求卫星轨道的周长

求卫星轨道的周长
求卫星轨道的周长

数值分析实验报告

题目

一、问题提出

地球卫星轨道是一个椭圆,椭圆周长的计算公式是

,这里a是椭圆的半长轴,c是地球中心(椭圆中心)的距离,记h为近地点距离,H为远地点距离,R= 6371(km)为地球半径,则a=(2R+H+h)/2,c=(H-h)/2.我国第一颗人找地球卫星近地点距离h=439(km),远地点距离H=2384(km),试求卫星轨道的周长.

二、模型建立

龙贝格求积算法公式为:

,2,1 , )(141)2(144 )

(1)1(1)( =---=-+-k h T h T T

k m m

k m m m k m

椭圆周长的计算公式:

R= 6371(km ),则a=(2R+H+h )/2,c=(H-h)/2. R= 6371(km ), h=439(km ),H=2384(km )

三、 求解方法

Matlab M 文件:

function R = romberg(f,a,b,n) format long

R = zeros([n + 1, n + 1]);

R(0+1, 0+1) = (b - a) / 2 * (feval(f, a) + feval(f, b)); for i = 1 : n, h = (b - a) / 2^i; s = 0; for k = 1 : 2^(i-1),

s = s + feval(f, a + (2*k - 1)*h); end

R(i+1, 0+1) = R(i-1+1, 0+1)/2 + h*s;

end

for j = 1 : n, fac = 1 / (4^j - 1);

for m = j : n,

R(m+1, j+1) = R(m+1, j-1+1) + fac*(R(m+1, j-1+1) - R(m-1+1, j-1+1));

end

end

function I=f(x)

R=6371;h=439;H=2384;

a=(2*R+H+h)/2;c=(H-h)/2;

I=sqrt(1-(c/a)^2*(sin(x)^2));

四、输出结果

积分I输出结果:

ans =

0 0

即加速3次求得:

k

1

2

计算得:I =

所以卫星轨道的周长S = 4aI = 48708 km

五、结果分析

由计算结果可知,利用龙贝格算法计算积分,利用外推法,提高了计算精度,加快了收敛速度,求得的结果比较精确。

常见国产卫星遥感影像数据的简介

北京揽宇方圆信息技术有限公司 常见国产卫星遥感影像数据的简介 本文介绍了常见国产卫星数据的简介、数据时间、传感器类型、分辨率等情况。 中国资源卫星应用中心产品级别说明 ◆1A级和1C级产品均为相对辐射校正产品,只是不同卫星选用的生产参数不同。 ◆2级,2A级和2C级产品均为系统几何校正产品,只是不同卫星选用的生产参数不同。 其中: ■GF-1卫星和ZY3卫星归档产品为1A级,ZY1-02C卫星数据归档产品级别为1C级,其他卫星归档级别为2级! ◆归档产品是指:该类产品已经存在于系统中,仅需要从存储系统中迁移出来.即可供用户下载的数据。 ◆生产产品是指:该类产品不是已经存在的产品,需要对原始数据产品进行生产,然后再提供给用户下载的数据。

■当用户需要的产品级别是上述归档的级别,直接选择相应的产品级别,然后查询即可! ■当用户需要的产品级别不是上述归档的级别,就需要进行生产.本系统提供GF-1卫星和ZY3卫星2A级的生产产品,ZY1-02C卫星2C级的生产产品,在选择需要的级别查询后,无论有没有数据,在查询结果页上方有一个“查询0级景”按钮,点击此按钮后,进行数据查询,如果有数据,选择需要的产品直接订购,即可选择需要的产品级别。 国产卫星 一、GF-3(高分3号) 1.简介 2016年8月10日6时55分,高分三号卫星在太原卫星发射中心用长征四号丙运载火箭成功发射升空。 高分三号卫星是中国高分专项工程的一颗遥感卫星,为1米分辨率雷达遥感卫星,也是中国首颗分辨率达到1米的C频段多极化合成孔径雷达(SAR)成像卫星,由中国航天科技集团公司研制。 2.数据时间 2016年8月10日-现在 3.传感器 SAR:1米 二、ZY3-02(资源三号02星) 1.简介 资源三号02星(ZY3-02)于2016年5月30日11时17分,在我国在太原卫星发射中心用长征四号乙运载火箭成功将资源三号02星发射升空。这将是我国首次实现自主民用立体测绘双星组网运行,形成业务观测星座,

