直流输电原理 ppt课件
合集下载
直流系统知识PPT课件

传感器故障
传感器损坏或信号传输受干扰,可能 导致系统误动作或无法动作。
故障诊断方法和步骤
观察法
测量法
通过观察系统运行状态、指示灯、显示屏等 信息,初步判断故障类型和位置。
使用万用表、示波器等工具测量关键点的电 压、电流、波形等参数,进一步确定故障位 置。
替换法
逐步排查法
将疑似故障的元器件或模块替换为正常件, 观察系统是否恢复正常运行,以验证故障点。
优化设计建议及案例分析
采用模块化设计
提高系统的可维护性和可扩展性,方便后期升级和改造。
智能化监控与管理
引入先进的监控和管理系统,实现远程监控、故障诊断和预警等功能。
高效能源利用
采用高效的电源设备和节能技术,降低系统能耗和运行成本。
案例分析
结合具体案例,分析直流系统设计的优缺点及改进方向,提供实际参考。
欠压保护原理
通过检测电压大小,当电压低于设备正常工作所需的最小电压时,触 发欠压保护动作,切断或提高电压以保证设备正常运行。
实现方法
采用电子式或机械式保护装置,通过设定合理的阈值和延时时间,实 现过流、过压和欠压保护的自动或手动控制。
控制策略类型及其优缺点比较
开环控制策略
根据系统输入和预设模型进行控 制,优点是实现简单、成本低, 缺点是精度低、抗干扰能力差。
THANKS
感谢观看
可靠性
选择经过验证的、可靠性高的品 牌和型号。
维护便捷性
考虑设备的维护、更换和升级等 方面的便捷性。
04
直流系统保护与控制策略
过流、过压和欠压保护原理和实现方法
过流保护原理
通过检测电流大小,当电流超过设定阈值时,触发过流保护动作,切 断或降低电流以防止设备损坏。
直流输电工程控制保护系统总概课件

–直流输电系统的起停控制; –直流输送功率的大小和方向的控制; –抑制换流器不正常运行及对所联交流系统的干扰; –发生故障时,保护换流站设备; –对换流站、直流线路的各种运行参数(如电压及电
流等)以及控制系统本身的信息进行监视。
直流控制保护系统概况
➢ 直流控制保护系统的对象:
–全换流站所有设备。
换流器 换流变压器、分接头 直流场开关/隔刀/地刀 直流滤波器 交流滤波器 交流场开关/隔刀/地刀 ……
运行人员控制系统; • 在线谐波监视; • 对辅助系统的监控(包括站用电系统的控制/监
视,以及对其它辅助系统的监视功能)等。
交、直流站控系统
–站控系统配置原则
• 采用分散式结构,按面向物理对象的原则进行 各站控子系统的设置,不同子系统之间尽可能 少的交换信息,某一对象异常不影响其它对象 功能的正确运行。
直流控制保护系统构成
1. 直流控制(极控)系统
是换流站控制系统的核心,主要功能是通过对整流侧和逆变侧触发角的 调节,实现系统要求的输送功率或输送电流。该部分主要包括每个极的 极控系统的主机、分布式现场总线和分布式I/O等设备。
2. 直流系统保护
主要包括直流极保护(换流器保护、直流场保护、直流线路保护、以及 接地极引线保护)、换流变保护、直流滤波器保护、交流滤波器保护。
主机一
25
26
27
28
29 +3B29
30
主机二
31
32
33
34
35
36
37
38 +3B37
端子排
39
40
直流系统保护
➢ 换流变压器保护构成
➢ 换流变压器保护RCS-977采用独立 装置实现
流等)以及控制系统本身的信息进行监视。
直流控制保护系统概况
➢ 直流控制保护系统的对象:
–全换流站所有设备。
换流器 换流变压器、分接头 直流场开关/隔刀/地刀 直流滤波器 交流滤波器 交流场开关/隔刀/地刀 ……
运行人员控制系统; • 在线谐波监视; • 对辅助系统的监控(包括站用电系统的控制/监
视,以及对其它辅助系统的监视功能)等。
交、直流站控系统
–站控系统配置原则
• 采用分散式结构,按面向物理对象的原则进行 各站控子系统的设置,不同子系统之间尽可能 少的交换信息,某一对象异常不影响其它对象 功能的正确运行。
直流控制保护系统构成
1. 直流控制(极控)系统
是换流站控制系统的核心,主要功能是通过对整流侧和逆变侧触发角的 调节,实现系统要求的输送功率或输送电流。该部分主要包括每个极的 极控系统的主机、分布式现场总线和分布式I/O等设备。
2. 直流系统保护
主要包括直流极保护(换流器保护、直流场保护、直流线路保护、以及 接地极引线保护)、换流变保护、直流滤波器保护、交流滤波器保护。
主机一
25
26
27
28
29 +3B29
30
主机二
31
32
33
34
35
36
37
38 +3B37
端子排
39
40
直流系统保护
➢ 换流变压器保护构成
➢ 换流变压器保护RCS-977采用独立 装置实现
直流输电基本原理0709

