纤维素酶产生菌

合集下载

产纤维素酶细菌的筛选鉴定及产酶条件研究

产纤维素酶细菌的筛选鉴定及产酶条件研究

产纤维素酶细菌的筛选鉴定及产酶条件研究⼴西轻⼯业GUANGXI JOURNAL OF LIGHT INDUSTRY2009年7⽉第7期(总第128期)⾷品与⽣物纤维素是地球上分布最⼴,含量最丰富的碳源物质,对⼈类⽽⾔,它⼜是⾃然界中数量最⼤的可再⽣资源,是永不枯竭的⽣物资源。

纤维素可被纤维素酶降解⽣成葡萄糖,因此纤维素酶研究开发和应⽤是植物质资源再利⽤的主要途径。

微⽣物是纤维素酶的主要来源,据不完全统计,迄今为⽌,国内外共记录了产纤维素酶的菌株⼤约53个属的⼏千个菌株[1],其中主要有细菌、放线菌和真菌,⽬前研究的最清楚的是霉菌中的⾥⽒⽊霉T.reesei 。

细菌产纤维素酶的产量较少,主要是葡聚糖内切酶,⼤多数对结晶纤维素⽆降解活性,且所产⽣的酶多是胞内酶或吸附在细胞壁上,不分泌到培养液中,增加了提取纯化的难度[1],因此对细菌的研究较少。

但由细菌产⽣的纤维素酶⼀般为中性或碱性,近⼗年来随着中性纤维素酶和碱性纤维素酶在洗涤、纺织等⽅⾯应⽤前景⼴阔,细菌纤维素酶制剂已显⽰出良好的应⽤性能和巨⼤的经济价值[2]。

我们从青藏⾼原牦⽜粪中分离到⼀株⾰兰⽒阴性菌Ti-bet-YD4600-2,经16S rDNA 序列⽐对分析,Ti-bet-YD4600-2为鞘氨醇单胞菌属(Sphingomonas sp.)菌株。

鞘氨醇单胞菌属是Yabuuchi (1990)[3]等通过研究16S rDNA核苷酸序列,胞内脂质中出现的特殊鞘糖脂和辅酶Q 的主要类型,确定的⼀个新属,该属细菌具有着极强的⽣命⼒,分布⼴泛,对除草剂、偶氮染料、多环芳烃等具有较好的降解作⽤,近年来受到⼴泛重视和研究[4]。

1材料和⽅法1.1材料来源通天河(34°49.753N,92°56.142E )海拔4604m 处取牦⽜粪样品。

1.2培养基[5]分离平板培养基,复筛培养基,滤纸崩解实验培养基,液体摇瓶培养基。

1.3初筛取样品1g 置于装有100mL ⽆菌⽔的三⾓瓶中,摇匀,从三⾓瓶中取1mL 转移到另⼀盛有100mL ⽆菌⽔的三⾓瓶,在25℃和150r /min 下振荡培养2h ,取0.1mL 振荡培养液涂布筛选到以CMC 为唯⼀碳源的培养基平板,倒置恒温25℃培养3~4d ,注意观察菌的⽣长情况,挑取单菌落⽤斜⾯保存。

产纤维素酶霉菌的筛选及初步鉴定

产纤维素酶霉菌的筛选及初步鉴定
低 , 以将 其剔 除 掉 。 可 1 4 可降解 纤 维 素真 菌 的复 筛 .
种类繁多 , 来源也很广 。大多数纤维 素酶 主要来 自 微 生物 体 心 。 目前 , 们 对 各 种 微 生 物 ( 括 真 菌 ] 人 包 和细菌 ) 的纤 维 素 酶 的关 注 较 多 , 其 是 源 于 真 菌 尤 的纤维素酶 。所有能分解微 晶纤维素 的真菌 , 能 均 或 多或 少地 分泌 纤 维 素 酶 , 以纤 维 素酶 的真 菌 源 所
本 研究 使用 羧 甲基 纤维 素 液体 培养 基 富集 培 养 环境 样 品 , 分离 得到 3 产 纤维 素酶 的霉菌 。使 用 4株 刚果 红染 色 初筛 和 D S法 复筛 , 到 2株纤 维 素 酶 N 得 活较 高 的霉 菌菌 株 w0 0 、 x0 5 同时还 使 用 苏 x5 3 w l0 。
℃培养 4 —5 d进 行 活 化 , 后 接 种 到 3 L( 5 之 0m 2 0
mL三角瓶 ) D P A液体 培养 基 中 , 2 ℃ 、8 / i 于 8 10rrn a 下 摇床 发酵 , 3d后 取 样 测 定 上 清 发 酵 液 中 的 C MC
酶 活力 。
1 5 DN . S法测 C MC酶 活

f u ehls o rc l a e—p o u i g f n is an r s l td t r u h e r h n u t rn y CMC —Na l u d me i m. r d c n g t i swe e ioa e h o g n c me tc l i g b u r i u i i d u q
D I1.99j i n 10 - 8 .0 10 .0 O : 36/.s .0 9 8 12 1.302 0 s 4

一株产纤维素酶细菌的筛选与发酵产酶试验

一株产纤维素酶细菌的筛选与发酵产酶试验

纤维素酶是一种多组分的复合酶系,由内切葡聚糖酶、外切葡聚糖酶和β-葡萄糖苷酶三种组分组成。

由于纤维素在自然界广泛分布,很多细菌、放线菌、酵母和霉菌都具有降解纤维素的能力。

此前纤维素降解菌的研究多以霉菌为主,而对细菌的研究着力较少。

近年来,随着中性纤维素酶和碱性纤维素酶在棉织品水洗整理工艺及洗涤剂工业中的成功应用,通过细菌发酵生产纤维素酶制剂已显示出良好的应用前景。

本文拟从土壤中筛选出产纤维素酶的细菌并进行初步鉴定,以期为纤维素酶制剂的生产提供可能的细菌菌种。

一、材料与方法1.材料(1)土壤样品。

从南京科技职业学院校园小树林堆放枯枝和落叶处采集腐殖土土样,五点取样,混匀,放入无菌的袋中备用。

(2)富集培养基。

牛肉膏3g,蛋白胨10g,NaCl 5g,琼脂15g,加水至1000mL,调pH7.0-7.2。

(3)初筛培养基。

羧甲基纤维素钠(CMC-Na)5g,(NH4)2SO44g,KH2PO4 2g,MgSO4·7H2O 0.5g,蛋白胨1g,琼脂15g,加蒸馏水至l000mL,pH自然。

(4)复筛培养基。

CMC-Na 2g,(NH4)2SO4 2g,KH2PO4 1g,MgSO4·7H2O 0.5g,NaCl 0.5g,刚果红0.4g 琼脂15g,加蒸馏水至l000mL,pH自然。

