【高考数学】数列的证明和求数列通项公式

合集下载

高考数学复习历年考点题型专题讲解38--- 数列中的通项公式(解析版)

高考数学复习历年考点题型专题讲解38--- 数列中的通项公式(解析版)

高考数学复习历年考点题型专题讲解38数列中的通项公式一、题型精讲 解题方法与技巧 题型一、由S a n n 与的关系求通项公式例1、(2020届山东省烟台市高三上期末)已知数列{}n a 的前n 项和n S 满足()()21n n S n a n N *=+∈,且12a =.求数列{}n a 的通项公式;【解析】因为2(1)n n S n a =+,n *∈N , 所以112(2)n n S n a ++=+,n *∈N ,两式相减得112(2)(1)n n n a n a n a ++=+-+, 整理得1(1)n n na n a +=+,即11n n a a n n +=+,n *∈N ,所以n a n ⎧⎫⎨⎬⎩⎭为常数列, 所以121n a a n ==,所以2n a n =例2、(2020届山东省枣庄、滕州市高三上期末)已知等比数列{}n a 满足1,a 2,a 31a a -成等差数列,且134a a a =;等差数列{}n b 的前n 项和2(1)log 2nn n a S +=.求:(1),n a n b ;【解析】设{}n a 的公比为q. 因为1,a 2,a 31a a -成等差数列, 所以()21312a a a a =+-,即232a a =.因为20a ≠,所以322a q a ==. 因为134a a a =,所以4132a a q a ===. 因此112n n n a a q-==.由题意,2(1)log 2n n n a S +=(1)2n n+=.所以111b S ==,1223b b S +==,从而22b =.所以{}n b 的公差21211d b b =-=-=.所以1(1)1(1)1n b b n d n n =+-=+-⋅=.例3、(2020届山东省德州市高三上期末)已知数列{}n a 的前n 项和为n S ,且0n a >,242n n n S a a =+.求数列{}n a 的通项公式;【解析】当1n =时,211142a a a =+,整理得2112a a =,10a >,解得12a =;当2n ≥时,242n n n S a a =+①,可得211142n n n S a a ---=+②,①-②得2211422n n n n n a a a a a --=-+-,即()()221120n n n n a a a a ----+=,化简得()()1120n n n n a a a a --+--=,因为0n a >,10n n a a -∴+>,所以12n n a a --=,从而{}n a 是以2为首项,公差为2的等差数列,所以()2212n a n n =+-=; 题型二、由a a n n 与1+的递推关系求通项公式例3、【2019年高考全国II 卷理数】已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+,1434n n n b b a +-=-.(1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2)求{a n }和{b n }的通项公式.【解析】(1)由题设得114()2()n n n n a b a b +++=+,即111()2n n n n a b a b +++=+. 又因为a 1+b 1=l ,所以{}n n a b +是首项为1,公比为12的等比数列. 由题设得114()4()8n n n n a b a b ++-=-+,即112n n n n a b a b ++-=-+.又因为a 1–b 1=l ,所以{}n n a b -是首项为1,公差为2的等差数列. (2)由(1)知,112n n n a b -+=,21nn a b n -=-. 所以111[()()]222n n n n n na ab a b n =++-=+-, 111[()()]222n n n n n n b a b a b n =+--=-+.例4、(2020届山东省德州市高三上期末)对于数列{}n a ,规定{}n a ∆为数列{}n a 的一阶差分数列,其中()*1n n n a a a n +∆=-∈N ,对自然数()2k k ≥,规定{}kn a ∆为数列{}n a 的k 阶差分数列,其中111k k k n n n a a a --+∆=∆-∆.若11a =,且()2*12n n n n a a a n +∆-∆+=-∈N ,则数列{}n a 的通项公式为()A .212n n a n -=⨯ B .12n n a n -=⨯C .()212n n a n -=+⨯D .()1212n n a n -=-⨯【答案】B【解析】根据题中定义可得()()2*1112n n n n n n n n a a a a a a n a +++∆-∆+=∆-∆-∆+=-∈N ,即()1122nn n n n n n n a a a a a a a ++-∆=--=-=-,即122nn n a a +=+,等式两边同时除以12n +,得111222n n n n a a ++=+,111222n n n n a a ++∴-=且1122a =, 所以,数列2n n a ⎧⎫⎨⎬⎩⎭是以12为首项,以12为公差的等差数列,()1112222n n a n n ∴=+-=, 因此,12n n a n -=⋅.故选:B.例5、【2019年高考天津卷理数】设{}n a 是等差数列,{}n b 是等比数列.已知1122334,622,24a b b a b a ===-=+,.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足111,22,2,1,,k k n kk c n c b n +=⎧<<=⎨=⎩其中*k ∈N . (i )求数列(){}221nna c -的通项公式;【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意得2662,6124,q d q d =+⎧⎨=+⎩解得3,2,d q =⎧⎨=⎩故14(1)331,6232n n n n a n n b -=+-⨯=+=⨯=⨯. 所以,{}n a 的通项公式为{}31,n n a n b =+的通项公式为32n n b =⨯. (2)(i )()()()()22211321321941nnnn n n n a c a b -=-=⨯+⨯-=⨯-.所以,数列(){}221nna c -的通项公式为()221941nnn a c -=⨯-.题型三、新定义题型中通项公式的求法例6、【2020年高考江苏】已知数列{}()n a n ∈*N 的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有11111kk k n nn S S a λ++-=成立,则称此数列为“λ~k ”数列.(1)若等差数列{}n a 是“λ~1”数列,求λ的值; (2)若数列{}n a”数列,且0n a >,求数列{}n a 的通项公式; 【解析】(1)因为等差数列{}n a 是“λ~1”数列,则11n n n S S a λ++-=,即11n n a a λ++=,也即1(1)0n a λ+-=,此式对一切正整数n 均成立.若1λ≠,则10n a +=恒成立,故320a a -=,而211a a -=-,这与{}n a 是等差数列矛盾.所以1λ=.(此时,任意首项为1的等差数列都是“1~1”数列)(2)因为数列*{}()n a n ∈N是“”数列,==.因为0n a >,所以10n n S S +>>1-=.n b,则1n b -=221(1)(1)(1)3n n n b b b -=->. 解得2n b =,即2=,也即14n nS S +=, 所以数列{}n S 是公比为4的等比数列.因为111S a ==,所以14n n S -=.则21(1),34(2).n n n a n -=⎧=⎨⨯≥⎩例7、【2019年高考北京卷理数】已知数列{a n },从中选取第i 1项、第i 2项、…、第i m 项(i 1<i 2<…<i m ),若12mi i i a a a <<⋅⋅⋅<,则称新数列12mi i i a a a ⋅⋅⋅,,,为{a n }的长度为m 的递增子列.规定:数列{a n }的任意一项都是{a n }的长度为1的递增子列.(1)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列; (2)已知数列{a n }的长度为p 的递增子列的末项的最小值为0m a ,长度为q的递增子列的末项的最小值为0n a .若p <q ,求证:0m a <0n a ;(3)设无穷数列{a n }的各项均为正整数,且任意两项均不相等.若{a n }的长度为s 的递增子列末项的最小值为2s –1,且长度为s 末项为2s –1的递增子列恰有2s -1个(s =1,2,…),求数列{a n }的通项公式.【解析】(1)1,3,5,6.(答案不唯一)(2)设长度为q 末项为0n a 的一个递增子列为1210,,,,q r r r n a a a a -.由p <q ,得1pq r r n a a a -≤<.因为{}n a 的长度为p 的递增子列末项的最小值为0m a ,又12,,,pr r r a a a 是{}n a 的长度为p 的递增子列,所以0pm r a a ≤.所以0m n a a <·(3)由题设知,所有正奇数都是{}n a 中的项.先证明:若2m 是{}n a 中的项,则2m 必排在2m −1之前(m 为正整数).假设2m 排在2m −1之后.设121,,,,21m p p p a a a m --是数列{}n a 的长度为m 末项为2m −1的递增子列,则121,,,,21,2m p p p a a a m m --是数列{}n a 的长度为m +1末项为2m 的递增子列.与已知矛盾.再证明:所有正偶数都是{}n a 中的项.假设存在正偶数不是{}n a 中的项,设不在{}n a 中的最小的正偶数为2m . 因为2k 排在2k −1之前(k =1,2,…,m −1),所以2k 和21k -不可能在{}n a 的同一个递增子列中.又{}n a 中不超过2m +1的数为1,2,…,2m −2,2m −1,2m +1,所以{}n a 的长度为m +1且末项为2m +1的递增子列个数至多为1(1)22221122m m m --⨯⨯⨯⨯⨯⨯=<个.与已知矛盾.最后证明:2m 排在2m −3之后(m ≥2为整数).假设存在2m (m ≥2),使得2m 排在2m −3之前,则{}n a 的长度为m +1且末项为2m +l 的递增子列的个数小于2m .与已知矛盾.综上,数列{}n a 只可能为2,1,4,3,…,2m −3,2m ,2m −1,…. 经验证,数列2,1,4,3,…,2m −3,2m ,2m −1,…符合条件.所以1,1,n n n a n n +⎧=⎨-⎩为奇数,为偶数.二、达标训练1、(2020届浙江省温州市高三4月二模)已知数列{}n a 满足:12125 1,6n n n a a a a n -≤⎧=⎨-⎩()*n N ∈)若正整数()5k k ≥使得2221212k k a a a a a a ++⋯+=⋯成立,则k =()A .16B .17C .18D .19【答案】B【解析】当6n ≥时,()1211111n n n n n a a a a a a a +--==+-,即211n n n a a a +=-+,且631a =.故()()()222677687116......55n n n n a a a a a a a a a n a a n +++++=-+-++-+-=-+-,2221211...161k k k a a a a k a +++++=+-=+,故17k =.故选:B .2、(2020届山东省潍坊市高三上学期统考)设数列{}n a 的前n 项和为n S ,且21n S n n =-+,在正项等比数列{}n b 中22b a =,45b a =.求{}n a 和{}n b 的通项公式;【解析】当1n =时,111a S ==, 当2n ≥时,1n n n a S S -=- =22(1)[(1)(1)1]n n n n -+----+=22n -,所以1(1)22(2)n n a n n =⎧=⎨-≥⎩.所以22b =,48b =于是2424b q b ==,解得2q 或2q =-(舍)所以22n n b b q-=⋅=12n -.3、(2020届山东省日照市高三上期末联考)已知数列{}{},n n a b 满足:1112,,2n n n n a a n b a n b ++=+-==.(1)证明数列{}n b 是等比数列,并求数列{}n b 的通项; 【解析】证明:因为n n b a n -=,所以n n b a n =+.因为121n n a a n +=+- 所以()()112n n a n a n +++=+ 所以12n n b b +=.又12b =,所以{}n b 是首项为12b =,公比为2的等比数列,所以1222n n n b -=⨯=.4、(2020·山东省淄博实验中学高三上期末)已知数列{}n a 的各项均为正数,对任意*n ∈N ,它的前n 项和n S 满足()()1126n n n S a a =++,并且2a ,4a ,9a 成等比数列.求数列{}n a 的通项公式;【解析】对任意*n ∈N ,有()()1126n n n S a a =++,①∴当1a =时,有()()11111126S a a a ==++,解得11a =或2. 当2n ≥时,有()()1111126n n n S a a ---=++.② ①-②并整理得()()1130n n n n a a a a --+--=. 而数列{}n a 的各项均为正数,13n n a a -∴-=. 当11a =时,()13132n a n n =+-=-,此时2429a a a =成立;当12a =时,()23131n a n n =+-=-,此时2429a a a =,不成立,舍去.32n a n ∴=-,*n ∈N .5、(2020届山东师范大学附中高三月考)设等差数列{}n a 前n 项和为n S ,满足424S S =,917a =.(1)求数列{}n a 的通项公式;(2)设数列{}n b 满足1212112n n n b b b a a a +++=-…,求数列{}n b 的通项公式 【解析】(1)设等差数列{}n a 首项为1a ,公差为d .由已知得11914684817a d a d a a d +=+⎧⎨=+=⎩,解得112a d =⎧⎨=⎩.于是12(1)21n a n n =+-=-.(2)当1n =时,1111122b a =-=. 当2n ≥时,1111(1)(1)222n n n n nb a -=---=, 当1n =时上式也成立.于是12n n nb a =. 故12122n n n n n b a -==. 6、(2020·浙江温州中学3月高考模拟)已知各项均为正数的数列{}n a 的前n 项和为n S ,且11a =,n a =*n N ∈,且2n ≥)求数列{}n a 的通项公式;【解析】由n a =1n n S S --=+1(2)n =≥,所以数列1==为首项,以1为公差的等差数列,1(1)1n n =+-⨯=,即2n S n =,当2n ≥时,121n n n a S S n -=-=-,当1n =时,111a S ==,也满足上式,所以21n a n =-;7、【2019年高考浙江卷】设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式;【解析】(1)设数列{}n a 的公差为d ,由题意得11124,333a d a d a d +=+=+,解得10,2a d ==. 从而*22,n a n n =-∈N . 所以2*n S n n n =-∈N ,,由12,,n n n n n n S b S b S b +++++成等比数列得()()()212n n n n n n S b S b S b +++=++.解得()2121n n n n b S S S d++=-. 所以2*,n b n n n =+∈N .8、【2019年高考江苏卷】定义首项为1且公比为正数的等比数列为“M-数列”.(1)已知等比数列{a n }()n *∈N 满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M-数列”;(2)已知数列{b n }()n *∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n项和.①求数列{b n }的通项公式;【解析】解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M—数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠.由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n nb b S b b ++=-,当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .。