p1
p2
p3
p4
p5
p6
p1
p2
p3
p4
p5
p6
1
ea
C3
0 2
eb
C5
4
ec
C1
6
ea
C3
8
eb
C5
10
ec
C1
12
u
t
0.5
C1 1 C2
0
1
0.5
0.5
C4
2 4
C6
6
C2
8
C4
10
C6
12
0.5
1.5
1
2 1
5 5 6 6 1
6
6
2
1
1
3
2 3
2
3 eba 4
3 4
3
4 eca 5
4 5
U d 1.35 U cos a
3
L I d
可控整流电压
C
3 3 U d 1.35 U cos a L I d Udio cos a L I d
电压矢量关系
ea e e
( a+ c)/2
ec
电压矢量关系
eb
可控整流器的外特性
换流器的等值电路
2 )Id 3
iB iB1 iB 2
(1
1 )Id 3
2 )Id 3
iC iC1 iC 2
(1
直流谐波
1. 直流侧谐波
• 特征谐波 n=kp 6脉动换流器 12脉动换流器 • 非特征谐波 产生的原因: 6、12、18、… 12、24、36、…
交流电压中含有谐波电压 两个6脉动组的换流变漏抗/变比误差 两极换流器运行参数不相等 换流变三相漏抗误差 触发脉冲不等距
特高压直流输电换流技术-精选文档

• 双极运行(全压/降压)
12
特高压直流运行方式
• 单极运行方式 • 单换流器运行方式 • 大地回线(全压/降压) • 金属回线(全压/降压) • 双换流器运行方式 • 大地回线(全压/降压) • 金属回线(全压/降压) • 双极运行方式 • 单换流器运行方式(全压/降压) • 不对称运行方式(全压/降压) • 双换流器运行方式(全压/降压)
500 kV 750 kV
BIPOLE 2
9 x 700 MW 60 Hz
IVAIPORÃ
ITABERÁ
T.PRETO
2T
345 kV
SOUTHEAST SYSTEM
~.
4T
F. IGUAÇU
2T
500 kV
2T 500 kV
SOUTH -SOUTHEAST INTERCONNECTION SOUTH SYSTEM
8
三种接线方式的比较
9
串联分压方案
• • • 1. • 2.
低压端换流器 高压端换流器
500 kV 400 kV
300 kV 400 kV
10
• 2.2 特高压直流系统运行方式
11
常规高压直流运行方式
• 单极运行(不计OLT)
• • • 单极大地回线(全压/降压) 单极金属回线(全压/降压) 单极双极线并联大地回线(不考虑)
28
3
双12脉动换流器串联/极
12台单相双绕组换流变压器,每台容量:320MVA 4组6脉动换流器,每组参数:200kV,4000A,800MW
4
例:伊泰普工程
500 kV
Байду номын сангаас
+/- 600 kV BIPOLE 1
高压直流输电技术优秀课件