常见卫星参数大全

1、CBERS-1 中巴资源卫星 CBERS-1 中巴资源卫星由中国与巴西于1999年10月14日合作发射,是我国的第一颗数字传输型资源卫星 卫星参数: 太阳同步轨道 轨道高度:778公里,倾角:98.5o 重复周期:26天 平均降交点地方时为上午10:30 相邻轨道间隔时间为4 天扫描带宽度:185公里星上搭载了CCD传感器、IRMSS红外扫描仪、广角成像仪,由于提供了从20米-256米分辨率的11个波段不同幅宽的遥感数据,成为资源卫星系列中有特色的一员。 红外多光谱扫描仪:波段数:4波谱范围:B6:0.50 –1.10(um)B7:1.55 – 1.75(um)B8:2.08 – 2.35(um)B9:10.4 – 12.5(um)覆盖宽度:119.50公里空间分辨率:B6 – B8:77.8米B9:156米CCD相机:波段数:5波谱范围:B1:0.45 – 0.52(um)B2:0.52 – 0.59(um)B3:0.63 – 0.69(um)B4:0.77 – 0.89(um)B5:0.51 – 0.73(um)覆盖宽度:113公里空间分辨率:19.5米(天底点)侧视能力:-32 士32 广角成像仪:波段数:2波谱范围:B10:0.63 – 0.69(um)B11:0.77 – 0.89(um)覆盖宽度:890公里空间分辨率:256米 CBERS-1卫星于1999年10月14日发射成功后,截止到2001年10月14日为止,它在太空中己运行2年,围绕地球旋转10475圈,向地面发送了大量的遥感图像数据,已存档218201景0级数据产品。CBERS-1卫星的设计寿命是2年,但据航天专家测定CBERS-1卫星在轨道上运行正常。有效载荷除巴西研制的宽视场成像仪于2000年5月9日因电源系统故障失效外,其余均工作正常,而且目前星上的所有设备均工作在主份状态,备份设备还未启用,星上燃料绰绰有余。因此,虽然卫星设计寿命是2年,但航天专家设计时对各个器件都打有超期服役的余量,从CBERS-1卫星目前的运行情况来,其寿命肯定要远远大于2年。所以欢迎用户继续踊跃使用CBERS-1的数据。2002年我国将发射CBERS-2卫星,用户期望的中巴地球资源卫星在太空中双星运行的壮观将会实现。 2、法国SPOT卫星 法国SPOT-4卫星轨道参数: 轨道高度:832公里 轨道倾角:98.721o 轨道周期:101.469分/圈 重复周期:369圈/26天 降交点时间:上午10:30分 扫描带宽度:60 公里 两侧侧视:+/-27o 扫描带宽:950公里

(完整word版)常见遥感卫星的基本参数大全

常见遥感卫星的基本参数大全 1. BERS-1 中巴资源卫星 CBERS-1 中巴资源卫星由中国与巴西于1999年10月14日合作发射,是我国的第一颗数字传输型资源卫星。 卫星参数: 太阳同步轨道轨道高度:778公里,倾角:98.5o 重复周期:26天,平均降交点地方时为上午10:30 相邻轨道间隔时间为 4 天扫描带宽度:185公里星上搭载了CCD传感器、IRMSS红外扫描仪、广角成像仪,由于提供了从20米-256米分辨率的11个波段不同幅宽的遥感数据,成为资源卫星系列中有特色的一员。 红外多光谱扫描仪:波段数:4波谱范围:B6:0.50 –1.10(um)B7:1.55 – 1.75(um)B8:2.08 – 2.35(um)B9:10.4 – 12.5(um)覆盖宽度:119.50公里空间分辨率:B6 – B8:77.8米B9:156米CCD相机:波段数:5波谱范围:B1:0.45 – 0.52(um)B2:0.52 –0.59(um)B3:0.63 – 0.69(um)B4:0.77 – 0.89(um)B5:0.51 – 0.73(um)覆盖宽度:113 公里空间分辨率:19.5米(天底点)侧视能力:-32 士32 广角成像仪:波段数:2波谱范围:B10:0.63 – 0.69(um)B11:0.77 – 0.89(um)覆盖宽度:890公里空间分辨率:256米 CBERS- 1卫星于1999年10月14日发射成功后,截止到2001年10月14日为止,它在太空中己运行2年,围绕地球旋转10475圈,向地面发送了大量的遥感图像数据,已存档218201景0级数据产品。CBERS-1卫星的设计寿命是2年,但据航天专家测定CBERS-1卫星在轨道上运行正常。有效载荷除巴西研制的宽视场成像仪于2000年5月9日因电源系统故障失效外,其余均工作正常,而且目前星上的所有设备均工作在主份状态,备份设备还未启用,星上燃料绰绰有余。因此,虽然卫星设计寿命是2年,但航天专家设计时对各个器件都打有超期服役的余量,从CBERS-1卫星目前的运行情况来,其寿命肯定要远远大于2年。所以欢迎用户继续踊跃使用CBERS- 1的数据。2002年我国将发射CBERS-2卫星,用户期望的中巴地球资源卫星在太空中双星运行的壮观将会实现。 2、法国SPOT卫星 法国SPOT-4卫星轨道参数: 轨道高度:832公里 轨道倾角:98.721o 轨道周期:101.469分/圈