数列通项公式常见求法(最新整理)

数列通项公式常见求法(最新整理)

数列通项公式的常见求法数列在高中数学中占有非常重要的地位,每年高考都会出现有关数列的方面的试题,一般分为小题和大题两种题型,而数列的通项公式的求法是常考的一个知识点,一般常出现在大题的第一小问中,因此掌握好数列通项公式的求法不仅有利于我们掌握好数列知识,更有助于我们在高考中取得好的成绩。

下面本文将中学数学中有关数列通项公式的常见求法进行较为系统的总结,希望能对同学们有所帮助。

一.公式法高中重点学了等差数列和等比数列,当题中已知数列是等差数列或等比数列,在求其通项公式时我们就可以直接利用等差或等比数列的公式来求通项,只需求得首项及公差公比。

1、等差数列公式例1、(2011辽宁理)已知等差数列{a n }满足a 2=0,a 6+a 8=-10 (I )求数列{a n }的通项公式;解:(I )设等差数列的公差为d ,由已知条件可得{}n a 110,21210,a d a d +=⎧⎨+=-⎩解得11,1.a d =⎧⎨=-⎩故数列的通项公式为 {}n a 2.n a n =-2、等比数列公式例2.(2011重庆理)设是公比为正数的等比数列,,。

{}n a 12a =324a a =+ (Ⅰ)求的通项公式{}n a 解:I )设q 为等比数列的公比,则由,{}n a 21322,4224a a a q q ==+=+得即,解得(舍去),因此220q q --=21q q ==-或 2.q =所以的通项为{}n a 1*222().n n n a n N -=⋅=∈3、通用公式若已知数列的前项和的表达式,求数列的通项可用公式n n S {}n a n a 求解。

一般先求出a1=S1,若计算出的an 中当n=1适合时可以⎩⎨⎧≥-==-211n S S n S a n nn n 合并为一个关系式,若不适合则分段表达通项公式。

例3、已知数列的前n 项和,求的通项公式。

}{n a 12-=n s n }{n a 解:,当时011==s a 2≥n;代入化简得例23、(2007天津理)在数列中,,其{}n a 1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,中.0λ>(Ⅰ)求数列的通项公式;{}n a 解:,22222(2)22a λλλλ=++-=+,2232333(2)(2)222a λλλλλ=+++-=+.3343444(22)(2)232a λλλλλ=+++-=+由此可猜想出数列的通项公式为.{}n a (1)2n nn a n λ=-+以下用数学归纳法证明.(1)当时,,等式成立.1n =12a =(2)假设当时等式成立,即,n k =(1)2k k k a k λ=-+那么111(2)2k k k a a λλλ++=++-11(1)222k k k k kk λλλλλ++=-+++-.11[(1)1]2k k k λ++=+-+这就是说,当时等式也成立.根据(1)和(2)可知,等式对1n k =+(1)2n n n a n λ=-+任何都成立.n *∈N 总结:数列通项的求解是高考考查的重点。

高考数学常用公式:数列

高考数学常用公式:数列

高考数学常用公式:数列等差数列
(1)数列的通项公式an=f(n)
(2)数列的递推公式
(3)数列的通项公式与前n项和的关系
an+1-an=d
an=a1+(n-1)d
a,A,b成等差2A=a+b
m+n=k+lam+an=ak+al
等比数列常用求和公式
an=a1qn_1
a,G,b成等比G2=ab
m+n=k+laman=akal
不等式
不等式的基本性质重要不等式
a>bb
a>b,b>ca>c
a>ba+c>b+c
a+b>ca>c-b
a>b,c>da+c>b+d
a>b,c>0ac>bc
a>b,c<0ac
a>b>0,c>d>0ac
a>b>0dn>bn(n∈Z,n>1)
a>b>0>(n∈Z,n>1)
(a-b)2≥0
a,b∈Ra2+b2≥2ab
|a|-|b|≤|a±b|≤|a|+|b|
证明不等式的基本方法
比较法
(1)要证明不等式a>b(或a
a-b>0(或a-b<0=即可
(2)若b>0,要证a>b,只需证明,
要证a
综合法综合法就是从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式(由因导果)的方法。

