高效毛细管电泳的发展及应用
毛细管等速电泳

将毛细管等速电泳应用于食品安全检测,如食品添加剂、农药残 留和毒素检测等的分离机制,以提高毛细管等速电泳的分离效果和效 率。
联用技术
将毛细管等速电泳与其他分析技术联用,如质谱、光谱等,以提高 检测灵敏度和准确性。
微型化与便携化
研究开发微型化和便携化的毛细管等速电泳设备,以满足现场快速检 测的需求。
毛细管等速电泳
目录 CONTENT
• 毛细管等速电泳简介 • 毛细管等速电泳实验技术 • 毛细管等速电泳在生物医学中的
应用 • 毛细管等速电泳的优缺点 • 毛细管等速电泳的未来发展
01
毛细管等速电泳简介
定义与原理
定义
毛细管等速电泳是一种利用电场 对带电粒子进行分离的电泳技术 。
原理
在毛细管中施加直流电场,带电 粒子在电场的作用下以不同的速 度进行迁移,通过不同时间到达 检测器,从而实现分离。
标准品
用于校准和验证实验结果。
实验步骤
准备毛细管和电解质溶液。
01
打开电泳仪电源,设置实验参数,如电压 、电流和温度等。
03
02
将毛细管连接到电泳仪上,并确保密封良好 。
04
注入电解质溶液和标准品,开始电泳分离 。
通过检测器检测带电分子,记录数据。
05
06
分析数据,得出结论。
03
毛细管等速电泳在生物医 学中的应用
高效进样技术
优化进样技术,减少样品在毛细管内的扩散和稀 释,提高检测灵敏度和准确性。
自动化与智能化
实现毛细管等速电泳的自动化和智能化,提高分 析速度和降低人工操作误差。
应用拓展
环境监测
将毛细管等速电泳应用于环境监测领域,如水质分析、土壤重金 属检测等。
第五章 高效毛细管电泳和电动色谱

1.40 1.60 1.80 2.00 t/min 2.20 2.40 2.60 2.80
36
35
34 32 33
31
30
29
28
27
26
25
24
23
22
20
21
19
18 17 16
15
14
9
13 10
11
12
786
5 2
3Leabharlann 101三、毛细管凝胶电泳
毛细管凝胶电泳 CGE):按照试样中各个组 分相对分子质量的大小进行分离的方法。 用途:常用于蛋白质、寡聚核苷酸、核糖核 酸、DNA片段的分离和测序及聚合酶链反应产 物的分析。CGE能达到CE中最高的柱效。
• 毛细管等电聚焦是基于不同蛋白质或多肽之 间等电点的差异进行分离的电泳技术。 • 毛细管等电聚焦最具特色的应用是测定蛋白 质的等电点。在异构酶鉴定、单克隆抗体、 多克隆抗体、血红蛋白亚基等研究中,经常 用毛细管等电聚焦。
五、亲和毛细管电泳
亲和毛细管电泳是利用配体与受体之间存在特异性 相互作用,可以形成具有不同荷-质比的配合物而达 到分离目的。
梯度升压方式对毛细管电泳分离的影响 A. 2kV至25kV,0min,一步升压;B.2kV至25kV,5min,线性梯度 升压. 样品:β-乳球蛋白A,溶菌酶,细胞色素C,肌红蛋白,微白蛋白
二、毛细管及其温度控制
毛细管电泳柱作为分离分析的载体,其材料、 形状、内径、柱长、温度对分离度和重现性都 有影响。
缓冲液中加入添加剂,并让缓冲液与毛 细管充分平衡.如加入阳离子表面活性剂 十四烷基三甲基溴化铵(tetradecyl trimethyl ammonium bromide ,TTAB), 能在内壁形成物理吸附层,使EOF反向. 添加剂还有聚乙烯亚胺、甲基纤维素 (MC)、十六烷基溴化铵(CTAB)等。
毛细管电泳法

在毛细管中施加电场,带电粒子在电场的作用下产生迁移,由于迁移速度与粒 子所带电荷、半径、质量等因素有关,因此不同粒子在电场中产生不同的迁移 速度,从而实现分离。
发展历程
01
02
03
1980年代初期
毛细管电泳法由 Jorgenson和Lukacs首次 提出并实验验证。
1980年代中期
该技术逐渐成熟,被广泛 应用于生物、医药、环境 等领域。
饮用水安全
毛细管电泳法能够检测饮用水中 的消毒副产物、有机污染物等, 保障饮用水安全。
在食品检测领域的应用
食品添加剂分析
毛细管电泳法能够分离和检测食品中 的添加剂,如色素、防腐剂等,有助 于食品安全监管。
营养成分分析