STK实验卫星轨道参数仿真

S T K实验卫星轨道参数 仿真 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

实验一卫星轨道参数仿真 一、实验目的 1、了解STK的基本功能; 2、掌握六个轨道参数的几何意义; 3、掌握极地轨道、太阳同步轨道、地球同步轨道等典型轨道的特点。 二、实验环境 卫星仿真工具包STK 三、实验原理 (1)卫星轨道参数 六个轨道参数中,两个轨道参数确定轨道大小和形状,两个轨道参数确定轨道平面在空间中的位置,一个轨道参数确定轨道在轨道平面内的指向,一个参数确定卫星在轨道上的位置。 轨道大小和形状参数: 这两个参数是相互关联的,第一个参数定义之后第二个参数也被确定。 第一个参数第二个参数

semimajor axis 半长轴 Eccentricity 偏心率apogee radius 远地点半径 perigee radius 近地点半径apogee altitude 远地点高度 perigee altitude 近地点高度Period 轨道周期 Eccentricity 偏心率 mean motion平动 Eccentricity 偏心率 图1 决定轨道大小和形状的参数 轨道位置参数: 轨道倾角(Inclination)轨道平面与赤道平面夹角 升交点赤经(RAAN)赤道平面春分点向右与升交点夹角 近地点幅角(argument of perigee)升交点与近地点夹角 卫星位置参数: 表1 卫星位置参数

(2)星下点轨迹 在不考虑地球自转时,航天器的星下点轨迹直接用赤经α、赤纬δ表示(如图2)。直接由轨道根数求得航天器的赤经赤纬。 图2 航天器星下点的球面解法 在球面直角三角形SND中:

常见的遥感卫星基本参数(2014最新版)解剖

常见的遥感卫星基本参数(最新版) 前言: 遥感传感器是获取遥感数据的关键设备,由于设计和获取数据的特点不同,传感器的种类也就繁多,就其基本结构原理来看,目前遥感中使用的传感器大体上可分为如下一些类型: (1)摄影类型的传感器; (2)扫描成像类型的传感器; (3)雷达成像类型的传感器; (4)非图像类型的传感器。 无论哪种类型遥感传感器,它们都由如下图所示的基本部分组成: 1、收集器:收集地物辐射来的能量。具体的元件如透镜组、反射镜组、天线等。 2、探测器:将收集的辐射能转变成化学能或电能。具体的无器件如感光胶片、光电管、光 敏和热敏探测元件、共振腔谐振器等。 3、处理器:对收集的信号进行处理。如显影、定影、信号放大、变换、校正和编码等。具 体的处理器类型有摄影处理装置和电子处理装置。 4、输出器:输出获取的数据。输出器类型有扫描晒像仪、阴极射线管、电视显像管、磁带 记录仪、XY彩色喷笔记录仪等等。 虽然不同卫星的基本组成部分是相同的,但是由于,各个组成部分的具体构造的精细度又是不同的,的,所以不同的卫星具有不同的分辨率。 一、 CBERS中巴资源卫星CBERS-1 中巴资源卫星由中国与巴西于1999年10月14日合作发射,是我国的第一颗数字传输型资源卫星 卫星参数: 太阳同步轨道轨道高度:778公里,倾角:98.5o 重复周期:26天平均降交点地方时为上午10:30 相邻轨道间隔时间为4 天扫描带宽度:185公里星上搭载了CCD传感器、IRMSS红外扫描仪、广角成像仪,由于提供了从20米-256米分辨率的11个波段不同幅宽的遥感数据, 成为资源卫星系列中有特色的一员。 红外多光谱扫描仪:波段数:4波谱范围:B6:0.50 –1.10(um)B7:1.55 – 1.75(um)B8:2.08 – 2.35(um)B9:10.4 – 12.5(um)覆盖宽度:119.50公里空间分辨率:B6 – B8:77.8米B9:156米CCD相机:波段数:5波谱范围:B1:0.45 – 0.52(um)B2:0.52 – 0.59(um)B3:0.63 –0.69(um)B4:0.77 – 0.89(um)B5:0.51 – 0.73(um)覆盖宽度:113公里空间分辨率:19.5米(天 底点)侧视能力:-32 士32 广角成像仪:波段数:2波谱范围:B10:0.63 – 0.69(um)B11:0.77 – 0.89(um)覆盖宽度:890