分析法分析法是从寻求结论成立的充分条件入手,逐步寻求所需条件成立的充分条件,直至所需的条件已知准确时为止,明显地表现出“持果索因”。

高考数学复习考点题型专题讲解10 数列的递推关系与通项

高考数学复习考点题型专题讲解10 数列的递推关系与通项

高考数学复习考点题型专题讲解专题10 数列的递推关系与通项1.求数列的通项公式是高考的重点内容,等差、等比数列可直接利用其通项公式求解,但有些数列是以递推关系给出的,需要构造新数列转为等差或等比数列,再利用公式求解.2.利用数列的递推关系求数列的通项,常见的方法有:(1)累加法,(2)累乘法,(3)构造法(包括辅助数列法,取倒数法,取对数法等).类型一利用a n与S n的关系求通项1.已知S n求a n的步骤(1)先利用a1=S1求出a1.(2)用n-1替换S n中的n得到一个新的关系,利用a n=S n-S n-1(n≥2)便可求出当n≥2时a n的表达式.(3)对n=1时的结果进行检验,看是否符合n≥2时a n的表达式,若符合,则数列的通项公式合写;若不符合,则应该分n=1与n≥2两段来写.2.S n与a n关系问题的求解思路(1)利用a n=S n-S n-1(n≥2)转化为只含S n,S n-1的关系式,再求解.(2)利用S n-S n-1=a n(n≥2)转化为只含a n,a n-1的关系式,再求解.例1 (1)已知数列{a n}为正项数列,且4S1a1+2+4S2a2+2+…+4S nan+2=S n,求数列{a n}的通项公式;(2)已知数列{a n}的各项均为正数,且S n=12⎝⎛⎭⎪⎫an+1an,求数列{a n}的通项公式.解(1)由题知4S1a1+2+4S2a2+2+…+4S nan+2=S n,①则4S1a1+2+4S2a2+2+…+4S n-1an-1+2=S n-1(n≥2,n∈N*),②由①-②可得4S nan+2=a n,即4S n=a2n+2a n,n≥2,n∈N*,在已知等式中令n=1,得4S1a1+2=S1,则4S1=a1(a1+2),③满足上式,所以4S n=a2n+2a n,④则4S n-1=a2n-1+2a n-1(n≥2),⑤④-⑤可得4a n=a2n+2a n-a2n-1-2a n-1⇔2(a n+a n-1)=a2n-a2n-1. 因为a2n-a2n-1=(a n+a n-1)(a n-a n-1),a n>0,所以a n-a n-1=2,所以{a n}为公差是2的等差数列,由③可解得a1=2,所以a n=2+(n-1)×2=2n(n∈N*).(2)由S n=12⎝⎛⎭⎪⎫an+1an,得当n ≥2时,S n =12⎝ ⎛⎭⎪⎫S n -S n -1+1S n -S n -1,所以2S n =S n -S n -1+1S n -S n -1,即S n +S n -1=1S n -S n -1,所以S 2n -S 2n -1=1,所以{S 2n }为公差是1的等差数列,所以S 2n =S 21+(n -1).在S n =12⎝ ⎛⎭⎪⎫a n +1a n 中,令n =1可得S 1=12⎝ ⎛⎭⎪⎫a 1+1a 1,解得a 1=1,所以S 2n =n ,所以S n =n ,所以a n =⎩⎨⎧S n -S n -1,n ≥2,S 1,n =1=⎩⎨⎧n -n -1,n ≥2,1,n =1,所以a n =n -n -1(n ∈N *).训练1 已知正项数列{a n +2n -1}的前n 项和为S n ,且4S n =a 2n +(2n +2)a n +4n -1+2n -3.求数列{a n }的通项公式.解 由题知4S n =a 2n +(2n +2)a n +4n -1+2n -3=(a n +2n -1)2+2(a n +2n -1)-3, 令b n =a n +2n -1, 则4S n =b 2n +2b n -3,①当n ≥2时,4S n -1=b 2n -1+2b n -1-3,②由①-②,得4b n =b 2n -b 2n -1+2b n -2b n -1, 整理得(b n -b n -1-2)(b n +b n -1)=0. 因为b n >0,所以b n -b n -1=2(n ≥2). 又4S 1=b 21+2b 1-3, 即b 21-2b 1-3=0,解得b 1=3或b 1=-1(舍去),所以数列{b n }是以3为首项,2为公差的等差数列, 则b n =2n +1,所以a n =b n -2n -1=2n +1-2n -1(n ∈N *). 类型二 构造辅助数列求通项(1)形如a n =pa n -1+q (p ≠1,q ≠0)的形式,通常可构造出等比数列a n +q p -1=p ⎝⎛⎭⎪⎫a n -1+q p -1,进而求出通项公式. (2)形如a n =pa n -1+q n ,此类问题可先处理q n ,两边同时除以q n ,得a nq n =pa n -1q n+1,进而构造成a n q n =p q ·a n -1q n -1+1,设b n =a n q n ,从而变成b n =pqb n -1+1,从而将问题转化为第(1)个问题.(3)形如qa n -1-pa n =a n a n -1,可以考虑两边同时除以a n a n -1,转化为q a n -pa n -1=1的形式,进而可设b n =1a n,递推公式变为qb n -pb n -1=1,从而转变为上面第(1)个问题.(4)形如a n =ma n -1k (a n -1+b )(其中n ≥2,mkb ≠0)取倒数,得到1a n =k m ·⎝ ⎛⎭⎪⎫1+b a n -1⇔1a n=kb m ·1a n -1+km,转化为(1)中的类型. (5)形如a n =pa r n -1(n ≥2,a n ,p >0)两边取常用对数,得lg a n =r lg a n -1+lg p ,转化为(1)中的类型. 考向1 构造法求通项例2 (1)在数列{a n }中,a 1=12,a n =2a n +1-⎝ ⎛⎭⎪⎫12n(n ∈N *),求数列{a n }的通项公式;(2)设数列{a n }的前n 项和为S n ,且a 1=1,S n +1-2S n =1,n ∈N *,求数列{a n }的通项公式. 解 (1)由a n =2a n +1-⎝ ⎛⎭⎪⎫12n,得2n a n =2n +1a n +1-1,所以数列{2n a n }是首项和公差均为1的等差数列, 于是2n a n =1+(n -1)×1=n , 所以a n =n2n (n ∈N *).(2)因为S n +1-2S n =1, 所以S n +1+1=2(S n +1),n ∈N *. 因为a 1=S 1=1, 所以可推出S n +1>0,故S n +1+1S n +1=2, 即{S n +1}为等比数列. 因为S 1+1=2,公比为2, 所以S n +1=2n , 即S n =2n -1.因为S n -1=2n -1-1(n ≥2),所以当n ≥2时,a n =S n -S n -1=2n -1, 又a 1=1也满足此式, 所以a n =2n -1(n ∈N *). 考向2 取倒数法求通项 例3 已知数列{a n }满足a n +1=a n a n +3,a 1=2,求数列{a n }的通项公式.解 对a n +1=a na n +3两边取倒数,可得1a n +1=3a n+1,由1a n +1+12=3⎝ ⎛⎭⎪⎫1a n +12. ∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +12是首项为1,公比为3的等比数列,∴1a n +12=3n -1, 则a n =22·3n -1-1(n ∈N *). 考向3 取对数法求通项例4 设正项数列{a n }满足a 1=1,a n =2a 2n -1(n ≥2).求数列{a n }的通项公式. 解 对a n =2a 2n -1两边取对数得log 2a n =1+2log 2a n -1, ∴log 2a n +1=2(log 2a n -1+1), 设b n =log 2a n +1,则{b n }是以2为公比,1为首项的等比数列,所以b n =2n -1, 即log 2a n +1=2n -1, 故a n =22n -1-1(n ∈N *).