但是汞弧阀制造技术复杂、价格昴贵、逆弧
故障率高、可靠性较差、运行维护不便等因素
,使直流输电的应用和发展受到限制。
二、直流输电技术的发展
第二阶段:晶闸管阀换流时期
20世纪70年代以后,电力电子技术和微电子技术的 迅速发展,高压大功率晶闸管的问世,晶闸管换流 阀和计算机控制技术在直流输电工程中的应用,这 些进步有效地改善了直流输电的运行性能和可靠性, 促进了直流输电技术的发展。
二、直流输电技术的发展
直流输电的发展与换流技术有密切的关系。
(特别与高电压、大功率换流设备的发展)
第一阶段:汞弧阀换流时期
1901年发明的汞弧整流管只能用于整流。
1928年具有栅极控制能力的汞弧阀研制成功,
它不但可用于整流,同时也解决了逆变问题。
因此大功率汞弧阀使直流输电成为现实。
1954年世界上第一个采用汞弧阀性直流输
但是IGBT功率小、损耗大,不利于大型直流输电 工程采用。最新研制的门极换相晶闸管(IGCT) 和大功率碳化硅元件,该元件电压高、通流能力 强、损耗低、可靠性高。
1949年~2020年我国发电装机容量、用电量图
一、发展特高压电网的必要性
2、发展特高压电网是电源结构调整和优化布局的必 然要求。
我国发电能源以煤、水为主。西部地区资源 丰富,全国四分之三以上经济可开发水能资源分布在 西南地区,煤炭资源三分之二以上分布在西北地区; 东部地区经济发达,全国三分之二以上的电力负荷集 中在京广铁路以东经济发达地区,未来的负荷增长也 将保持这一趋势。
高压直流输电技术优秀课件
目录
一、发展特高压电网的必要性
二、直流输电技术的发展
三、直流输电与交流输电的性 能比较
四、高压直流输电系统的结构 和元件
柔性直流输电技术PPT课件