卫星轨道和TLE数据

卫星轨道和TLE数据 转自虚幻天空 最近由于Sino-2和北斗的关系,很多网友贴了表示卫星运行轨道的TLE数据。这里想对卫星轨道参数和TLE的格式做一个简单介绍。虽然实际上没有人直接读TLE数据,而都是借助软件来获得卫星轨道和位置信息,但是希望这些介绍可以对于理解卫星轨道的概念有所帮助。由于匆匆写成,可能有一些错误,如果看到还请指出。 前面关于轨道一部分写得较早,后来发现和杂志上关于我国反卫的一篇文章里的相应部分类似。估计都参考类似的资料,这个东西本身也是成熟的理论了。 首先来看一下卫星轨道。太空中的卫星在地球引力等各种力的作用下做周期运动,一阶近似就是一个开普勒椭圆轨道。由于其他力的存在(比如地球的形状,大气阻力,其他星球的引力等等),实际的轨道和理想的开普勒轨道有偏离,这个在航天里称为“轨道摄动”。这里我们暂时不看摄动,就先说说理想开普勒轨道时的情况。 为了唯一的确定一个卫星的运行轨道,我们需要6个参数,参见下面的示意图: 1. 轨道半长轴,是椭圆长轴的一半。对于圆,也就是半径 2. 轨道偏心率,也就是椭圆两焦点的距离和长轴比值。对于圆,它就是0.

这两个要素决定了轨道的形状 3. 轨道倾角,这个是轨道平面和地球赤道平面的夹角。对于位于赤道上空的同步静止卫星来说,倾角就是0。 4. 升交点赤经:卫星从南半球运行到北半球时穿过赤道的那一点叫升交点。这个点和春分点对于地心的张角称为升交点赤经。 这两个量决定了卫星轨道平面在空间的位置。 5. 近地点幅角:这是近地点和升交点对地心的张角。 前面虽然决定了轨道平面在空间的位置,但是轨道本身在轨道平面里还可以转动。而这个值则确定了轨道在轨道平面里的位置。 6. 过近地点时刻,这个的意义很显然了。卫星位置随时间的变化需要一个初值。 有一点要指出的是,上面的6个参数并不是唯一的一组可以描述卫星轨道情况的参数,完全也可以选取其他参数,比如轨道周期。但是由于完备的描述也只需要6个参数,所以他们之间存在着固定的换算关系。比如轨道周期就可以由半长轴唯一来确定(这在下面讲TLE的时候也会涉及到),反之亦然。上面选取的这组是比较自然的一组。 ---------------------------------------------------------------------------------------------------------------------------- 下面讲讲TLE(Two-Line Element)两行数据。以北斗最近的数据为例 BEIDOU 2A 1 30323U 07003A 07067.68277059 .00069181 13771-5 44016- 2 0 587 2 3032 3 025.0330 358.9828 7594216 197.8808 102.7839 01.92847527 650 真正的数据实际上是下面2行,但是上面有一行关于空间物体其他情况的一些信息(空间物体可以是卫星,可以是末级火箭,可以是碎片。这里简单起见,就叫卫星)。头一个是卫星名称。注意这个是会变的,而且不一定准确。卫星发射后的头几个TLE数据里,往往只叫Object A, B, C... 慢慢的会搞清楚哪个是卫星,哪个是末级火箭,哪个是分离时的碎片,并且给予相应的名称。但是如果这个是其他国家的保密卫星,则这个卫星名字就纯粹是美国的猜测了,比如我们的这个北斗。有些情况下,名称这一行里还包含了一些数字,关于卫星的尺度,亮度等等。 TLE第一行数据 1 30323U 07003A 07067.68277059 .00069181 13771-5 44016- 2 0 587 30323U 30323是北美防空司令部(NORAD)给出的卫星编号。U代表不保密。我们看到的都是U,否则我们就不会看到这组TLE了 07003A 国际编号,07表示2007年(2位数字表示年份在50年以后会出问题,因为1957年人类发射了第一个轨道物体),003表示是这一年的第3次发射。A则表示是这次发射里编号为A的物体,其他还有B,C,D等等。国际编号就是2007-003A. 07067.68277059 这个表示这组轨道数据的时间点。07还是2007年,067表示第67天,也就是3月8日。 68277059表示这一天里的时刻,大约是16时22分左右。