训练2 (1)若数列{a n }中,a 1=3,且a n +1=a 2n ,则a n =________. (2)已知数列{a n }中,a 1=1,a n =a n -12a n -1+1,则a n =________.答案 (1)32n -1(n ∈N *) (2)12n -1(n ∈N *) 解析 (1)易知a n >0,由a n +1=a 2n 得lg a n +1=2lg a n , 故{lg a n }是以lg 3为首项,以2为公比的等比数列, 则lg a n =lg a 1·2n -1=lg 32n -1, 即a n =32n -1(n ∈N *). (2)由a n =a n -12a n -1+1,取倒数得1a n =2+1a n -1,故⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是以2为公差,1为首项的等差数列,所以1a n=1+2(n -1)=2n -1,即a n =12n -1(n ∈N *).(3)在数列{a n }中,a 1=1,a n +1=12a n +1,求数列{a n }的通项公式.解 因为a n +1=12a n +1,所以a n +1-2=12(a n -2),所以数列{a n -2}是以-1为首项,12为公比的等比数列,所以a n -2=-1×⎝ ⎛⎭⎪⎫12n -1,所以a n =2-⎝ ⎛⎭⎪⎫12n -1,n ∈N *.一、基本技能练1.(2022·湖北新高考协作体联考)已知数列{a n }的首项a 1=2,其前n 项和为S n ,若S n +1=2S n +1,则a 7=________. 答案 96解析 因为S n +1=2S n +1, 所以S n =2S n -1+1(n ≥2), 两式相减得a n +1=2a n (n ≥2),又因为a 1=2,S 2=a 1+a 2=2a 1+1,得a 2=3, 所以数列{a n }从第二项开始成等比数列, 因此其通项公式为a n =⎩⎨⎧2,n =1,3·2n -2,n ≥2, 所以a 7=3×25=96.2.已知数列{a n }的前n 项和为S n ,a 1=1,S n =n 2a n (n ∈N *),则数列{a n }的通项公式为________. 答案a n =2n (n +1)(n ∈N *)解析 由S n =n 2a n 可得, 当n ≥2时,S n -1=(n -1)2a n -1, 则a n =S n -S n -1=n 2a n -(n -1)2a n -1,即(n2-1)a n=(n-1)2a n-1,故anan-1=n-1n+1,所以a n=anan-1·an-1an-2·an-2an-3·…·a3a2·a2a1·a1=n-1n+1·n-2n·n-3n-1·…·24×13×1=2n(n+1).当n=1时,a1=1满足a n=2n(n+1).故数列{a n}的通项公式为a n=2n(n+1),n∈N*.3.已知正项数列{a n}满足a1=2,a n+1=a n,则a n=________.答案221-n(n∈N*)解析将a n+1=a n两边取以2为底的对数得log2a n+1=12log2an,∴数列{log2an}是以1为首项,12为公比的等比数列,故log2an=1×⎝⎛⎭⎪⎫12n-1=21-n,即a n=221-n(n∈N*).4.数列{a n}的首项a1=2,且a n+1=3a n+2(n∈N*),令b n=log3(a n+1),则b n=________. 答案n(n∈N*)解析由a n+1=3a n+2(n∈N*)可知a n+1+1=3(a n+1),又a1=2,知a n+1≠0,所以数列{a n+1}是以3为首项,3为公比的等比数列,因此a n+1=3·3n-1=3n,故b n =log 3(a n +1)=n .5.(2022·南京调研)在数列{b n }中,b 1=-1,b n +1=b n 3b n +2,n ∈N *,则通项公式b n =________.答案 12n -3(n ∈N *)解析 由b n +1=b n 3b n +2,且b 1=-1.易知b n ≠0,得1b n +1=2b n+3.因此1b n +1+3=2⎝ ⎛⎭⎪⎫1b n +3,1b 1+3=2, 故⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n +3是以2为首项,2为公比的等比数列,于是1b n+3=2·2n -1,可得b n =12n-3,n ∈N *. 6.在数列{a n }中,a 1=1,a n =2a n -1+ln 3(n ≥2),则数列{a n }的通项a n =________. 答案 (1+ln 3)·2n -1-ln 3(n ∈N *)解析 由a n =2a n -1+ln 3得a n +ln 3=2(a n -1+ln 3), 则{a n +ln 3}是以1+ln 3为首项,2为公比的等比数列, 所以a n +ln 3=(1+ln 3)·2n -1, 因此a n =(1+ln 3)·2n -1-ln 3(n ∈N *).7.已知数列{a n }满足:a 1=1,a 2=3,a n +2=a n +1+2a n .某同学已经证明了数列 {a n +1-2a n }和数列{a n +1+a n }都是等比数列,则数列{a n }的通项公式是a n =________. 答案 2n +1-(-1)n -13(n ∈N *)解析因为a n+2=a n+1+2a n,所以当n=1时,a3=a2+2a1=5.令b n=a n+1-2a n,则{b n}为等比数列. 又b1=a2-2a1=1,b2=a3-2a2=-1,所以等比数列{b n}的公比q=b2b1=-1,所以b n=(-1)n-1,即a n+1-2a n=(-1)n-1.①令c n=a n+1+a n,则{c n}为等比数列,c1=a2+a1=4,c2=a3+a2=8,所以等比数列{c n}的公比q1=c2c1=2,所以c n=4×2n-1=2n+1,即a n+1+a n=2n+1.②联立①②,解得a n=2n+1-(-1)n-13.8.(2022·青岛二模)已知数列{a n},{b n}满足a1=12,a n+b n=1,b n+1=bn1-a2n,则b2 023=________.答案2 023 2 024解析因为a n+b n=1,b n+1=bn1-a2n,所以1-a n+1=1-a n(1-a n)(1+a n),a n +1=1-11+a n =a n1+a n ,所以1a n +1=1a n+1,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是等差数列,其公差为1,首项为1a 1=2,所以1a n=2+(n -1)×1=n +1,所以a n =1n +1, 所以b n =n n +1,所以b 2 023=2 0232 024.9.已知数列{a n }的前n 项和S n 满足2S n -na n =3n (n ∈N *),且S 3=15,则S 10=________. 答案 120解析 当n =1时,2S 1-a 1=3, 解得a 1=3. 又2S n -na n =3n ,①当n ≥2时,2S n -1-(n -1)a n -1=3(n -1),② 所以①-②得(n -1)a n -1-(n -2)a n =3,③ 当n ≥3时,(n -2)a n -2-(n -3)a n -1=3,④ 所以④-③得(n -1)·a n -1-(n -2)a n =(n -2)a n -2-(n -3)a n -1, 可得2a n -1=a n +a n -2,所以数列{a n }为等差数列,设其公差为d .因为a 1=3,S 3=3a 1+3d =9+3d =15, 解得d =2, 故S 10=10×3+10×92×2=120. 10.已知数列{a n }满足a n +1=2a n -n +1(n ∈N *),a 1=3,则数列{a n }的通项公式为________.答案a n =2n +n (n ∈N *) 解析∵a n +1=2a n -n +1, ∴a n +1-(n +1)=2(a n -n ), ∴a n +1-(n +1)a n -n=2,∴数列{a n -n }是以a 1-1=2为首项,2为公比的等比数列, ∴a n -n =2·2n -1=2n , ∴a n =2n +n (n ∈N *).11.