(5)液体发酵培养基。

CMC-Na 10g,蛋白胨10g,酵母粉10g,NaCl 5g,KH2PO4 1g,加蒸馏水至l000mL,灭菌后用无菌Na2CO3溶液调pH至10。

2.方法(1)土壤细菌的富集。

称取土样10g,放入装有玻璃珠和90mL无菌水的锥形瓶中,充分振摇。

取5mL悬液放入含45mL富集培养基的250mL锥形瓶中,37℃,150r/min振荡培养一昼夜。

(2)初筛培养基稀释涂布。

将富集后的土壤细菌培养物进行梯度稀释,取10-4,10-5,10-6三个稀释度各0.1mL于初筛培养基平板上进行稀释涂布,37℃倒置培养一昼夜,得到单菌落。

纤维素酶产生菌的鉴定及其混合发酵条件优化

纤维素酶产生菌的鉴定及其混合发酵条件优化

纤维素酶产生菌的鉴定及其混合发酵条件优化摘要:分离筛选到的4株纤维素酶活较高的菌株D6、D7、B7和D1,根据形态特征初步判断为3株细菌、1株放线菌,其16S rDNA序列同源性分析结果发现D6、D7、B7与Bacillus sp.的同源性为99%,系统发育树分析与Bacillus sp.遗传关系最近,D1与Streptomyces zaomyceticus的同源性为99%,系统发育树分析与Streptomyces zaomyceticus遗传关系最近;对4株菌株进行单独与混合发酵培养,结果表明菌株组合D6/D7混合培养后的酶活显著高于其单菌培养,其在培养温度37℃、培养基初始pH值为8.0、接种量为2%(V/V)、D6/D7接种比例为2∶1(V∶V)下的酶活最高,可达到79.42 U/mL。关键词:纤维素;筛选;混合培养;发酵条件Study on Identification of Cellulose-Decomposing Microorganisms and Optimum Conditions for Their Mixed CultivationAbstract: Four strains of microbes with relatively high cellulase activity named as D6, D7, B7 and D1 were selected; and primarily identified as 3 bacteria and one actinomyces. Based on the results of 16S rDNA sequencing, the homology among strains D6, D7, B7 and Bacillus sp. were 99%; and between D1 and Streptomyces zaomyceticus was also 99%. The phylogenetic tree built on the 16S rDNA sequence indicated that the former three strains had the nearest relationship with Bacillus sp. , while the latter one was nearest to S. zaomyceticus. Enzyme activity of mixed strain D6/D7 was obviously higher than that of single strain. The optimum enzyme-producing conditions were at 37℃, with medium primary pH 8.0, 2% of inoculation(V/V), and inoculation proportion D6∶D7 at 2∶1. Under these conditions, the enzyme activity reached 79.42 U/mL.Key words: cellulose; screening; mixed culture; fermentation conditions纤维素是植物细胞壁的主要成分,是自然界储存量最多的多糖类物质,也是一笔取之不尽、用之不竭的可再生资源。因此,纤维素类物质的分解利用对于解决未来的能源危机和环境污染意义重大[1]。自然状态下,纤维素降解主要通过3种方式,即物理方式、化学方式和微生物降解[2],物理方法作用效果不明显,化学方法成本高且易产生二次污染。实践表明,纤维素的微生物降解是最佳途径,此法具有降解率高、安全环保、成本低等优点[3]。但是,由于天然纤维素分解菌活性低,降解速度慢,而纤维素降解需要多种酶协同作用,充分利用自然界多种微生物的协同关系,人工筛选构建能够产生多种纤维素酶的高效稳定混合菌系,引起了人们的高度重视。目前在构建混合菌系,利用菌株协同作用降解纤维素的研究报道较少。本实验对分离筛选到的4株纤维素酶活较高的菌株进行不同菌株组合发酵,目的在于构建一组高效纤维素降解菌系,初步确定其最适产酶条件以应用于纤维素废弃物处理,对减少环境污染、变废为宝,实现经济的可持续发展具有一定的理论指导意义。1材料与方法1.1材料1.1.1菌株来源本实验室分离筛选获得,分别为D6、D7、B7和D1。1.1.2液体发酵培养基参照文献[4]配方制作。1.2方法1.2.1菌株形态观察及系统发育分析①菌株的形态观察结果。对菌株进行革兰氏染色,显微镜观察各菌株形态,根据形态特征对菌株进行初步分类。②菌株的16S rDNA的PCR扩增及序列分析。细菌的DNA提取及PCR扩增和序列分析参考文献[6]进行。1.2.2菌株单独与混合发酵对酶活的影响将菌株分别进行单个菌、两个菌、3个菌和4个菌混合发酵培养,培养时按2%的接种量接种于液体发酵培养基,37℃,160 r/min摇床振荡培养,每隔24 h测酶活。1.2.3菌株单独与混合发酵对甘蔗渣的降解率测定①甘蔗渣的预处理。采用质量分数为0.5%的NaOH溶液处理甘蔗渣,固液比1∶30(m∶V,g∶mL),121℃反应30 min,然后过滤,水洗,调pH值,获得处理样品。②降解率的测定。将菌株按单个菌、两个菌、3个菌和4个菌混合发酵培养,培养时按2%的接种量接种于以甘蔗渣为惟一碳源的液体发酵培养基中,37℃,160 r/min摇床振荡培养7 d,把所得发酵液过滤并水洗以除去菌体,干燥后称重并计算降解率。降解率=(降解前质量-降解后残渣质量)/降解前质量×100%。1.2.4优化组合发酵条件研究在发酵培养基中分别就培养温度、培养基初始pH 值、接种量、混合菌群中单个菌株接种比例等不同条件对优化组合的酶活影响进行比较,确定组合菌株的最佳产酶条件。2结果与分析2.1菌株形态观察及系统发育树构建2.1.1菌株的形态观察筛选的4株菌进行染色观察,从形态上看出,菌株D1形态类似放线菌,有菌丝和孢子丝的出现;D6、D7、B7的形态很相似,其细胞为杆状,产芽孢,芽孢的形状很接近,只是在相同的培养时间,D6菌株产芽孢的量较少,分析可能是由于不同的菌株所处的生长时期不一致,由形态可初步判断3株菌都为细菌,革兰氏染色结果为阳性。2.1.2菌株的16S rDNA PCR扩增和序列分析对4菌株提取DNA,然后采用正向引物P0和反向引物P6对菌株的16S rDNA进行PCR扩增,电泳检测其片段大小(图1),对PCR产物进行序列测定和分析,获得菌株的种属信息,并构建菌株的系统发育树(图2)。从图2可以看出,D6、D7、B7属于芽孢菌属(Bacillus sp.),D1为链霉菌属(Streptomyces sp.)。2.2菌株混合培养对降解率的影响将各菌株进行单菌与混合发酵培养,在前期研究[4]基础上明确菌株组合D6/D7在72 h的酶活显著高于其他组合,而且对甘蔗渣有着比较高的降解率(图3),对甘蔗渣的降解率达23.8%,相对于其他组合降解率最高。为此,选择该组合进行产酶条件研究。2.3优化组合发酵条件研究2.3.1温度对酶活的影响将菌株组合D6/D7以2%接种量、接种比例1∶1接种于pH值为7.0的液体发酵培养基,分别在28、37、46、55℃的不同温度下,160 r/min摇床振荡培养72 h,取样测酶活,测定结果如图4所示,从图4中可以看出,菌株在37℃酶活最高,即菌株产酶的最适温度为37℃。2.3.2培养基初始pH值对酶活的影响将菌株组合D6/D7以2%接种量、接种比例1∶1分别接种于pH值为 5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0的液体发酵培养基,37℃,160 r/min摇床振荡培养,培养时间同上,取样测酶活,测定结果如图5,从图5可以看出在起始pH值为5.5~8.0时,随着pH值的增高酶活逐渐增加,pH值为8.0时达到高峰,随后酶活呈快速下降趋势,表明该组合菌株最适pH值为8.0。2.3.3接种量对酶活的影响菌株组合D6/D7以接种比例1∶1接种,并分别以1%、2%、3%、4%、5%的接种量接种于pH值为8.0的液体发酵培养基,37℃,160 r/min 摇床振荡培养,培养时间同上,取样测酶活,酶活测定结果如图6。从图6中可以发现,接种量不同,酶活差别很大,且以2%的接种量接种时酶活较高,从酶活的变化趋势还可以看出,随着接种量的增加酶活逐渐增加,但接种量超过2%后酶活却明显降低,原因可能是由于接种量太大会造成菌株徒长而产酶量却显著减少。2.3.4接种比例对酶活的影响D6/D7分别以接种比例1∶1、1∶2、2∶1,接种量2%接种于pH值为8.0的液体发酵培养基,37℃,160 r/min摇床振荡培养,每隔24 h 取样测酶活,结果如图7。从图7可以看出,菌株D6和D7在接种比例为2∶1时的酶活明显高于其他两种情况,且在72 h的酶活达到最高,为79.42 U/mL。D6和D7在任一菌种稍多的情况下表现出较强的降解能力,出现此现象的原因可能是由于两菌均能产生同一种组分酶,同时又能各自产生另一种组分酶,而在相同接种量的情况下,仅仅加强了一种组分酶的量,而不能得到纤维素降解能力增强的纤维素酶体系。因此,纤维素酶各酶系组成比例协调是实现其高效降解的关键因素。3讨论本研究构建了一组纤维素降解菌群D6/D7,该菌群在72 h酶活可以达到79.42 U/mL,并非所有随机组合的混合菌群产生的纤维素酶的活力均显著增加,有些混合培养的菌株产生的纤维素酶活甚至低于单菌株的酶活力。D6和D7同属于芽孢菌属不同的种群,它们组合后酶活能显著提高,初步确定不同种类的微生物能相互作用,促进纤维素酶的分泌。菌株组合D6/D7在所有组合中酶活最高且对甘蔗渣有比较高的降解率,如果将其应用于纤维素类废弃物处理,对纤维素资源的再利用和治理环境污染将具有一定的理论和实践意义。。