卫星星历计算和轨道参数计算编程实习

专业:地图学与地理信息工程(印刷) 班级:制本49—2 学号:3272009010 姓名:张连杰 时间:2012/9/21 一、概述 在C++6.0中建立基于单文档的MFC工程,利用简洁的界面方便地由卫星轨道根数计算卫星的实时位置和速度,并可以根据卫星的星历反求出卫星轨道根数。 二、目的 通过卫星编程实习,进一步加深理解和掌握卫星轨道参数的计算和卫星星历的计算方法,提高编程能力和实践能力。 三、功能 1、由卫星位置与速度求取卫星轨道参数; 2、由卫星轨道参数计算卫星星历。 四、编程环境及工具 Windows7环境,VC++6.0语言工具 五、计划与步骤 1.深入理解课本上的星历计算方法和轨道根数的求取方法,为编程实习打下算法基础; 2.学习vc++对话框的设计和编程,解决实习过程中的技术难题; 3.综合分析程序的实现过程,一步步编写代码实现。 六、程序异常处理 1.在进行角度转换时候出现的问题导致结果错误。计算三角函数时候先要把角度转换成弧度进行计算,最后输出结果的时候需要再把弧度转换回角度输出。 2.在计算omiga值得时候的错误。对计算出的omiga值要进行象限的判断,如果不符合条件要加或减一个周期pi(因为是反正弦函数)。 七、原创声明 本课程设计报告及相应的软件程序的全部内容均为本人独立完成。其间,只有程序中的中间参量计算值曾与同学共同讨论。特此声明。 八、程序中的关键步骤和代码 1、建立基于单文档的名字为TrackParameter的MFC工程。 2、在资源视图里面增加一个对话框改属性ID为IDD_DIALOG1,在新的对话框IDD_DIALOG1上面添加控件按钮,并建立新的类CsatelliteDlg. 3、在菜单栏里面添加菜单实习一,并添加命令响应函数OnMenuitem32771(),在该函数中编写代码 CsatelliteDlg dlg; dlg.DoModal();

卫星轨道和TLE数据

百度文库-让每个人平等地提升自我 卫星轨道和TLE数据 转自虚幻天空 最近由于Sino-2和北斗的关系,很多网友贴了表示卫星运行轨道的TLE数据。这里想对卫星轨道参数和 TLE的格式做一个简单介绍。虽然实际上没有人直接读TLE数据,而都是借助软件来获得卫星轨道和位置信息,但是希望这些介绍可以对于理解卫星轨道的概念有所帮助。由于匆匆写成,可能有一些错误,如果看到还请指出。/ 前面关于轨道一部分写得较早,后来发现和杂志上关于我国反卫的一篇文章里的相应部分类似。估计都参考类似的资料,这个东西本身也是成熟的理论了。 首先来看一下卫星轨道。太空中的卫星在地球引力等各种力的作用下做周期运动,一阶近似就是一个开普勒椭圆轨道。由于其他力的存在(比如地球的形状,大气阻力,其他星球的引力等等),实际的轨道和理想的开普勒轨道有偏离,这个在航天里称为轨道摄动”。这里我们暂时不看摄动,就先说说理想开普勒轨道 时的情况。 为了唯一的确定一个卫星的运行轨道,我们需要6个参数,参见下面的示意图: a 1. 轨道半长轴,是椭圆长轴的一半。对于圆,也就是半径 2. 轨道偏心率,也就是椭圆两焦点的距离和长轴比值。对于圆,它就是 0.