数列{a n }满足a n +1=3a n +2n +1,a 1=-1,则数列{a n }的前n 项和S n =________. 答案3n +12-2n +2+52(n ∈N *)解析∵a n +1=3a n +2n +1, ∴a n +12n +1=32·a n2n+1, ∴a n +12n +1+2=32⎝ ⎛⎭⎪⎫a n 2n +2, ∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n +2是以a 12+2=32为首项,32为公比的等比数列,∴a n 2n +2=32×⎝ ⎛⎭⎪⎫32n -1=⎝ ⎛⎭⎪⎫32n,∴a n =3n -2n +1,∴S n =(31+32+…+3n )-(22+23+…+2n +1)=3-3n +11-3-4-2n +21-2=3n +12-2n +2+52(n ∈N *).12.已知在数列{a n }中,a 1=1,a 2=2,a n +1=2a n +3a n -1,则{a n }的通项公式为________. 答案a n =3n -(-1)n4(n ∈N *)解析∵a n +1=2a n +3a n -1, ∴a n +1+a n =3(a n +a n -1),∴{a n +1+a n }是以a 2+a 1=3为首项,3为公比的等比数列, ∴a n +1+a n =3×3n -1=3n .① 又a n +1-3a n =-(a n -3a n -1),∴{a n +1-3a n }是以a 2-3a 1=-1为首项,-1为公比的等比数列, ∴a n +1-3a n =(-1)×(-1)n -1=(-1)n ,② 由①-②得4a n =3n -(-1)n , ∴a n =3n -(-1)n4(n ∈N *).二、创新拓展练13.(2022·金丽衢12校联考)已知数列{a n }满足a 1=1,且T n =a 1a 2…a n ,若T n +1=a n T na 2n +1,n ∈N *,则( )A.a 50∈⎝ ⎛⎭⎪⎫112,111B.a 50∈⎝ ⎛⎭⎪⎫111,110C.a 10∈⎝ ⎛⎭⎪⎫18,17D.a 10∈⎝ ⎛⎭⎪⎫16,15答案 B解析 因为T n =a 1a 2…a n , 所以a n +1=T n +1T n. 因为T n +1=a n T na 2n +1, 所以a n +1=a n a 2n +1,所以1a n +1=a n +1a n.因为a 1=1>0,所以1a n +1>1a n >0,a 2=12, 所以0<a n +1<a n ≤1, 所以1a 2n +1=a 2n +1a 2n+2,所以a 2n +2=1a 2n +1-1a 2n ∈⎝ ⎛⎦⎥⎤2,94,n ≥2.由累加法可得1a 210-1a 22∈(16,18),所以1a 10∈(20,22),所以a 10∈⎝ ⎛⎭⎪⎫2222,510,同理可得a 50∈⎝⎛⎭⎪⎫1121,110=⎝ ⎛⎭⎪⎫111,110,故选B. 14.(多选)(2022·武汉调研)已知数列{a n }满足a 1=1,a n +1=a n 2+3a n(n ∈N *),则下列结论正确的是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +3为等比数列 B.{a n }的通项公式为a n =12n +1-3C.{a n }为递增数列D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和T n =2n +2-3n -4答案 ABD 解析 因为1a n +1=2+3a na n =2a n+3, 所以1a n +1+3=2⎝ ⎛⎭⎪⎫1a n +3, 又1a 1+3=4≠0,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +3是以4为首项,2为公比的等比数列,所以1a n+3=4×2n -1,则a n =12n +1-3, 所以{a n }为递减数列,⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和T n =(22-3)+(23-3)+…+(2n +1-3)=22+23+…+2n +1-3n =4(1-2n )1-2-3n =2n +2-3n -4,故ABD 正确.15.(多选)南宋数学家杨辉所著的《详解九章算法·商功》中出现了如图所示的形状,后人称为“三角垛”.“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球,……,设各层球数构成一个数列{a n },则( )A.a 4=12B.a n +1=a n +n +1C.a 100=5 050D.2a n +1=a n ·a n +2答案 BC解析 由题意知,a 1=1,a 2=3,a 3=6,…,a n =a n -1+n , 故a n =n (n +1)2,∴a 4=4×(4+1)2=10,故A 错误;a n +1=a n +n +1,故B 正确; a 100=100×(100+1)2=5 050,故C 正确;2a n +1=(n +1)(n +2),a n ·a n +2=n (n +1)(n +2)(n +3)4,显然2a n +1≠a n ·a n +2,故D 错误.16.(多选)已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依次类推,第n 项记为a n ,数列{a n }的前n 项和为S n ,则( ) A.a 60=16 B.S 18=128 C.a k 2+k 2=2k -1D.S k 2+k 2=2k -k -1答案 AC解析 由题意可将数列分组: 第一组为20, 第二组为20,21, 第三组为20,21,22, ……,则前k 组一共有1+2+…+k =k (1+k )2个数.第k 组第k 个数为2k -1, 故a k 2+k 2=2k -1,所以C 正确.因为10×(10+1)2=55,所以a 55=29,又11×(11+1)2=66,则a 60为第11组第5个数,第11组为20,21,22,23,24,25,26,27,28,29,210, 故a 60=24=16,所以A 正确.每一组数的和为20+21+…+2k -1=2k -12-1=2k -1,故前k 组数之和为21+22+ (2)-k =2(2k -1)2-1-k =2k +1-2-k ,S k 2+k 2=2k +1-k -2,所以D 错误.S 15=26-5-2=57,S 18=S 15+20+21+22 =26-5-2+7=64,所以B 错误.故选AC. 17.已知数列{a n }满足a 1=3,a n +1=7a n -2a n +4,则该数列的通项公式a n =________. 答案4·6n -1-5n -12·6n -1-5n -1(n ∈N *)解析 由a n +1-1a n +1-2=7a n -2a n +4-17a n -2a n +4-2=7a n -2-(a n +4)7a n -2-2(a n +4)=65·a n -1a n -2,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n -1a n -2是首项为a 1-1a 1-2=2,公比为65的等比数列,所以a n -1a n -2=2×⎝ ⎛⎭⎪⎫65n -1,解得a n =12×⎝ ⎛⎭⎪⎫65n -1-1+2=4·6n -1-5n -12·6n -1-5n -1,n ∈N *.18.(2022·徐州考前卷)设各项均为正数的数列{a n }的前n 项和为S n ,写出一个满足S n =⎝ ⎛⎭⎪⎫2-12n -1a n 的通项公式:a n =________.答案 2n (答案不唯一)解析 当a n =2n时,S n =2(1-2n )1-2=2n +1-2,⎝ ⎛⎭⎪⎫2-12n -1a n =⎝⎛⎭⎪⎫2-22n 2n=2n +1-2=S n ,∴a n =2n 满足条件.。