毛细管电泳法能够快速分析食品中的 营养成分,如氨基酸、维生素等,有 助于食品质量控制和营养评价。
核酸分析
毛细管电泳法能够分离和检测核酸片段,用于基 因诊断、基因表达研究和法医学鉴定。
3
临床检验
毛细管电泳法可用于检测体液中的小分子代谢物, 如氨基酸、糖类等,辅助临床诊断。
在环境监测领域的应用
污染物分析
毛细管电泳法能够分离和检测水 体、土壤中的有害物质,如重金 属、农药残留等,有助于环境监 测和污染治理。
在化学分析领域的应用
有机物分析
毛细管电泳法能够分离和检测有机化合物,如药物、染料等 ,在药物研发、化工生产等领域有广泛应用。
金属离子分析
毛细管电泳法能够高灵敏度地检测金属离子,如铅、汞、镉 等,可用于地质、冶金和环境等领域的研究。
谢谢
THANKS
加样
将处理好的样品加入毛 细管中,注意控制加样
量。
施加电压
启动电源,施加适当的 电压,使带电粒子在电
药物分析中的毛细管电泳法测定药物含量

药物分析中的毛细管电泳法测定药物含量毛细管电泳法(Capillary Electrophoresis,CE)是一种常用于药物分析的高效分离技术。
它基于药物在电场中的电荷迁移速率不同,通过毛细管内的电场驱动,实现对药物的定量分析。
本文将详细介绍药物分析中的毛细管电泳法测定药物含量的原理、方法和应用,以及该技术在药物分析中的优势。
一、原理毛细管电泳法测定药物含量,是利用毛细管的微小通道对药物进行分离和测量的一种分析技术。
它利用药物分子在电场作用下受到电荷的影响,从而在毛细管内发生电泳迁移,实现对药物的分离和定量测定。
其原理主要包括三个方面:1. 药物分子的电荷特性:药物分子可以分为带正电荷、带负电荷和无电荷的三类。
根据药物的电荷特性,调整毛细管内的电荷环境,使药物分子在电场中按照不同的电荷迁移速率进行分离。
2. 毛细管的表面电荷:毛细管内壁会带有一定的电荷,称为表面电荷。
表面电荷与药物分子的电荷有相互作用,影响药物在毛细管内的迁移速率。
3. 毛细管内的电场:在毛细管内施加电场,通过电泳迁移,使药物分子按照不同速率进行分离。
二、方法毛细管电泳测定药物含量的方法主要包括前处理、样品准备、色谱条件设置、电泳分离和定量测定等步骤。
下面将简要介绍这些步骤的具体操作:1. 前处理:对于复杂的样品,如血液、尿液等,需要进行前处理。
常用的前处理方法包括样品提取、样品净化等。
2. 样品准备:将提取的药物样品溶解于适宜的溶剂中,得到适宜的药物浓度。
3. 色谱条件设置:选择合适的色谱柱、毛细管和分离液,调整电泳分析的条件,如缓冲液的浓度、pH值等。
4. 电泳分离:将样品注入毛细管中,施加电场,使药物分子在毛细管内发生电泳迁移,实现对药物的分离。
5. 定量测定:通过荧光检测、紫外吸收等方法,测定药物的峰面积或峰高,从而确定药物的含量。
三、应用毛细管电泳法作为一种高效的药物分析技术,广泛应用于药物研发、生产和质量控制等领域。
第二章 高效毛细管电泳

毛细管电泳的发展过程
六十年代中期:瑞典科学家Hjerten 首先提出了毛细管区 带电泳(CZE)的方法,被看作毛细管电泳的起点。
1979年:Mikkers等用200μmID的聚四氟乙烯管为分离通 道,获得了很高的分离效率。
1981年:Jorgenson和Lukacs 用75μmID的熔融毛细管做 CZE,在30KV电压下产生了4×105片/m的效率,成为毛细 管电泳发展史上的里程碑。
生物化学家蒂塞利乌斯
A.W.K.蒂塞利乌斯
Arne Wilhelm Kaurin Tiselius
(1902-1971)
蒂塞利乌斯1925年从事胶体溶液中悬浮蛋白质的电泳分离研究。 曾自制超速离心机测定蛋白质分子的大小和形状,并与斯韦德贝里 合作发表了第一篇论文,报道了测定蛋白质淌度的新方法。1930年他 进一步改进实验手段和装置,发表了关于色谱法和吸附的论文。1935 年改建原有电泳装置,发展了区带电泳法,大大提高了效率和分辨率。 1940年他用自己设计的新电泳装置成功地分离了血清中蛋白质的4 个组分,分别命名为:白蛋白α、β、γ和球蛋白。该法迅速应用于分离 和鉴定各种复杂蛋白质及其他天然物质的混合物的组成。他因对电 泳分析和吸附方法的研究,特别是发现了血清蛋白的组分而获得1948 年诺贝尔化学奖。