从土壤里筛选产纤维素酶细菌的步骤

从土壤里筛选产纤维素酶细菌的步骤

从土壤中分离产几丁质酶的真菌作者:王春学号:11101680摘要:几丁质是自然界中储量仅次于纤维素的生物多聚体,它广泛存在于真菌、硅藻、节肢动物和原生动物等生物体中,是绝大多数真菌细胞壁的结构物质,同时还是昆虫中肠围食膜的主要成分[1].几丁质酶(Chitinase,EC3.4.1.14)[2]可催化水解几丁质的β21,4糖苷键生成N2乙酰2D2氨基葡萄糖(NAG),它在植物病虫害,尤其是对真菌病的防治方面,以及在几丁质废物的转化和利用等方面都具有重要作用,其研究受到人们的广泛重视.通过几丁质作为碳源,从土壤中筛选产几丁质酶菌株.1 材料与方法1.1 培养基1.1.1 平板培养基 (1)细菌几丁质培养基(分离用):蛋白胨10g,K2HPO40.7g,MgSO40.5g,KH2PO40.3g,胶体几丁质5.0g,琼脂15~20g,蒸馏水1L,pH值为7.2.(2)纯几丁质培养基:胶体几丁质 5.0g,KNO31.0g,NaCl0.5g,K2HPO40.5g,MgSO40.5g,FeSO40.01g,琼脂20g,蒸馏水1L,pH值为7.2.1.1.2 摇瓶培养基 (1)种子培养基(LB培养基):蛋白胨10g,酵母膏5g,NaCl10g,蒸馏水1L,pH值为7.0.(2)发酵培养基:用细菌几丁质培养基(分离用),但不加琼脂1.2 菌株的分离1.2.1 菌株初步分离从生产几丁质的工厂排污沟附近土壤采集土样,经过烘干及风化干燥,置于60目分样筛过筛,备用.称取1g土样放入加有9mL无菌水的离心管,分别稀释制成10-1,10-2,10-3,10-4,10-5,10-6不同稀释倍数的土壤溶液.从10-3,10-4,10-5,10-6不同稀度倍数的4管土壤稀释液中各吸取0.1mL,接种在纯几丁质培养基和细菌几丁质培养基的平板上,用涂布棒涂布均匀,在30℃下培养72h.1.2.2 菌种的二次筛选从第1次稀释涂布的平板中挑取可以产生透明圈的菌落,再一次通过稀释涂布的方法,将其接种于纯几丁质平板和细菌几丁质平板上,培养72h,以取得纯菌落平板.从第2次筛选的纯菌平板上选取水解圈直径与菌落直径比最大的菌种,将其接种于50mL的LB种子培养基上,12h后以2%的接种量接于100mL的细菌几丁质发酵培养基中,在30℃下进行扩大培养.1.3 菌种的鉴定1.3.1 细菌染色体DNA提取从新培养产几个质酶活性高的革兰氏阴性细菌平板上,挑取一环菌落至加有500μLTE缓冲液的1.5mL微量离心管中,混匀后沸水浴1.5min,迅速低温离心(12000r・min-1)10min,取上层清液分装后,置4℃下保存备用.1.3.2 16SrDNA引物根据16SrDNA的结构,应用B2/B3做引物,该引物扩增片段包含V8和V9两个高变区,扩增产物大小为1050bp(basepair,碱基对)左右.这两个引物序列为B2:5’2ACGGGCGGTGTGTAC23’;B3:5’2CCTACGGGAGGCAGCAG23’.1.3.3 聚合酶链反应(PCR)检测 PCR反应体系为20μL,二次蒸馏水12.6μL,10倍扩增缓冲液2.0μL,25mmol・L-1Mg2+1.6μL,各2.5mmol・L-1的脱氧核苷三磷酸(dNTP)0.4μL,20μmol・L-1引物各1.0μL,DNA模板1.0μL,5GU・L-1Taq酶0.4μL.PCR循环:94℃预变性5min,94℃变性60s,50℃退火60s,72℃延伸90s,循环30次,并在72℃后延伸15min.1.3.4 扩增产物的电泳分析用1倍的TAE缓冲液配制质量分数为1%琼脂糖凝胶.取PCR 扩增产物10μL,加2μL溴酚蓝指示剂,混匀后加样,于100V下电泳1.5h,紫外灯下观察电泳结果.1.3.5 序列测定与分析将观察到的PCR产物切胶,用胶回收试剂盒回收后,连接到pMD182T上,送北京奥科生物公司进行测序.然后,将测序结果通过GeneBank进行BLAST序列比对,得出结果参考文献[1] BROGLIEKE.Chitinaseandplantprotection[J].RevPlantPathol,1993,2:4112421.[2] 李力,黄胜元,关雄.产几丁质酶的苏云金杆菌菌株筛选及酶合成条件研究[J].中国病毒学,2000,15(51):94297.[3] CHANGYu2cheng,YANGChiyea,LIChin,etal.IdentificationofBacillussp,Escherichiacoli,Salmonellasp,StaphylococcusspandVibriospwith16SribosomalDNA2basedoligonucleotidearrayhybridization[J].Internation2 alJournalofFoodMicrobiology,2006,107:1312137.[4] 张龙翔,张庭芳,李令媛.生化实验技术[M].北京:高教出版社,1997:1112116.[5] MOOREER,KRUGERAS,HAUBENL,etal.16SrRNAgenesequenceanalysesandinter2andintragenericre2lationshipsofXanthomonasspeciesandStenotrophomonasmaltophilia[J].FEMSMicrobiolLett,1997,151(2):1452 153.[6] MIYAJIT,OTTAY,SHIBATAT,etal.PurificationandcharacterizationofextracellularalkalineserineproteasefromStenotrophomonasmaltophiliastrainS21[J].LettApplMicrobiol,2005,41(3):2532257.[7] MADHA VAPNK,BAIJUTV,SANDHYAC,etal.ProcessoptimizationforantifungalchitinaseproductionbyTrichodermaharzianum[J].ProcessBiochem,2004,39:158321590.[8] NAWANINN,KAPADNISBP.Optimizationofchitinaseproductionusingstatisticsbasedexperimentaldesigns[J].ProcessBiochem,2005,40:6512660。