高考数学-数列通项公式求解方法总结

高考数学-数列通项公式求解方法总结

求数列通项公式的十种方法一、公式法例1 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。

解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n na a ++-=,故数列{}2nn a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。

评注:本题解题的关键是把递推关系式1232n n n a a +=+⨯转化为113222n n n na a ++-=,说明数列{}2nn a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。

二、累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。

评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。

例3 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。

高考数学:数列公式

高考数学:数列公式

高考数学:数列公式数列的基本概念等差数列
(1)数列的通项公式an=f(n)
(2)数列的递推公式
(3)数列的通项公式与前n项和的关系
an+1-an=d
an=a1+(n-1)d
a,A,b成等差 2A=a+b
m+n=k+l am+an=ak+al
等比数列常用求和公式
an=a1qn_1
a,G,b成等比 G2=ab
m+n=k+l aman=akal
不等式
不等式的基本性质重要不等式
ab b
ab,bc
ab a+cb+c
a+bc-b
ab,cd a+cb+d
ab,cbc
ab,c0 ac
a0,c0 ac
a0 dnbn(n∈Z,n1)
a0 (n∈Z,n1)
(a-b)2≥0
a,b∈R a2+b2≥2ab
|a|-|b|≤|a±b|≤|a|+|b|
证明不等式的基本方法
比拟法
(1)要证明不等式ab(或a
a-b0(或a-b0=即可
(2)假定b0,要证ab,只需证明,
要证a
综合法综合法就是从或已证明过的不等式动身,依据不等式的性质推导出欲证的不等式(由因导果)的方法。

剖析法剖析法是从寻求结论成立的充沛条件入手,逐渐寻求所需条件成立的充沛条件,直至所需的条件正确时为止,清楚地表现出〝持果索因〞。

2020年高考数学(理)之数列 专题11 数列的通项( 叠加法、累乘法求通项)(解析版)

2020年高考数学(理)之数列 专题11 数列的通项( 叠加法、累乘法求通项)(解析版)

数列11 数列的通项( 叠加法、累乘法求通项)一、具体目标:掌握用不同的数学方法求不同形式数列的通项公式.通过数列通项公式的求解过程,利用数列的变化规律,恰当选择方法,是数列的研究和探索奠定基础. 二、知识概述: 1.数列的通项公式:(1)如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.即()n a f n =,不是每一个数列都有通项公式,也不是每一个数列都有一个个通项公式. (2)数列{}n a 的前n 项和n S 和通项n a 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩.2.求数列的通项公式的注意事项:(1)根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n 之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.对于正负符号变化,可用()1n-或()11n +-来调整.(2)根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想.由不完全归纳法得出的结果是不可靠,要注意代值验证.(3)对于数列的通项公式要掌握:①已知数列的通项公式,就可以求出数列的各项;②根据数列的前几项,写出数列的一个通项公式,这是一个难点,在学习中要注意观察数列中各项与其序号的变化情况,分解所给数列的前几项,看看这几项的分解中.哪些部分是变化的,哪些是不变的,再探索各项中变化部分与序【考点讲解】号的联系,从而归纳出构成数列的规律,写出通项公式.3.数列通项一般有三种类型:(1)已知数列是等差或等比数列,求通项,破解方法:公式法或待定系数法;(2)已知S n ,求通项,破解方法:利用S n -S n -1= a n ,但要注意分类讨论,本例的求解中检验必不可少,值 得重视;(3)已知数列的递推公式,求通项,破解方法:猜想证明法或构造法。