例1. SDS-PAGE测定蛋白质分子量
剥胶与染色 电泳结束后,关闭电源开关,从电泳槽中取
下凝胶板并卸下硅胶框,用带细长针头的注射器 吸满蒸馏水,将针头插入凝胶与玻板之间,沿玻 板缓缓移动,并缓缓将蒸馏水注人,最后注入少 量空气,取出针头,将两玻板轻轻揭开后即可取 出凝胶板,将之置培养皿中,冲洗胶面后,加入 染色液,染色5h或过夜。
光聚合:核黄素为催化剂(阳光,日光),制大孔胶。
说明毛细管电泳特点及应用

说明毛细管电泳特点及应用
毛细管电泳是一种高效液相色谱技术,其基本原理是利用电场将带电粒子在毛细管中的移动速率和荷电量的差异进行分离和富集。
毛细管电泳具有高分离效率、快速分离、小量样品、自动化程度高等特点,已经成为了化学、生物、环境学等领域的一个重要分析工具。
其主要应用领域和特点如下:
1.分离生化分子
毛细管电泳可以用于分离和富集DNA、RNA、蛋白质、糖类和小分子有机物等生物分子。
这些生物分子在酸碱性、水解、氧化还原等条件下有不同的化学性质和电荷性质,可以被毛细管电泳技术精确分离和定量。
例如在DNA分离和定量方面,毛细管电泳已经成为PCR扩增产物检测、基因测序、DNA指纹鉴定等分子生物学技术中的重要手段。
2.分析环境污染物
毛细管电泳可以用于环境监测和食品安全检测等领域,可以对水、空气、土壤和食品中的有机和无机污染物进行快速准确定量分析。
例如利用毛细管电泳技术可以分析环境中的氨、硝酸盐、荧光增白剂、PESTICIDE 等有害物质含量,以及酒类中的苯甲酸、乙酸等有害物质。
3.分析药品和代谢产物
毛细管电泳可以快速、灵敏地分离和鉴定药品和代谢产物,具有药动学和毒理学研究的重要意义。
毛细管电泳技术节省反应时间,减少实验操作时间,可对液-液、液-固、固-液等反应进行分离和分析,得到精确的数据和结果。
如利用毛细管电泳技术,可以分析身体内的有机酸、氨基酸、代谢产物等物质。
总之,毛细管电泳技术在化学分析和生物分析中均有广泛应用,且已成为学术研究和工业生产的一种重要分离分析手段。
毛细管电泳技术及应用

毛细管电泳技术能够高效分离蛋白质 ,包括白蛋白、球蛋白、酶等,为生 物制药、蛋白质组学等领域提供有力 支持。
DNA和RNA分析
毛细管电泳可用于分析DNA和RNA片 段,在基因诊断、基因工程和生物信 息学等领域有广泛应用。
药物分析
药物成分分离
毛细管电泳能够分离和检测药物中的有效成分和杂质,有助于药物质量控制和研发。
仪器设备与操作
仪器设备
包括高压电源、进样系统、毛细管、检测器和数据采集系统等部分。
操作步骤
首先将样品注入毛细管一端,然后施加电压使带电粒子在电场中移动,同时通 过检测器对分离出的粒子进行检测,最后通过数据采集系统记录数据并进行分 析。
02
毛细管电泳的分离模式
区带电泳
总结词
区带电泳是毛细管电泳中最简单的一种形式,其原理是将样 品加在毛细管的一端,然后施加电压,使样品在电场的作用 下进行分离。
详细描述
在区带电泳中,样品在毛细管中形成一色带,由于不同组分 在电场中的迁移率不同,因此会以不同的速度向另一端移动 ,从而实现分离。这种分离模式适用于简单样品,如氨基酸 、肽和蛋白质等。
胶束电动色谱
总结词
胶束电动色谱是在毛细管电泳中加入一种称为表面活性剂的物质,使溶液的离子 强度和粘度发生变化,从而影响离子的迁移率。
要点二
血液中成分分析
通过毛细管电泳技术,可以分析血液中的离子、小分子和 蛋白质等成分,为临床诊断和治疗提供依据。
04
毛细管电泳技术的优缺点
优点
高分离效率
毛细管电泳技术利用电场对带电粒子的作用力,使其在毛 细管中分离,具有极高的分离效率,特别适合于复杂样品 的分离。
高灵敏度
毛细管电泳技术结合了多种检测手段,如紫外-可见光谱 、荧光光谱等,可以实现高灵敏度的检测,有利于痕量物 质的检测。
高效毛细管电泳法原理

高效毛细管电泳法(简称CE)是一种应用电泳原理的分离技术,适用于分离和测定小分子有机化合物和生物大分子,如氨基酸,肽,核酸和蛋白质等,因其操作简便,分离速度快,分辨率高,样品耗费小等优点而广泛应用于分析技术领域.