这两个要素决定了轨道的形状 3. 轨道倾角,这个是轨道平面和地球赤道平面的夹角。对于位于赤道上空的同步静止卫星来说,倾角就是 0。 4. 升交点赤经:卫星从南半球运行到北半球时穿过赤道的那一点叫升交点。这个点和春分点对于地心的张 角称为升交点赤经。 这两个量决定了卫星轨道平面在空间的位置。 5. 近地点幅角:这是近地点和升交点对地心的张角。 前面虽然决定了轨道平面在空间的位置,但是轨道本身在轨道平面里还可以转动。而这个值则确定了轨道 在轨道平面里的位置。 6. 过近地点时刻,这个的意义很显然了。卫星位置随时间的变化需要一个初值。 有一点要指岀的是,上面的6个参数并不是唯一的一组可以描述卫星轨道情况的参数,完全也可以选取其他参数,比如轨道周期。但是由于完备的描述也只需要6个参数,所以他们之间存在着固定的换算关系。 比如轨道周期就可以由半长轴唯一来确定(这在下面讲TLE的时候也会涉及到),反之亦然。上面选取的这 组是比较自然的一组。 下面讲讲TLE(Two-Line Element)两行数据。以北斗最近的数据为例 BEIDOU 2A 1 30323U 07003A 07067. .00069181 13771-5 44016- 2 0 587 2 3032 3 7594216 01. 650 真正的数据实际上是下面2行,但是上面有一行关于空间物体其他情况的一些信息(空间物体可以是卫星,可以是末级火箭,可以是碎片。这里简单起见,就叫卫星)。头一个是卫星名称。注意这个是会变的,而且 不一定准确。卫星发射后的头几个TLE数据里,往往只叫Object A, B, C...慢慢的会搞清楚哪个是卫星, 哪个是末级火箭,哪个是分离时的碎片,并且给予相应的名称。但是如果这个是其他国家的保密卫星,则这个卫星名字就纯粹是美国的猜测了,比如我们的这个北斗。有些情况下,名称这一行里还包含了一些数字,关于卫星的尺度,亮度等等。 TLE第一行数据 1 30323U 07003A 07067. .00069181 13771-5 44016- 2 0 587 30323U 30323是北美防空司令部(NORAD)给出的卫星编号。U代表不保密。我们看到的都是U,否则我 们就不会看到这组TLE 了 07003A国际编号,07表示2007年(2位数字表示年份在50年以后会出问题,因为1957年人类发射了第一个轨道物体),003表示是这一年的第3次发射。A则表示是这次发射里编号为A的物体,其他还有B,C,D等等。国际编号就是2007-003A. 07067.这个表示这组轨道数据的时间点。07还是2007年,067表示第67天,也就是3月8日。 表示这一天里的时刻,大约是16时22分左右。 .000069181平均运动的对时间一阶导数除2。注意这个并不是瞬时角速度

人造卫星基本原理

人造卫星的基本原理 参考、摘录自——王冈 曹振国《人造卫星原理》 一、关于椭圆轨道 在地球引力的作用下,要使物体环绕地球作圆周运动,那么必须使得物体的速度达到第一宇宙速度。如果卫星所需的向心力恰好和其所受万有引力相等,则它将作圆周运动。若其所需向心力大于地球引力,这是物体的运动轨迹就变成椭圆轨道了。物体的速度比环绕速度(作圆周运动时的速度)大得越多,椭圆轨道就越“扁长”,直到达到第二宇宙速度,物体便沿抛物线轨道飞出地球引力场之外。 因为发射卫星和飞船时,入轨点的速度控制不可能绝对精确,速度大小的微小偏离,和速度方向与当地的地球水平方向间的微小偏差,都会使航天器的轨道不是圆形二是椭圆形,椭圆扁率取决于入轨点的速度大小和方向。 二、卫星运动轨道的几何描述 尽管开普勒定律阐明的是行星绕太阳的轨道运动,它们可以用于任意二体系统的运动,如地球和月亮,地球和人造卫星等。 假定地球中心O 在椭圆的一个焦点上 a ——椭圆的半长轴 b ——椭圆的半短轴 >11.2km/s-抛物线 >16.7km/s-双曲线