(整理)产纤维素酶菌种的筛选与优化.

(整理)产纤维素酶菌种的筛选与优化.

目录实验一产纤维素酶菌种的分离与初筛实验二产纤维素酶菌种的复筛与保藏实验三酶活测定与传代保藏实验四产纤维素酶菌种的紫外诱变育种实验五产纤维素酶菌种的产酶条件优化实验六产纤维素酶菌种的产酶条件优化的结果分析实验一产纤维素酶菌种的分离与初步鉴定一、实验目的1.了解产纤维素酶微生物分离的基本原理;2.掌握产纤维素酶微生物分离的操作方法。

二、实验原理自然界中存在大量的纤维素类物质,同时存在着很多能分解纤维素类物质的生物,小到细菌、放线菌、真菌,大到一些食草类昆虫与动物。

这些生物与绿色植物一起构成了这个世界的碳循环。

在发酵堆肥中,存在着大量的,耐高温的纤维素分解菌株,但多半都为混合分解,菌种需要:1.内切型葡萄糖苷酶(endo-1,4-β-D-glucanase,EC3.3.1.4,简称EBG),也称Cx酶、CMC酶、EG。

这类酶作用于纤维素分子内部的非结晶区,随机识别并水解β-1,4-糖苷键,将长链纤维素分子截短,产生大量非还原性末端的小分子纤维素;2.外切型葡萄糖苷酶(exo-1,4-β-D-glucanase,EC3.2.1.91),也称C1酶、微晶纤维素酶、纤维二糖水解酶(Cellobiohydrolase,简称CBH),这类酶从纤维素长链的非还原性末端水解β-1,4-糖苷键,每次切下纤维二糖分子;3.Β-葡萄糖苷酶(β-glucosidase,EC3.2.21,简称BG)又称纤维二糖酶,它能水解纤维二糖以及短链的纤维寡糖生产葡萄糖,对纤维二糖和纤维三糖的水解很快。