其原理主要是利用电荷作用力和电流作用力共同作用于被分离物质,在快速流动的毛细管内进行分离,不同的物质根据其理化性质差异,在电场力的作用下,快速分离并达到最终的分析结果.
具体分离过程可分为三步:1.预处理:通过对样品进行一些必要的化学或物理处理,如蛋白的
脱盐,核酸的降解等,使之达到最佳测定条件.2.分离和检测:样品被注入高压,在毛细管内被电场引导向阳极(或阴极)并被快速分离,经过检测器检测,得出分析结果.3.定量分析:基于标准品,定量分析被分离物质的浓度.
在实际应用中,高效毛细管电泳法可通过改变分离毛细管的材料、加入胶体、调整电场强度等方式,进一步提高分离效率和分辨率,并能够与其他分析技术结合使用,如质谱法、光谱法等.
综上,高效毛细管电泳法是一种快速、高效、准确的分离技术,具有广泛的实际应用价值,在
企业管理和生物学等领域都有着广泛的应用前景.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高效毛细管电泳的发展及应用摘要:高效毛细管电泳(即HPCE)是在传统电泳基础上继现代高效液相色谱技术之后发展起来的一种新型高效分离技术,由于效率更高、速度更快、样品和试剂消耗量特少的特性,逐渐受到越来越多科学家们的青睐。
本文结合HPCE的发展史、基本原理、分离模式以及在现实中的实际应用,对毛细管电泳做了系统的分析,并提出合理的展望。
关键字:毛细管电泳;发展史;原理;分离模式;应用高效毛细管电泳(即HPCE)是在传统电泳基础上继现代高效液相色谱技术之后发展起来的一种新型高效分离技术,它是在熔融的石英毛细管(内径为25~100μm)中进行电泳,其管内填充缓冲液或凝胶,是近年来进展最快的分析方法之一。
毛细管电泳可以说是电泳技术和现代微柱分离相结合的产物,它具有效率更高、速度更快、样品和试剂消耗量特少的特性,因而也受到越来越多科学家们的青睐。
一、毛细管电泳的发展史1967年在高电场作用下,以3mm直径的毛细管内进行自由溶液的区带电泳,1974年报道了以200-500μm内径玻璃毛细管内进行的区带电泳分析,早期的研究受当时检测灵敏度的影响,未获预期的高效分离效率,但为毛细管电泳分离的发展奠定了基础。
1981年人们第一次展示了毛细管区带电泳,使用75微米内径的玻璃毛细管和荧光检测器进行在线检测,在30KV电压下,分离了氨基酸和多肽类物质,塔板数高达40万,这一工作被认为是现代毛细管电泳发展的里程碑。
1983年将聚胶柱制备困难的缺点。
1984年使用含有表面活性剂的背景电解质,开辟了毛细管电泳另一个重要分支——胶束毛细管电动力学色谱。
1987年又结合传统的等电聚焦电泳和凝胶电泳原理,并移到毛细管内进行电泳,1988年实现了微量制备的可能性,提取和分离了50μmol的蛋白质、肽和寡核苷酸等。
80年代未,国内外毛细管电泳的研究非常活跃,于1989年推出第一批毛细管电泳仪,90年代起在技术和仪器应用等方面都有了很大的发展,1990年改进和应用了紫外检测器,1992年激发诱导荧光检测器诞生,毛细管电泳技术得到不断改进和更新,敏感度和分辨率均达到预期的高效分离效率。
二、高效毛细管电泳的基本原理粒子在电场的作用下,以不没的速度向电荷反方向迁移和现象,是一种在空芯、微小内径的毛细管(内径10-200μm)中进行的大、小分子的高效分离技术,毛细管两端分别浸入缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,根据被分离物之间电荷和体积的不同,各种分子在高电压下被分离,在自由区带毛细管电泳中,电泳的移动和电渗流导致了分离。