4. 已知数列{}n a 的前n 项和n S ,求数列的通项公式,其求解过程分为三步: (1)先利用11a S =求出1a ;(2)用1n -替换n S 中的n 得到一个新的关系,利用=n a 1n n S S -- (2)n ≥便可求出当2n ≥时n a 的表达式; (3)对1n =时的结果进行检验,看是否符合2n ≥时n a 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分1n =与2n ≥两段来写.【注】该公式主要是用来求数列的通项,求数列通项时,一定要分两步讨论,结果能并则并,不并则分. 5. 递推公式推导通项公式方法: (1)叠加法:1()n n a a f n +-=叠加法(或累加法):已知()⎩⎨⎧=-=+n f a a a a n n 11,求数列通项公式常用叠加法(或累加法)即112211)()()(a a a a a a a a n n n n n +-++-+-=---Λ.(2)累乘法:已知()⎪⎩⎪⎨⎧==+n f a a a a nn 11求数列通项公式用累乘法. (3)待定系数法:1n n a pa q +=+(其中,p q 均为常数,)0)1((≠-p pq ) 解法:把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解. (4)待定系数法: nn n q pa a +=+1(其中,p q 均为常数,)0)1)(1((≠--q p pq ). (或1nn n a pa rq +=+,其中,,p q r 均为常数).解法:在原递推公式两边同除以1+n q ,得:111n n n n a a p q q q q++=⋅+,令n n n q a b =,得:q b q p b nn 11+=+,再按 第(3)种情况求解.(5)待定系数法:b an pa a n n ++=+1(100)p a ≠≠,, 1122332211a a a a a a a a a a a a n n n n n n n ⋅⋅⋅⋅⋅⋅=-----Λ解法:一般利用待定系数法构造等比数列,即令)()1(1y xn a p y n x a n n ++=++++,与已知递推式比较, 解出y x ,,从而转化为{}y xn a n ++是公比为p 的等比数列. (6)待定系数法:21(0,1,0)n n a pa an bn c p a +=+++≠≠解法:一般利用待定系数法构造等比数列,即令221(1)(1)()n n a x n y n z p a xn yn z ++++++=+++,与已知递推式比较,解出y x ,,从而转化为{}2n a xn yn z +++是公比为p 的等比数列. (7)待定系数法:n n n qa pa a +=++12(其中,p q 均为常数).解法:先把原递推公式转化为)(112n n n n sa a t sa a -=-+++其中,s t 满足s t pst q+=⎧⎨=-⎩,再按第(4)种情况求解.(8)取倒数法:1()()()nn n g n a a f n a t n +=+解法:这种类型一般是等式两边取倒数后换元转化为q pa a n n +=+1,按第(3)种情况求解.(11()()()0n n n n g n a t n a f n a a +++-=,解法:等式两边同时除以1n n a a +⋅后换元转化为q pa a n n +=+1,按第(3)种情况求解.).(9)取对数rn n pa a =+1)0,0(>>n a p解法:这种类型一般是等式两边取以p 为底的对数,后转化为q pa a n n +=+1,按第(3)种情况求解. 6. 以数列为背景的新定义问题是高考中的一个热点题型,考查频率较高,一般会结合归纳推理综合命题.常见的命题形式有新法则、新定义、新背景、新运算等.(1)准确转化:解决数列新定义问题时,一定要读懂新定义的本质含义,将题目所给定义转化成题目要 求的形式,切忌同已有概念或定义相混淆.(2)方法选取:对于数列新定义问题,搞清定义是关键,仔细认真地从前几项(特殊处、简单处)体会题意,从而找到恰当的解决方法. 类型1 )(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用叠加法求解例1.设数列{}n a 中,112,1n n a a a n +==++,则通项n a = .【解析】法一:由题意可知:112,1n n a a a n +==++ 所以有()111n n a a n -=+-+,()1221n n a a n --=+-+,()2331n n a a n --=+-+,K ,3221a a =++,2111a a =++,1211a ==+将以上各式相加得:()()()123211n a n n n n =-+-+-+++++⎡⎤⎣⎦L()()()()11111111222n n n n n n n n --+⎡⎤-+⎣⎦=++=++=+ 故应填()112n n ++.法二:由题意11n n a a n +=++可得:11n n a a n +-=+, ()111n n a a n --=-+,()1221n n a a n ---=-+,()2331n n a a n ---=-+,K ,3221a a -=+,2111a a -=+,1211a ==+.将以上各式相加得:()()()123211n a n n n n =-+-+-+++++⎡⎤⎣⎦L()()()()11111111222n n n n n n n n --+⎡⎤-+⎣⎦=++=++=+ 故应填()112n n ++. 【答案】()112n n ++ 类型2 n n a n f a )(1=+ .解法:把原递推公式转化为)(1n f a a nn =+,利用叠乘法求解。

高考数学数列解题技巧必备

高考数学数列解题技巧必备

高考数学数列解题技巧必备各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,运用,数学作为最烧脑的科目之一,也是一样的。

下面是小编给大家整理的一些高考数学数列解题技巧的学习资料,希望对大家有所帮助。

高考数学重点:数列公式及结论总结数学中有很多的概念和公式,只有理解这些概念,才能正确解题。

数列中有很多性质和公式,这些是我们做题的基础,很多同学觉得数列的性质公式太多太杂,记不住。

其实按照一定方法将数列性质公式进行归纳总结,记住它们就简单多了。

下面是小编为大家整理的高中数列基本公式,希望对大家有帮助。

一、高中数列基本公式:1、一般数列的通项an与前n项和Sn的关系:an=2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。

3、等差数列的前n项和公式:Sn=Sn=Sn=当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。

4、等比数列的通项公式: an= a1 qn-1 an= ak qn-k(其中a1为首项、ak为已知的第k项,an≠0)5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);当q≠1时,Sn=Sn=三、高中数学中有关等差、等比数列的结论1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。

2、等差数列{an}中,若m+n=p+q,则3、等比数列{an}中,若m+n=p+q,则4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。

5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。

6、两个等比数列{an}与{bn}的积、商、倒数组成的数列{anbn}、、仍为等比数列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列的证明和求数列通项公式数列的通项公式在高考中数列部分的考查既是重点又是难点,不论是选择题或填空题中对基础知识的考查,还是压轴题中与其他章节知识的综合,抓住数列的通项公式通常是解题的关键和解决数列难题的瓶颈。

