拟地址空间.

仓库管理系统(VB+Access+源代码)

精心整理 仓库管理系统 项目的建立 这是本人利用闲暇之余在VB6.0上制作的一个简陋的类库管系统,现图文结合的方式一步一步展现制作过程。由于本人是个初学者,里面存在很多不足之处望得到高手们的指导。此文可作供初学者们学习交流。作者联系方式:E-mail 最终运行效果 打开软件出现如下登录界面 输入系统预设用户名及密码(1 1)单击“登录”或单击“新用户”添加新用户进入如下主界面: 建立工程 1、创建标准EXE 2、按“打开” 3、添加MDI窗体——打开 4、编辑菜单 在空白处右击——点击“菜单编辑器” 在“标题”里输入“系统”,在“名称”里输入“Sys”(注意此处不能为汉字)点击“下一个”再点击“” “确定”退到MDI界面点击“系统”——“退出”如下,然后编写代码。 代码如下: PrivateSubExit_Click() End EndSub 数据库的建立 VB6.0中可以创建Access数据库。如下建立一个“用户表”的数据库,用来存放用户信息及一些出入库管理信息。如下图单击“外接程序” 再单击“可视化数据管理器”出现如图 点击“文件”——“新建”——“MicrosoftAccess”——“Version2.0MDB”输入数据库名,“保存”出现如下图在数据窗口中右击——“新建表”,最终如下 往数据表里添加数据在这里就不罗嗦了,请查阅相关书籍。 精心整理

精心整理 登录界面窗口的建立 最终界面如下: 1、Adodc1的添加过程为:单击“工程”——“部件”出现下图所示,选择“控件”下的“MicrosoftADODataControl6.0(OLEDB)” 单击“确定”在工具栏中会出现“”图标,单击它并拖动到相应位置即可。其它元件不在一一 说明。 2、本窗体代码如下: PrivateSubCommand1_Click() ' “登录”、“确定”按钮 IfCommand1.Caption=" 确定"AndCommand2.Caption=" 取消"Then ' 如果为“确定” 则添加新用户 IfText1.Text=""Then ' 提示用户输入用户名 MsgBox" 请输入用户名!",," 登录信息提示:" ExitSub Else ' DimusenameAsString ' 检测用户名是否已经存在 DimstrSAsString usename=Trim(Text1.Text) strS="select*from 用户登录信息表where 用户名='"&usename&"'" https://www.360docs.net/doc/907925339.html,mandType=adCmdText Adodc1.RecordSource=strS Adodc1.Refresh MsgBox" 您输入的用户已存在 !",," 登录提示信息:" Text1.Text="" Text2.Text="" Text3.Text="" Text1.SetFocus ExitSub EndIf EndIf IfText2.Text=""Then ' 提示用户密码不能为空 MsgBox" 密码不能为空!",," 登录提示信息:" Text2.SetFocus ExitSub EndIf IfText3.Text=""Then MsgBox" 请再次输入密码!",," 登录提示信息:" Text3.SetFocus ExitSub EndIf

相关文档
最新文档