随着葡萄糖聚合酶的增加水解速度下降,这种酶的专一性比较差。

只有三种酶的协同作用,才能较好的分解纤维素。

就单菌落而言,霉菌如木霉、曲霉和青霉的总体酶活性较高,产量大,故在畜牧业和饲料工业中的应用的纤维素酶主要是真菌纤维素酶。

本实验以羟甲基纤维素钠为唯一碳源的培养基作为筛选培养基,只有能够水解纤维素成单糖并加以利用的微生物才能在筛选培养基上生长,利用筛选培养基分离产纤维素酶的微生物。

纤维素酶产生菌的筛选-鉴定和产酶条件优化

纤维素酶产生菌的筛选-鉴定和产酶条件优化

纤维素酶产生菌的筛选\鉴定和产酶条件优化摘要:采用稀释平板法分离马铃薯瓢虫肠道菌,利用刚果红平板法对产纤维素酶菌株进行初筛,选取透明圈较大的菌株进行摇瓶发酵复筛,根据菌株形态、生理生化特征对菌株进行初步鉴定,通过正交法优化产酶条件。结果表明,经初筛和复筛得到1株酶活相对较高的菌株B-12,经初步鉴定为芽孢杆菌属(Bacillus sp.)。1.25%麦芽浸粉为碳源、1.5%KNO3为氮源、0.2%的NaCl、0.1%的CMC-Na、接种量6%、培养时间44 h为B-12产酶的适宜条件。优化后发酵液中的内切葡聚糖酶活(CMCA)为111.710 U/mL,较培养44 h后的酶活提高了8.78%;滤纸酶活(FPA)为35.017 U/mL,提高了387.23%;β-葡萄糖苷酶酶活(BGL)为116.799 U/mL,提高了700.38%。关键词:马铃薯瓢虫;肠道菌;纤维素酶;优化Screening,Identification and Cultural Condition Optimization of Cellulase-producing Strains from the Intestine of Henosepilachna vigintioctomaculata Abstract: The bacteria from the intestine of Henosepilachna vigintioctomaculata were isolated through the pour plate method. They were preliminarily screened using Congo red medium plate method, and then screened according to their cellulase activities by flask shaking fermentation method. The strain was identified based on morphological and physiological characters. In addition, the culture substrates and fermentation conditions were optimized by orthogonal experiment method. A high cellulase-producing strain B-12 was screened from the intestine of H. vigintioctomaculata and it was identified as Bacillus sp.. The best culture conditions were as follows: substrate were 1.25% malt meal, 1.5% KNO3, 0.2% NaCl, and 0.1% CMC-Na, inoculation quantity was 6%, culture time was 44 h. In this condition, the enzyme activity of CMCase, filter paper enzyme (FPA), and β-glucosidase (BGL) were 111.710, 35.017, and 116.799 U/mL respectively, which were 8.78%, 387.23% and 700.38% higher than those of the initial strain respectively.Key words: Henosepilachna vigintioctomaculata; intestinal bacteria; cellulase; optimization地球上的生物资源主要来自光合生物,其中90%以上为木质纤维素类物质,它们代表了生态系统中营养金字塔最庞大的基层[1]。天然的木质纤维素材料含有纤维素、半纤维素和木质素等。其中纤维素是地球上最丰富的多糖物质,这类物质是植物细胞壁的主要成分,也是地球上最廉价的可再生资源。另外,人类活动产生的废弃物中也含有大量的纤维素[2]。目前,人们对纤维素的降解和利用主要通过纤维素酶的分解来实现。纤维素酶在再生能源利用方面具有广阔的应用前景,可应用于农业、酿造工业、发酵工业、食品工业以及其他领域[3-9]。因此研究纤维素酶有着十分重要的意义。昆虫肠道菌是指能定植于昆虫肠道的微生物,包括土著的昆虫肠道菌和能定植于昆虫肠道环境的微生物[10]。研究表明一些昆虫肠道菌能帮助昆虫消化食物[10]。对喜食含纤维素食物的昆虫,我们推测其消化纤维素可能与其肠道菌分泌纤维素酶有关。马铃薯瓢虫主要为害茄科植物,喜食茄科植物叶片,它消化叶片中的纤维素可能与其肠道菌有关。本试验从马铃薯瓢虫肠道中分离筛选产纤维素酶菌株并对其产酶条件进行优化,旨在为发现新的纤维素酶高产菌株奠定基础。1材料与方法1.1材料1.1.1菌株采自浙江省金华市婺城区高村附近马铃薯田地的马铃薯瓢虫肠道中的菌株。1.1.2培养基①菌种保藏培养基:牛肉膏蛋白胨培养基(牛肉膏0.30%,蛋白胨1.00%,NaCl 0.50%,琼脂 1.50%~2.00%,pH值7.4~7.6)。②初筛培养基:米糠2.00%,NaCl 0.10%,K2HPO4 0.50%,MgSO4·7H2O 0.02%,(NH4)2SO4 0.06%,琼脂1.50%~2.00%,pH值7.0~7.2。③刚果红纤维素鉴定培养基:羧甲基纤维素钠(CMC-Na)0.30%,NaCl 0.50%,牛肉浸膏0.15%,蛋白胨0.50%,琼脂1.50%~2.00%,pH值7.0~7.2。④种子培养液:酵母膏 1.00%,蛋白胨 1.00%,NaCl0.50%,CMC-Na 0.50%,pH值7.0~7.2。⑤液体产酶发酵培养液:配方同种子培养液。⑥鉴定用培养基:糖发酵试验培养基、葡萄糖蛋白胨水培养基、蛋白胨水解培养基、Simons氏柠檬酸盐培养基、明胶水解试验培养基等。1.1.3主要试剂葡萄糖、pH值4.6的醋酸缓冲液、DNS、2% CMC-Na底物溶液、0.05%水杨苷的醋酸缓冲液、蛋白胨、牛肉膏等。1.1.4主要仪器立式电热压力蒸汽灭菌锅,上海中安医疗器械厂生产;LRH-250生化培养箱,上海一恒科技有限公司生产;D-78532台式冷冻离心机,德国Hettich 公司生产;UV-7504紫外可见分光光度计,上海欣茂仪器有限公司生产;SW-CJ-1B 型单人单面净化工作台,苏州净化设备有限公司生产;电子天平,赛多利斯科学仪器(北京)有限公司生产;HH-4数显恒温水浴锅,山东鄞城科源仪器设备厂生产;远红外快速恒温干燥箱,上海跃进医疗器械厂生产。1.2方法1.2.1纤维素酶产生菌的分离、纯化和初筛马铃薯瓢虫饥饿24 h后,无菌条件下在75%酒精中表面消毒2 min,去离子水漂洗3次,采用稀释平板法分离肠道菌。待菌长出后用无菌牙签挑选单菌落于刚果红纤维素鉴定培养基上影印2~3皿,37℃下培养2~3 d。取其中1皿采用刚果红染色法鉴定其产酶能力[11]。对产生透明圈的菌株进行测量并记录D/d值(D为透明圈直径,d为菌落直径,下同),挑选D/d值大于1的菌株作为初筛菌种,通过连续划线法,分离纯化。