求通项公式也是学习数列时的一个难点。

由于求通项公式时渗透多种数学思想方法,因此求解过程中往往显得方法多、灵活度大、技巧性强。

【基础知识整合】一、等差(等比)数列的证明常用方法: 1.定义法判断一个数列是等差数列,常采用的两个式子1n n a a d --=和1n n a a d +-=有差别,前者必须加上“2n ≥”,否则1n =时0a 无意义;在等比数列中一样有:①2n ≥时,有1nn a q a -==(常数q 0≠);②n *∈N 时,有1n na q a +==(常数q 0≠). 2.中项法212{}n n n n a a a a +++=⇔是等差数列,221(0)n n n n a a a a ++=≠{}n a ⇔是等比数列,这是证明数列{}n a 为等差(等比)数列的另一种主要方法 二、求数列通项公式的常用方法: 1. 公式法、利用11(1)(2)n nn S n S S n a -=⎧=⎨-≥⎩2. 求差(商)法:类似于 “12211125222n n a a a n +++=+ , 12321n n a a a a n +=+”等条件时,使用求差(商)法求解;3. 累加法:类似于“()1n n a a f n +-=”的条件时,使用累加法求解()11n n a a f n --=-[来源:学*科*网]()122n n a a f n ---=- ()233n n a a f n ---=-……()211a a f -=以上式子左右分别相加,得()()()()11231n a a f n f n f n f -=-+-+-⋅⋅⋅⋅⋅⋅ 所以得到()()()()11231n a f n f n f n f a =-+-+-⋅⋅⋅⋅⋅⋅⋅++ 4. 累乘法:类似于“()1n na f n a +=”的条件时,使用累乘法求解; ()()()()324112311231nn n a a a a a a f f f f n a a a a -==-5. 倒数法:类似于“1nn n ka a a k+=+”的条件时,使用倒数法求解 如:1121,2nn n a a a a +==+,求n a由已知得:1211122n n n n a a a a ++==+,∴11112n n a a +-= ∴1n a ⎧⎫⎨⎬⎩⎭为等差数列,111a =,公差为12,∴()()11111122n n n a =+-=+,∴21n a n =+ 6. 构造法:[来源:学科网ZXXK]比如:()1,0,1,0n n a ka d k d k k d -=+≠≠≠为常数,[来源:学科网ZXXK]可转化为等比数列,设()()111n n n n a c k a c a ka k c --+=+⇒=+- 令()1k c d -=,∴1d c k =-,∴1n d a k ⎧⎫+⎨⎬-⎩⎭是首项为11d a k +-,k 为公比的等比数列 ∴1111n n d d a a k k k -⎛⎫+=+ ⎪--⎝⎭,1111n n d d a a k k k -⎛⎫=+- ⎪--⎝⎭∴ 类型一 等差(等比)数列的证明 【典例1】 【2016年高考新课标Ⅲ(17)】已知数列{}n a 错误!未找到引用源。

的前n 项和1n n S a λ=+错误!未找到引用源。

,错误!未找到引用源。

其中0λ≠.(1)证明{}n a 错误!未找到引用源。

是等比数列,并求其通项公式;【答案】(I )1)1(11---=n n a λλλ [来源:]【解析】试题分析:(I )首先利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,得到数列{}n a 的递推公式,即可得到{}n a 错误!未找到引用源。

是等比数列及{}n a 错误!未找到引用源。

的通项公式;考点:数列的通项n a 与前n 项和n S 的关系,等比数列的定义、通项公式及前n 项和.【典例2】 正数数列{}n a 和{}n b 满足:对任意自然数1n n n n a b a +,,,成等差数列,11n n n b a b ++,,成等比数列.证明:数列{}n b 为等差数列.【证明】依题意,1002n n n n n a b b a a +>>=+,,,且11n n n a b b ++=,1(2)n n n a b b n -∴=≥.112n n n n n b b b b b -+∴=+.由此可得112n n n b b b -+=+.即11(2)n n n n b b b b n ---=-≥.∴数列{}n b 为等差数列.【思路点拨】本题依据条件得到n a 与n b 的递推关系,通过消元代换构造了关于{}n b 的等差数列,使问题得以解决.通过挖掘n S 的意义导出递推关系式,灵活巧妙地构造得到中项性质,这种处理大大简化了计算. 【变式训练】在数列{}n a 中,21111,2(1)()n n a a a n N n++==+∈.(Ⅰ)证明数列2n a n ⎧⎫⎨⎬⎩⎭成等比数列,并求{}n a 的通项公式;【解析】(Ⅰ)由条件得1221(1)2n na a n n +=+,又1n =时,21n a n =, 故数列2n a n ⎧⎫⎨⎬⎩⎭构成首项为1,公比为12的等比数列.从而2112n n a n -=,即212n n n a -=.类型二、 求数列的通项公式(1)形如:()()n n n S f a S f n ==或,求n a【典例3】 【2016年高考山东理(18)】 已知数列{}n a 的前n 项和2=38n S n n +,{}n b 是等差数列,且1.n n n a b b +=+(I )求数列{}n b 的通项公式; 【答案】(I )13+=n b n 【解析】考点:数列前n 项和与第n 项的关系;等差数列定义与通项公式; 【解题技巧】[来源:Z,xx,]对于此类问题,解题方法总结如下:第一步 利用n S 满足条件p ,写出当2n ≥时,1n S -的表达式;第二步 利用1(2)n n n a S S n -=-≥,求出n a 或者转化为n a 的递推公式的形式;第三步 根据11a S =求出1a ,并代入{}n a 的通项公式进行验证,若成立,则合并;若不成立,则写出分段形式或根据1a 和{}n a 的递推公式求出n a .(2)形如:1()n na f n a +=或1()n n a a f n +=⨯,求n a 【典例4】 【2017浙江省温州市高三月考试题】在数列{n a }中,1a =1,n a =n -1n -1n a (n ≥2),则数列{n a }的通项公式是__________. 【答案】n a =1n .【解析】∵n a =n -1n -1n a (n≥2),∴-1n a =n -2n -1-2n a ,…,a 2=12a 1.以上(n -1)个式子相乘得n a =a 1·12·23·…·n -1n =1a n =1n .当n =1时,a 1=1,上式也成立.∴n a =1n .【解题技巧】对于此类问题,解题方法总结如下:第一步 将递推公式写成1()n na f n a +=; 第二步 依次写出211,,n n a aa a -⋅⋅⋅,并将它们累加起来; 第三步 得到1na a 的值,解出n a ; 第四步 检验1a 是否满足所求通项公式,若成立,则合并;若不成立,则写出分段形式. (3)形如:1()n n a a f n +-=或1()n n a a f n +=+,求n a 【典例5】 在数列{n a }中,1a =2,+1n a =n a +1n (n +1),则数列{n a }的通项公式是__________.【答案】13n a n =-【解析】由题意得a n +1-a n =1n (n +1)=1n -1n +1,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 111111111=()()()(1)23121232n n n n n -+-++-+-+=----【解题技巧】对于此类问题,解题方法总结如下:第一步 将递推公式写成1()n n a a f n +-=;第二步 依次写出121,,n n a a a a --⋅⋅⋅-,并将它们累加起来; 第三步 得到1n a a -的值,解出n a ;第四步 检验1a 是否满足所求通项公式,若成立,则合并;若不成立,则写出分段形式. 【变式训练1】已知数列{}n a 的前项和为n S ,若()=2-4n n S a n N *∈,,则=na ( )A. 12n + B. 2n C. -12n D. -22n【答案】A.考点:本题主要考查数列的通项公式. 【变式训练2】已知数列{n a }中,1a =1,n n n a a 21=+(n )+∈N ,则数列{n a }的通项公式为( ) A .12-=n n a B .n n a 2= C .2)1(2-=n n n a D .222n n a =【答案】C 【解析】试题分析:1231132411231222222n n n n nn n n n a a a a aa a a a a a a -++-=⇒=⇒⋅⋅=⨯⨯⨯⨯,即()()()()1111231222112222n n n n n n n n n a a a a ---++++-==⇒==.故C 正确.考点:1累乘法求通项公式;2等差数列的前n 项和.。

相关文档
最新文档