电渗流的大小取决于电场强度、电解质的PH、缓冲液的组成和离子强度、内磨擦和毛细管表面的等特点,这些因素能单一或互相结合地提高分离效果,检测可使用UV直接通过毛细管上的小窗口进行检测,也可选择激光诱发荧光、二极管阵列、电化学和质谱检测器检测。
样品进样方式是应用气压或电压将样品压入毛细管中完成。
高效毛细管电泳具有多样化分离模式,其分离的机理是不同的,它们之间具有相互补充的作用。
三、高效毛细管电泳的分离模式1.毛细管区带电泳(CZE)其分离机理是基于各被物质的净电荷与质量之间比值的差异,不同离子按照各自表面电荷密度的差异,以不同的速度在中解质中移动而导致分离,是目前应用最广的一种分离模式。
适用于蛋白质、氨基酸、多肽类和离子的分析。
2.毛细管凝胶电泳(CGE)以多孔凝胶作为固定相,类似于分子筛的作用,被分离物在通过装入毛细管内的凝胶力,按照各自分子的体积大小逐一分离,分子体积大的首先被分离出来,适用于生物大分子的分析。
3.胶束电动色谱(MECC)是电泳技术和色谱技术的交叉,目前以十二烷基磺酸钠(SDS)胶束用的最为普遍。
MECC存在二个相之间分配,由于它们在胶束中具有保留能力而产生不同的保留时间,一般电渗流的速度大于胶束向正极迁移速度,迫使胶束最终以较低的速度向负极移动。
MECC的实验操作与CZE相同,唯一差别是在操作缓冲液中加人大于临界胶束浓度的表面活性剂,因此MECC也是目前惟一既能分离中性离子又能分离带电离子的HPCE模式。
4.毛细管等电聚焦电泳(IEF)两性电解质在分离介质中的迁移,在毛细管内形成pH梯度,各种具有不同等电点的多肽和蛋白质按照这一梯度迁移到其不同的等电位置并停下,由此产生一条非常窄的聚焦区带,利用等电点的细微差异进行分离。
5.毛细管等速聚焦电泳(ITP)在被分离组分与电解质一起向前移动的同时进行聚焦分离的电泳方法,与IEF一样,ITP在毛细管中的电渗流为零。
在强电场的作用下,各被分离组分在两种电解质之间的空隙是发生聚焦分离。
6.毛细管电色谱(CEC)是将高效液相色谱众多的固定相填冲到毛细管中,以样品与固定相间的相互作用为分离机制,以电流流相为驱动力的色谱过程。
7.亲和毛细管电泳(ACE)在电泳过程中具有生物专一性亲和力,即受体和配体相互间发生的特异亲和作用,形成了受体的配体的复合物。
由受体和配体在发生亲和作用前后的电泳图谱变化,可获得有关受体和配体亲和力大小结构变化作用产物等方面的信息。
8.电动色谱(EKC)是根据电动现象命名的一种电泳模式,涉及电渗,电泳和色谱三方面的原理,主要用于手性化合物的分离。
9.非水相毛细管电泳(NACE)是分析物在有机溶剂中进行电泳分离的一种模式,使用非水相介质可增加方法的选择性,并有利于非水溶性物质的分离。
四、高效毛细管电泳的实际应用1.血清蛋白质分析采用CE分离血清蛋白获得的效果,并能准确计算各蛋白质的相对浓度,避免了凝胶电泳法染色,脱色过程中多种影响因素造成的误差,HPCE法的结果重复性好,可信度高,便于贮存和检索。
前白蛋白在血清中的浓度可表明营养状态,且是确定恶性肿瘤、炎症、肝硬化、何杰金氏病的重要指标,多数电泳法难以分辨,而用HPCE法很容易分离定量,检测波长为214或200nm。
2.免疫碱法鉴别单克隆蛋白的特征用特异的抗同型免疫球蛋制品抗体包被琼脂糖凝胶球与血清样品一起孵育,在孵育前与孵育后分别进行CE检测,通过用特异性抗体包被的Sepharose球消除一个特殊的峰来指示是哪种单克隆成分,借此对免疫球蛋白的型、亚型和轻链型予以鉴定和分类。
3.血红蛋白成分的分析用等电聚焦毛细管电泳(CIEF)和区带电泳(CZE)可分离出十几种Hb变异链。