得到的初筛菌株转接到保藏斜面,4℃条件下保藏备用。1.2.2纤维素酶产生菌的复筛将初筛到的菌株活化后接种于30/250 mL(250 mL 三角瓶装30 mL培养液,下同)种子培养基中,37℃、180 r/min摇床培养过夜。以2%接种量转接于30/250 mL产酶培养基中,37℃、180r/min培养2~3 d,10 000 r/min冷冻离心10 min,取上清液测定酶活,筛选产纤维素酶最高的菌株。1.2.3酶活力测定测定方法参照文献[12-16]修正得到。1)标准曲线绘制。反应的总体系为3.5 mL,1 mg/mL葡萄糖溶液和去离子水共2 mL,DNS试剂1.5 mL。取10支试管编号分别为1~10。分别吸取0、0.2、0.4、0.6、0.8、1.0、1.2、1.4、1.6、1.8 mL葡萄糖溶液至1~10号试管中;然后分别吸取2.0、1.8、1.6、1.4、1.2、1.0、0.8、0.6、0.4、0.2 mL去离子水至相应的1~10号试管中。向1~10号试管中分别加入1.5 mL DNS试剂。将上述试管一同沸水浴5 min,冷却后稀释至10 mL,在540 nm下用分光光度计测吸光值,绘制葡萄糖标准曲线。2)内切葡聚糖酶活力(CMCase activity,CMCA)测定。取4支干净试管,编号(分别为1~4)后加入1.5 mL底物溶液,并向1号试管中加入1.5 mL DNS溶液以钝化其中的纤维素酶,作为空白对照,比色调零。4支试管置于50℃水浴中预热5 min,再加入0.5 mL酶液(液体发酵液的离心上清液),50℃水浴30 min后立即向2、3、4号试管加入1.5 mL DNS溶液以终止酶反应。充分摇匀后沸水浴5 min,取出冷却后,加入去离子水定容至10 mL,充分混匀。以1号试管为空白对照,540 nm测吸光值,2、3、4号3支试管数值取平均值。3)滤纸酶活力(FPA)测定。方法同上,将底物溶液换成1 mL缓冲液和50 mg滤纸,加入的酶液量为1 mL,反应时间为1 h。4)β-葡萄糖苷酶活力(BGL)的测定。方法同上,将底物溶液换成1.5 mL含0.05%水杨苷的醋酸缓冲液,反应时间为1 h。5)酶活定义。在上述条件下,1 mL粗酶液所产生的1 μg葡萄糖定义为一个酶活力单位(U)。以上的测定中均已扣除了粗酶液中所含有的还原糖量。1.2.4产纤维素酶菌株的鉴定①菌株的形态特征:菌株平板培养2~3 d,观察菌落形态特征,菌体形态经染色(革兰氏染色、鞭毛染色、芽孢染色等)后,于显微镜的100倍油镜下观察并照像。②菌株的生理生化特性:生理生化试验包括糖发酵试验、V. P试验、甲基红试验、吲哚试验、柠檬酸盐利用试验、淀粉水解试验、明胶水解试验等。1.2.5产酶条件的优化对复筛得到的菌株进行产酶条件的优化试验。1)摇瓶生长曲线的测定。在基础培养基的基础上,对复筛得到的菌株测定其在摇瓶培养中的生长曲线和产酶曲线,考察菌体生长状况与菌株产酶能力在时间上的相关性。2)接种量的确定。将培养12 h的种子液分别以1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%的接种量转接入30/250 mL产酶培养基中,置于37℃,180 r/min摇床培养,测定酶活,考察不同接种量对菌株产酶的影响。3)培养基成分的优化。①碳源种类对菌株产酶的影响:分别以1%的CMC-Na、葡萄糖、蔗糖、乳糖、酵母膏、牛肉膏、酵母粉、麦芽浸粉、秸秆汁、米糠作为碳源,摇瓶培养后测定酶活,考察碳源种类对菌株产酶的影响。②氮源种类对菌株产酶的影响:分别以1%的(NH4)2SO4、NH4NO3、KNO3、蛋白胨、尿素、酵母膏、酪蛋白胨作为氮源,以1%葡萄糖作为碳源,摇瓶培养后测定酶活,考察氮源种类对菌株产酶的影响。③NaCl浓度水平对菌株产酶的影响:在原始液体产酶培养基的基础上分别加入0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1.0%的NaCl,摇瓶培养后测定酶活,考察NaCl浓度水平对菌株产酶的影响。④底物(CMC-Na)浓度水平对菌株产酶的影响:在原始液体产酶培养基的基础上分别加入0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1.0%的CMC-Na,摇瓶培养后测定酶活,考察底物浓度水平对菌株产酶的影响。⑤根据上述试验得到的最适培养基组成,选取L9(34)型正交表设计正交试验,试验因素和水平见表1,以上清液酶活大小为指标,选择最优培养基组成。2结果与分析2.1纤维素酶产生菌的初筛采用刚果红染色法从瓢虫肠道中分离纯化得到16株透明圈较大的细菌,细菌编号及其D/d值分别为:B-1,6.167;B-35,5.667;B-11,5.000;B-19,4.750;B-9,4.000;B-26,3.750;B-37,3.000;B -27,1.833;B-53,3.000;B-47,2.714;B-36,2.667;B-42,2.571;B-32,2.500;B-46,2.429;B-1 2,2.083;B-10,1.420。2.2纤维素酶产生菌的复筛对初筛得到的16株菌株进行摇瓶复筛,以CMCA为指标,筛选出B-12、B-10、B-53、B-11等4株产纤维素酶活力较高的菌株,CMCA(3次测定的平均值)分别为76.85、68.85、53.94、71.27 U/mL。菌株B-12的CMCA最高,该菌株用以后续的试验。2.3DNS法葡萄糖标准曲线葡萄糖标准曲线如图1所示,得到方程y=0.916 9x-0.110 4,r2=0.991 4。2.4菌株B-12的初步鉴定2.4.1形态特征菌株B-12在牛肉膏蛋白胨琼脂培养基上菌落较大、圆形、边缘整齐、不透明、乳白色、微隆起、湿润、生长较快。显微镜观察细胞呈杆状,两头稍平;周生鞭毛,革兰氏染色呈阳性;芽孢椭圆形或柱状,中生或偏端生,芽孢囊不膨大。2.4.2生理生化特征V.P反应为阴性,吲哚反应、甲基红反应为阳性。该菌株可利用葡萄糖产酸,能水解淀粉,分解明胶,不能利用柠檬酸盐。结合形态特征和生理生化特征,参考《伯杰细菌鉴定手册》第八版,将菌株B-12鉴定为芽孢杆菌属(Bacillus sp.)。2.5产酶条件的优化2.5.1摇瓶生长曲线的确定在原始培养基基础上从发酵开始至72 h,连续取样,在600 nm下测定生物量,离心后取上清液测定酶活,得到与时间相关的该菌株的生长曲线以及产酶曲线(图2、图3)。由图2、图3可知,在3 h左右菌株进入对数生长期,16 h左右菌株生长开始进入稳定期,44 h以后开始进入衰亡期。CMCA、FPA、BGL开始时增长较为缓慢,CMCA、BGL在44 h时达到最大值,FPA在47 h时达到最大,综合考虑将最佳培养时间定为44 h。总体趋势表明菌株B-12的产酶能力与菌体生长状况有耦连相关性。在44 h时CMCA为102.694 U/mL,FPA为7.187 U/mL,BGL为14.593 U/mL。2.5.2不同接种量对菌株酶活力的影响不同接种量对菌株酶活力的影响结果见图4。综合考虑,在接种量为6%时3个酶活指标均较高,CMCA为73.901 U/mL,FPA 为8.232 U/mL,BGL为7.140 U/mL。因此最佳接种量选择6%。2.5.3不同碳源对菌株B-12酶活力的影响碳源对微生物生长代谢的作用主要是提供细胞碳架、细胞生命活动所需的能量以及合成产物的碳架。根据微生物所能产生的酶系不同,不同的微生物可利用的碳源不同。在产酶培养基的基础上改变不同的碳源检测菌株B-12的产酶情况。由图5可知,不同种类的碳源对菌株产纤维素酶影响不同,其中麦芽浸粉作为碳源时3个酶活指标均较高,CMCA为74.592 U/mL,FPA为6.778 U/mL,BGL为7.667 U/mL。