c e ——偏心率 a c e = P e ——近地点 A p ——远地点 P ——半通径)1(2 2 e a a b P -== Y w ——轴与椭圆交点的坐标 f ——真近点角,近地点和远地点之间连线与卫星向径之间的夹角 E ——偏近点角 只要知道了卫星运行的椭圆轨道的几个主要参数:a ,e 等,卫星在椭圆轨道上任一点(r )处的速度就可以计算出来: )12( a r v - = μ 其中2μ=GM (地心万有引力常数) 椭圆轨道上任一点处的向径r 为:)cos 1(E e a r -= 近地点向径:)1(e a r p -= 远地点向径:)1(e a r A += 所以,近地点r 最小,卫星速度最大e e a v -+? = 112 μ 远地点r 最大,卫星速度最小e e a v +-? = 112 μ 卫星或飞船入轨点处的速度,通常就是近地点的速度,这个速度一般要比当地的环绕速度要大;而椭圆轨道上远地点速度则比当地的环绕速度要小。 圆形轨道可以看成椭圆轨道的特殊情况。即a=b=r ,所以 r GM r v = = 2 μ A

常见地遥感卫星地介绍及具体全参数

常见的遥感卫星的介绍及具体参数 遥感卫星(remote sensing satellite )用作外层空间遥感平台的人造卫星。用卫星作为平台的遥感技术称为卫星遥感。通常,遥感卫星可在轨道上运行数年。卫星轨道可根据需要来确定。遥感卫星能在规定的时间覆盖整个地球或指定的任何区域,当沿地球同步轨道运行时,它能连续地对地球表面某指定地域进行遥感。所有的遥感卫星都需要有遥感卫星地面站,卫星获得的图像数据通过无线电波传输到地面站,地面站发出指令以控制卫星运行和工作。以下列出较为常见的遥感卫星: 一、Landsat卫星 美国NASA的陆地卫星(Landsat)计划(1975年前称为地球资源技术卫星——ERTS ),从1972年7月23日以来,已发射7颗(第6颗发射失败)。目前Landsat1—4均相继失效,Landsat 5仍在超期运行(从1984年3月1日发射至今)。Landsat 7于1999年4月15日发射升空。其常见的遥感扫描影像类型有MMS影像、TM图像。 (一)、MSS影像 MSS影像为多光谱扫描仪(MultiSpectral Scanner)获取的图像,第一颗至第三颗地球卫星(Landsat)上反光束导管摄像机获取的三个波段摄影相片分别称为第1、2、3波段,多光谱扫描仪有4个波段获取的扫描影像被命名为4、5、6、7波段,两个波段为可见光波段,两个波段为近红外波段,此外,第三颗地球卫星上还供有热红外波段影像,这个影像称为第8波段,但使用不久,就因为一起的问题二关闭了。 表 1 :Landsat上MSS波段参数

(二)、TM影像 TM影像是指美国陆地卫星4~5号专题制图仪(thematic mapper)所获取的多波段扫描影像。 影像空间分辨率除热红外波段为120米外,其余均为30米,像幅185×185公里2。每波段像元数达61662个(TM-6为15422个)。一景TM影像总信息量为230兆字节),约相当于MSS影像的7倍。 因TM影像具较高空间分辨率、波谱分辨率、极为丰富的信息量和较高定位精度,成为20世纪80年代中后期得到世界各国广泛应用的重要的地球资源与环境遥感数据源。能满足有关农、林、水、土、地质、地理、测绘、区域规划、环境监测等专题分析和编制1∶10万或更小比例尺专题图,修测比例尺地图的要求。 表 2 :Landsat上TM波段参数 (三)、ETM 1999年4月15日,美国发射了Landsat-7,它采用了增强-加型专题绘图仪(ETM)遥感器来获取地球表层信息,它与TM的区别在于增加了全色波段,分辨率为15米,并改进了热红外波段影像的分辨率。

卫星轨道和位置

摘要 本文主要在已知水星的远日点和绕日运行的线速度的条件下,通过建立微分方程模型,使用解析法和数值方法求解水星的轨道方程与位置。解析法的求解的过程中,结合了开普勒三大定律,准确的给出了微分方程的精确解,求得水星到太阳的最近距离)(104.601610m r m ?≈,水星绕太阳运行的周期约为88天。数值计算求解水星自远日点运行50天后的位置时,本文分别采用了Simpson 求积法,基于压缩映射的求根方法以及经典的四阶龙格—库塔法,使用matlab 数学软件编程,得到了较为合理的行星运行模型的近似解,三种方法所得结果对应分1 3.791θ=,101 4.76710r ≈?, 2 3.791θ=,102 4.76710r ≈?及 3 3.802θ=,103 4.77910r ≈?。 关键词 行星轨道 微分方程 Simpson 法 四阶龙格—库塔法 matlab 一. 问题重述 水星到太阳的最远距离为110.698210?m ,此时水星绕太阳运行的线速度为43.88610? m /s 。试求 问题一 水星到太阳的最近距离 问题二 水星绕太阳运行的周期 问题三 从远日点开始的第50天(地球天)结束时水星的位置并画出轨道曲线 二. 问题分析 求水星到太阳的最近距离以及水星绕太阳运行的周期等,需要先将水星轨道方程 求出,因此可以根据Newton 第二定律及万有引力定律222i mMG d Z e m r dt θ-=,建立微 分方程模型,将原问题转化为求解带有初值条件的微分方程问题,进而采用解析法或数值方法求解远日点和周期。