4.肌红蛋白分析在急性心肌梗死后患者的血甭和尿液中常出现的肌红蛋白异常升高,低浓度肌红蛋白难以用免疫比浊法测定,CZE可在8分钟内快速分离尿中低浓度肌红蛋白并与血红蛋白相鉴别。
5.脂蛋白分析可将血浆脂蛋白分离出14个亚组份,如在分离缓冲液中加入表面活性剂,可在短时间内对两个主要组份:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)进行定量。
对LDL进一步分离为三个亚组份:LDL,中密度脂蛋白(ILD)和极低密度脂蛋白(VLDL),并对各组份的比例进行推算,从而对脂蛋白异常提供不同脂肪代谢的信息。
6.糖化血红蛋白(HbAlc)分析CE能分离几种糖蛋白的糖基构型,可鉴别糖化血红蛋白A1、Alc和其他异构体,对糖尿病的监控具有重要意义。
7.同功酶的分离其原理是先将样品在毛细管中电泳分离,待形成同功酶分离区带后,切断电源,再加入含底物的液体缓冲液,酶可催化底物而显色,形成右检测的同功酶区带,再重新接通电源,继续电泳,使同功酶形成的染色区带先后通过检测器,测定最大吸收外的光密度值,因此被分离同功酶可被分析并测定,如检测淀粉酶P (胰)和S(唾液)型、碱性磷酸酶等,均可采用HPCE技术分离其同功酶。
8.免疫复合物分析CE可将免疫复合物从结合的抗原抗体中迅速分离出来,应用荧光标记单克隆抗体,经L功F-CE检测限可达毫克量,可用于混合液体中低浓度的免疫复合物鉴定。
9.DNA片段和染色体分析HPCE分离DNA分子需多聚物交联剂如聚丙酰稀胺,聚乙二醇、甲基纤维素等材料添加到缓冲液中作为分子筛,可对窄范围DNA高效分离。
目前,CE可分离3个bpDNA片段,若分析较大分子DNA片段。
当然HPCE分析DNA片段尚有许多技术需要完善,其中最为突出的问题是选择合适的交联剂,提高现有方法的分辨率,成为分析基因组的有效工具。
10.在治疗药物监测中的应用CE可简便快速分析生物样品中各种形式的药物成分,在药理学研究,法医学检查及临床毒理等方面也有广泛应用。
如:抗肿瘤药物氨甲蝶呤先经固相萃取,HPCE分离后用激光激活荧光检测器测定,其检测限可达0.1-1nmol/L;可分析人体内中毒物的成分,如吗啡及其主要代谢产物海洛因等镇静药;在糖尿病的治疗监测中,可检测血中优降糖的浓度,防止药物使用不当导致低血糖。
五、展望传统电泳技术其局限性在于两端电压达到一定值时,会在电解质离子流中产生自热,引起径向黏度和速度的梯度,导致区带较宽、效率降低。
高效毛细管电泳根本在于它是散热效率极高的毛细管内(10-200mm)进行,操作简单,分析速度快,进样较其他分离方法少,仅需几微升,灵敏度高,成本相对低,可反复使用毛细管和可自行配制缓冲液。
自八十年代以来得到了迅速发展,分为临床型和科研型两大类,临床型应用最多的是蛋白质分析与鉴定,该技术可以说已经十分成熟,国外在90年代已作为常规试验,国内也正在掀起。
高效毛细管电泳是当今分析化学和生物医药学公认的前沿,该技术也必将被临床医学实验室所接受,不仅能用于常规项目的分析,还可以用于其他特殊项目的检验,在许多其他领域内的临床应用也产生重大作用。
参考文献:[1]傅若农.色谱100年回顾札记,仪器信息网.2003[2]傅若农.色谱分析概论[M].北京:化学工业出版社, 2005.2[3]李洪霞,李伟,谷学新.毛细管电泳在手性分离中的应用进展[J].化学研究,2005,16(2):96-100.[4]陆少红,龙湘犁.毛细管电泳在生物领域的应用[J].沈阳航空工业学院学报,2002,19(2):85-87.。