因此确定麦芽浸粉作为菌株B-12的产酶培养基的适宜碳源。2.5.4不同氮源对菌株酶活力的影响氮源是合成菌体蛋白质、核酸及其他含氮化合物的重要组成成分。不同种类的氮源对菌株的产酶影响结果见图6。当KNO3作为氮源时,3个酶活指标均较高,CMCA为230.080 U/mL,FPA为101.636 U/mL,BGL 为93.009 U/mL。因此确定该菌株的产酶培养基的适宜氮源为KNO3(图6)。2.5.5NaCl浓度对菌株酶活力的影响试验设置了0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1.0%等10个NaCl浓度梯度,在不同NaCl浓度下测定纤维素酶的3个酶活指标。由图7可知,当NaCl浓度为0.2%时,CMCA活性最高,为75.137 U/mL,FPA和BGL活性相对较高,分别为5.533 U/mL和7.485 U/mL。因此,NaCl浓度为0.2%时菌株B-12的酶活较大。2.5.6底物(CMC-Na)含量对菌株酶活力的影响试验测定CMC-Na不同添加量(0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1.0%)时菌株B-12的产酶水平。由图8可知,当CMC-Na浓度达到0.2%时,CMCA活性最高,为90.043 U/mL,FPA和BGL活性相对较高,分别为7.287 U/mL和7.213 U/mL;表明菌株B-12适宜底物(CMC-Na)浓度为0.2%。2.5.7最适培养基组成确定选取L9(34)型正交表设计正交试验,以上清液酶活大小为指标,选择最优培养基组成。对正交试验结果进行极差分析(表2)可以发现对于CMCA酶活而言,主要因素的影响顺序为:麦芽浸粉>NaCl>KNO3>CMC-Na,最佳组合为:1.25%麦芽浸粉、1.0% KNO3、0.1% NaCl、0.2% CMC-Na。对于FPA酶活,主要因素的影响顺序为:CMC-Na>NaCl>KNO3>麦芽浸粉,最佳组合为:1.25%麦芽浸粉、1.5% KNO3、0.2% NaCl、0.1% CMC-Na。对于BGL酶活,主要因素的影响顺序为:KNO3>CMC-Na>麦芽浸粉>NaCl,最佳组合为:1.25%麦芽浸粉、1.5% KNO3、0.2% NaCl、0.1% CMC-Na。综合考虑,最终确定最佳培养基配方为:1.25%麦芽浸粉,1.5%KNO3,0.2%NaCl,0.1% CMC-Na。此时,CMCA、FPA和BGL分别为111.710 U/mL、35.017 U/mL和116.799 U/mL,较菌株培养44 h时的酶活分别提高了8.78%、387.23%和700.38%。3讨论利用刚果红平板法初筛得到的透明圈比值大的菌株,其酶活并不一定高。试验中我们发现菌株B-1的透明圈比值高达 6.167,而菌株B-12的透明圈比值仅为2.083,但从摇瓶发酵复筛结果看,菌株B-12的酶活要高于B-1的。因此,在筛选纤维素酶高产菌株时,摇瓶发酵复筛是必要的。我们首次从马铃薯瓢虫肠道中分离得到多株产纤维素酶肠道菌并筛选到1株酶活性较高的菌株B-12,产酶条件经优化后,其CMCA为111.710 U/mL,FPA为35.017 U/mL,BGL为116.799 U/mL。而采用同样的酶活测试方法,林祥木等[17]从土壤中分离得到的最好的菌株其CMCA为36 U/mL,FPA为31 U/mL,BGL不足41 U/mL。昆虫是地球生物圈中已知种类最多的一群生物[18,19],昆虫种类、数量及分布范围的多样性意味着昆虫肠道菌的多样性[20]。研究表明昆虫肠道菌是微生物新种的潜在资源[21,22]。因此,昆虫肠道菌可能是新高产纤维素酶的广泛来源,而从昆虫肠道菌分离产纤维素酶菌还鲜有报道,亟待研究开发。参考文献:[1] TOMME P, WARREN R A J, GILKES N R. Cellulose hydrolysis by bacteria and fungi[J]. Advances in microbial physiology, 1995,37(1):1-81.[2] 李燕红,赵辅昆. 纤维素酶的研究进展[J]. 生命科学,2005, 17(4):392-397.[3] 张大羽,诸永,程家安. 黄胸散白蚁和台湾白蚁不同品级虫体内纤维素酶的活性[J]. 浙江大学学报(农业与生命科学版),2001,27(1):1-4.[4] 邱雁临. 纤维素酶的研究和应用前景[J]. 粮食与饲料工业,2001(8): 30-31.[5] 乞永立,耿月霞,任章启. 纤维素酶的生产及应用[J]. 适用技术市场,2000(6):20-21.[6] 刘英昊,崔文华. 纤维素酶及其生产工艺简介[J]. 饲料博览,1997(6):26.[7] 张加春,王权飞,余尊祥. 里氏木霉的纤维素酶产生条件研究[J]. 食品与发酵工业,2000,26(3):1-23.[8] 邬敏辰,李江华, 邻显章. 黑曲霉固态培养生产纤维素酶的研究[J]. 酿酒,1997(6):5-9.[9] 施安辉,刘尔敬. 纤维素酶固体生产和应用中的有关问题[J]. 中国调味品, 1997(10): 6-10.[10] DILLON R J, DILLON V M. The gut bacteria of insects: Nonpathogenic interactions[J]. Annual Review of Entomology, 2004,49: 71-92.[11] CANTWELL B A, McCONNELL D J. Molecular cloning and expression of a Bacillus subtilis 13-glucanase gene in Escherichia coli[J]. Gene,1983,23(2):211-219.[12] GAO J, WENG H, ZHU D, et al. Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover[J]. Bioresource Technology, 2008,99(16):7623-7629.[13] 刘韫滔,榻淑霞,龙传南,等. 纤维素降解菌L-06的筛选、鉴定及其产酶条件的分析[J]. 生物工程学报, 2008,24(6):1112-1116.[14] 周刚.白蚁内生菌的分离及其纤维素酶、木质素酶高产菌株的鉴定[D].哈尔滨: 黑龙江大学,2006.[15] 李方. 一株白蚁内生放线菌次级代谢产物及纤维素酶的研究[D]. 南京: 南京大学,2008.[16] 张树政. 酶工业制剂(下册)[M]. 北京:科学出版社,1998. 606-608.[17] 林祥木,童金秀,陈汉清,等. 产纤维素酶菌株的筛选及产酶条件的选择[J]. 福建农林大学学报(自然科学版),2003,32(4):510-513.[18] 雷朝亮,荣秀兰. 普通昆虫学[M]. 北京:中国农业出版社,2003.[19] 彩万志,庞雄飞,花保祯,等. 普通昆虫学[M]. 北京:中国农业出版社,2001.[20] 张应烙. 昆虫肠道真菌的新活性物质研究[D]. 南京:南京大学,2008.[21] HAWKSWORTH D L. Fungal diversity and its implications for genetic resource collections[J]. Studies in Mycology,2004,50:9-18.[22] WHITE M M,LICHTWADT R W. Fungal symbionts (Harpellales) in Norwegian aquatic insect larvae[J]. Mycologia,2004,96(4):891-910.。