17
大功率开关器件的分类
大功率开关器件
晶闸管类
晶体管类
发射极关断晶闸管
GTO
ETO IGCT
可关断晶闸管 集成门极换相晶闸管
模块式IGBT
绝缘栅双极晶体管
压接式IGBT (IEGT)
电网设备主要采用3300V及以上等级的高压IGBT(HV IGBT1)8
晶闸管(Thyristor)
晶体管类(Transistor)
电压
集电极和发射 极电压
实际关断和导通波形
16
功率器件的发展
半控器件
• 开通可控 • 关断不可控
全控器件
• 开通可控 • 关断可控
IGBT/IEGT
Thyristor
GTO
IGCT
ETO
• 由半控型到全控型
• 电压、电流等级逐渐提高(几kV/几kA)
• 开关速度由低到高(50/60Hz 到几kHz)
电压已达±800kV以上, 传输功率6400MW,适 合大系统间大规模功率 传输,适合能源的优化 配置
结构紧凑、功率密度高, 换流站面积约小40%
同等容量下,设计相对 简单、主要设备在工厂 生产、现场安装和维护 较为简单
能为弱系统、无源网络 供电,如岛屿供电、海 上油气平台供电、风电 联网等。
故障后处于短路状态
结构上易于串联
散热性能好
封装难度大
供应商少
• 压接式封装可靠性更高
两种封装模式均有柔直应用 • ABB工程全部采用 StatkPak • 西门子 Transbay工程用PMI
可实现黑启动
9
VSC-HVDC
工程应用比较
节 约
空 间
LCC-HVDC
柔性直流输电基本控制原理[优质ppt]
![柔性直流输电基本控制原理[优质ppt]](https://img.taocdn.com/s3/m/38aa131f27d3240c8547ef5f.png)
超高压输电公司
柔性直流输电系统的基
请播放幻灯本片控,制然原后理点击此处
学习时长:60分钟
对应培训规范课程单元:请输入对应课程单元名称 对应培训规范课程编码:请输入课程单元对应编码
.
超高压输电公司
课程内容目录
1 abc坐标系下MMC的数学模型 2 坐标系的变换 3 dq坐标系下的数学模型
4
瞬时无功理论
三相abc坐标下数学模型
L
c
d ia dt
R ia
u conv_a
usa
L
c
d ib dt
R ib
u conv_b
usb
L
c
d ic dt
R ic
u conv_c
usc
.
超高压输电公司
MMC换流器控制策略
dia
dt
SM 1
Ud
2
uan
SM 2
……
SM N
- ian
.
超高压输电公司
MMC换流器控制策略
Ud (napnan)E
Usa-LcddaitpnaE p U2d Usa-Lcddait n-naE n -U2d
.
超高压输电公司
MMC换流器控制策略
Id
iap
SM 1
uap
SM 2
Usa-LcddaitpnaE p U2d
Id
iap
ibp
icp
SM 1
SM 1
SM 1
ubrg_ap
SM 2
SM 2
柔性直流输电系统的基
请播放幻灯本片控,制然原后理点击此处
学习时长:60分钟
对应培训规范课程单元:请输入对应课程单元名称 对应培训规范课程编码:请输入课程单元对应编码
.
超高压输电公司
课程内容目录
1 abc坐标系下MMC的数学模型 2 坐标系的变换 3 dq坐标系下的数学模型
4
瞬时无功理论
三相abc坐标下数学模型
L
c
d ia dt
R ia
u conv_a
usa
L
c
d ib dt
R ib
u conv_b
usb
L
c
d ic dt
R ic
u conv_c
usc
.
超高压输电公司
MMC换流器控制策略
dia
dt
SM 1
Ud
2
uan
SM 2
……
SM N
- ian
.
超高压输电公司
MMC换流器控制策略
Ud (napnan)E
Usa-LcddaitpnaE p U2d Usa-Lcddait n-naE n -U2d
.
超高压输电公司
MMC换流器控制策略
Id
iap
SM 1
uap
SM 2
Usa-LcddaitpnaE p U2d
Id
iap
ibp
icp
SM 1
SM 1
SM 1
ubrg_ap
SM 2
SM 2
直流输电换流原理讲义

-
2Xg Id 2E
其它参数不变的情况下:
Id、E、 Xg 、 a
g
2020年3月27日
42
第二章 换流器的工作原理
换相重叠角g(a 变化时)
直流输电换流原理
2020年3月27日
43
第二章 换流器的工作原理
换相角g 与工况
直流输电换流原理
2020年3月27日
44
第二章 换流器的工作原理
直流输电换流原理
直流输电换流原理
2020年3月27日
19
补充材料:晶闸管阀
阳极电抗
均压电路
稳态均压电阻
直流输电换流原理
晶闸管 关断暂态均压
冲击陡波均压
组间均压
2020年3月27日
20
补充材料:晶闸管阀
换流器桥臂
组件
2020年3月27日
直流输电换流原理
桥臂
21
第二章 换流器的工作原理
换流器的功能
直流输电换流原理
• 交流-直流变换 • 直流-交流变换 • 直流-直流变换 • 交流-交流变换
整流器 逆变器 斩波器 变频器
2020年3月27日
22
第二章 换流器的工作原理
三相交-直换流器桥接线
共阴极组
直流输电换流原理
桥臂
2020年3月27日
共阳极组
23
第二章 换流器的工作原理
三相桥式换流器的优点
直流输电换流原理
i1
换相中
ig
ti=L1=g-=iIa1dds22iL2=ig:t1gL;2=ii-gL1gdEdg=id2L=tdgcigX2tiigog-5IEdgssd===2Lit5(g0eIct=c;ddoaA(s-e=IAaad=idg-=-t-22e-icX2gcEo2E)g=ssX2=icenEgocetascc)aaotis5