纤维素酶的生产工艺

纤维素酶的生产工艺

纤维素酶的生产工艺纤维素酶是一类能够降解纤维素的酶,可以将纤维素聚合物高效地水解为低聚糖和纤维素寡聚体,具有广泛的应用前景,如生物能源、食品酿造、纺织品加工等领域。

纤维素酶的生产工艺主要分为传统液体培养法和固体表面培养法两种方式。

1. 传统液体培养法:传统液体培养法是指利用液体培养基培养酶菌生产。

该工艺的主要步骤如下:(1)菌种培养:通过对纤维素酶产生菌株的定向筛选和培养,得到高效纤维素酶产生菌株作为菌种。

(2)种子培养:将该菌株接种到适当的种子培养基中,进行预培养,使菌株扩大至一定数量。

(3)发酵过程:将预培养培养液转移到发酵罐中,并加入适宜的培养基,控制发酵条件,如温度、pH、氧气、搅拌速度等,进行酶的产生培养。

(4)酶的分离与提纯:通过酶的沉淀、过滤、分离、浓缩等工艺,将发酵液中的酶分离出来,并进行纯化和浓缩,得到纯净的纤维素酶制剂。

2. 固体表面培养法:固体表面培养法是指利用固体基质作为酶菌的培养基进行酶的生产。

该工艺通常采用固体床培养、滤膜固定化培养和生物反应器培养等方式。

以下以固体床培养为例进行说明:(1)底物预处理:将固体底物(如纤维素)进行预处理,如磨碎、脱色、糖化等,使其成为更易于菌株附着和生长的底物。

(2)菌种接种:将菌株接种到预处理后的固体底物表面,使其附着和生长。

(3)固体床培养:控制好培养条件,如温度、湿度、通气速度等,使菌株在固体底物表面繁殖和产酶。

(4)酶的回收:通过洗涤、离心或其他方法将固体底物与酶分离,得到纯净的酶制剂。

与传统液体培养法相比,固体表面培养法具有操作简单、反应过程稳定、培养基和酶制剂的产量较高等优点。

由于纤维素酶的产生需要与固体底物接触,因此固体表面培养法特别适用于利用废弃物纤维素进行纤维素酶生产的工艺。

总之,纤维素酶的生产工艺根据不同的应用需求和底物来源,选择合适的培养方法和操作条件,可通过传统液体培养法或固体表面培养法进行。

随着科技的发展和生物工程技术的进步,纤维素酶的生产工艺也在不断创新和改进,有望实现更高效、更经济的纤维素酶制备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验步骤
• 采样 采样: 从腐殖质和纤维素丰富的地点采取土样。 表层土亦可。因为此处是筛选菌种,不是 检测土壤。故,采样原则是:目标菌种最 可能出现的地点。
实验步骤
• 筛选: 筛选: 以滤纸条和CMC-Na为唯一碳源的液体 筛选培养基进行细菌的初步筛选,于28度 摇床培养1周。 两种培养基一种是溶于水的筛选压, 一种是不溶于水的筛选压。设置两种筛选 压利于筛选到目标菌株。
纤维素酶产生菌的筛选分离与 酶活检测
09工业环保与安全技术
纤维素(cellulose )
• 由葡萄糖单元共价连接的长链所组成的结 构多糖。通常含数千个葡萄糖单位,是植 物细胞壁的主要组成成分。
纤维素(cellulose )
麻、麦秆、稻草、甘蔗渣等, 麦秆、稻草、甘蔗渣等, 渣等 都是纤维素的丰富来源。 都是纤维素的丰富来源。是 地球上最古老、 地球上最古老、最丰富的天 高分子, 然高分子,是取之不尽用之 不竭的, 不竭的,人类最宝贵的天然 可再生资源。常温下, 可再生资源。常温下,纤维 素既不溶于水, 素既不溶于水,又不溶于一 般的有机溶剂, 酒精、 般的有机溶剂,如酒精、乙 丙酮、苯等。 醚、丙酮、苯等。它也不溶 于稀碱溶液中。因此, 于稀碱溶液中。因此,在常 温下,它是比较稳定的, 温下,它是比较稳定的,这 是因为纤维素分子之间存在 氢键。 氢键。
作业
• 下周(12周)上交纸质实验报告。内含结 果图片与结果分析。 • 同时与实验设计(纸质)一同上交。
Байду номын сангаас
实验实施1
• 5.摆放斜面,斜面至试管的1/5处即可。 • 6.将采取的土样置于灭菌冷却后的生理盐水 中,振荡10-20min,用无菌移液管吸取菌 悬液5mL至CMC-Na和滤纸条筛选培养基 (液体)中,摇床28℃培养一周。
实验实施2
• • • • • • • • 1.配制刚果红鉴定平板,无菌水; 2.包扎1ml、10ml移液管1只,空试管12只; 3.包装培养皿6个; 4. 4.将以上用品灭菌; 5.无菌操作倒平板; 6.梯度稀释涂布; 7.倒置培养于28℃培养箱48小时 8.挑取透明圈较大的菌落培养于斜面24小时,4℃ 冰箱保存
实验步骤
• 酶活检测: 酶活检测: 刚果红鉴定平板鉴定,在刚果红鉴定 平板上进行梯度稀释涂布,28度培养箱培 养48小时后,比较在刚果红鉴定平板上留 下的透明圈大小,保存透明圈大的菌株。 梯度稀释根据菌液浓度决定稀释程度。 一般为10-5、10-6. 保存菌株用斜面培养24小时后,4℃冰 箱保存。
实验实施1
1.分别配制60mLCMC-Na和60mL滤纸条筛选 培养基(液体),各分装5ml到2只试管, 再向试管中加入1.5%的琼脂(制作斜面)。 滤纸条培养基中的滤纸条分开称取!余下 50mL液体培养基分装至150mL三角瓶。 2.配制约50mL生理盐水。 3.包扎准备一只5mL移液管。 4.将以上用品灭菌。
纤维素酶(cellulase )
• 纤维素酶是一类能够将纤维素降解为葡萄 糖的多组分酶系的总称 。在分解纤维素时 起生物催化剂的作用。
纤维素酶产生菌的筛选分离
• 实验内容:从腐殖质和纤维素丰富的地点 实验内容: 采取土样,(第十周上课前12小时内采集, 并于上课时各组自行携带至实验室)。接 种至以滤纸条和CMC-Na为唯一碳源的液体 筛选培养基中,进行细菌的初步筛选,于 28度摇床培养1周后,进行刚果红鉴定平板 鉴定,(即在刚果红鉴定平板上进行梯度 稀释涂布)。28度培养箱培养48小时后, 比较在刚果红鉴定平板上留下的透明圈大 小,保存透明圈大的菌株。
纤维素酶活检测
• 1.包扎1ml、10ml移液管1只,空试管12只; 用于两瓶筛选培养液稀释。 • 2.包装培养皿6个;用于制作刚果红鉴定平 板。 • 1、2项用品可置于160℃烘箱 小时干热灭 ℃烘箱2小时干热灭 菌
纤维素酶活检测
• 3.配制刚果红鉴定平板,无菌水; 每组配制100mL刚果红鉴定培养基(制作 6个平板,用于两瓶筛选培养液的稀释涂布) 每组配制约150mL蒸馏水灭菌(用于两 组筛选培养液的稀释) 以上培养基与蒸馏水121℃,20min湿热 灭菌。
纤维素酶活检测
• 4.取出培养基,摇匀后 摇匀后,无菌操作倒平板; 摇匀后 • 5.两组培养液均进行梯度稀释涂布;(取菌 液时,请摇晃 摇晃2-3min后取,以便于悬浮菌 摇晃 后 株)
涂布平板接种法:
纤维素酶活检测
• 6.倒置培养于28℃培养箱48小时 • 7.观察结果并拍照。(拍照时,请在同一平 拍照时, 拍照时 面上放置有刻度的尺子作为参照) 面上放置有刻度的尺子作为参照 观察结果时间安排:1班,周三上午 3班 周四下午 2班 周五 • 8. 有透明圈最大的菌落的平板,直接放4℃ 冰箱保存。
相关文档
最新文档