三. 模型假设 1.水星运行的轨道是以太阳为一个焦点的椭圆 2.从太阳指向水星的线段在单位时间内扫过的面积相等 3.水星运行周期的平方与其运行轨道椭圆长轴的立方之比为常量 四. 符号系统 1.0v 水星在远日点的线速度 2. M 太阳的质量 3. m 水星的质量 4. o r 水星在远日点的距离 5. T 周期 五. 建立模型与求解 模型一 水星的轨迹方程 设太阳中心所在的位置为复平面的原点O ,在时刻t ,水星位于 ()i Z t re θ= 所表示的点P 。这里(),()r r t t θθ==均为t 的函数,分别表示()Z t 的模和辐角。于是水星的速度为 ()i i i dZ dr d dr d e ire e ir dt dt dt dt dt θθθθθ=+=+,加速度为2222222(())(2)i d Z d r d d dr d e r i r dt dt dt dt dt dt θθθθ?? =-++???? () ,而太阳对行星的引力依万有引力定律,大小为 2mMG r ,方向由行星位置P 指向太阳的中心O,故为 2 i mMG e r θ -,其中301.98910()M kg =?为太阳的质量,m 为水星的质量,11226.67210(/)G N m kg -=??为 万有引力常数。 依Newton 定律,我们得到 222i mMG d Z e m r dt θ-= ,将()代入,然后比较实部 与虚部,就有

STK实验卫星轨道全参数仿真

实验一卫星轨道参数仿真 一、实验目的 1、了解STK的基本功能; 2、掌握六个轨道参数的几何意义; 3、掌握极地轨道、太阳同步轨道、地球同步轨道等典型轨道的特点。 二、实验环境 卫星仿真工具包STK 三、实验原理 (1)卫星轨道参数 六个轨道参数中,两个轨道参数确定轨道大小和形状,两个轨道参数确定轨道平面在空间中的位置,一个轨道参数确定轨道在轨道平面内的指向,一个参数确定卫星在轨道上的位置。 ?轨道大小和形状参数: 这两个参数是相互关联的,第一个参数定义之后第二个参数也被确定。 第一个参数第二个参数 semimajor axis 半长轴 Eccentricity 偏心率apogee radius 远地点半径 perigee radius 近地点半径 apogee altitude 远地点高度 perigee altitude 近地点高度Period 轨道周期 Eccentricity 偏心率 mean motion平动 Eccentricity 偏心率

图1 决定轨道大小和形状的参数 ?轨道位置参数: 轨道倾角(Inclination)轨道平面与赤道平面夹角 升交点赤经(RAAN)赤道平面春分点向右与升交点夹角 近地点幅角(argument of perigee)升交点与近地点夹角 ?卫星位置参数: (2)星下点轨迹 在不考虑地球自转时,航天器的星下点轨迹直接用赤经α、赤纬δ表示(如图2)。直接由轨道根数求得航天器的赤经赤纬。

图2 航天器星下点的球面解法 在球面直角三角形SND 中: ?? ? ??+==??+Ω=+==)tan(cos tan cos tan )sin(sin sin sin sin f i u i f i u i ωαα αωδ (1) 由于地球自转和摄动影响,相邻轨道周期的星下点轨迹不可能重合。设地球自转角速度为E ω,t 0时刻格林尼治恒星时为0G S ,则任一时刻格林尼治恒星时G S 可表示成: )(00t t S S E G G -+=ω (2) 在考虑地球自转时,星下点地心纬度? 与航天器赤纬δ仍然相等,星下点经度(λ)与航天器赤经α的关系为: ?? ?=---=-=δ ?ωααλ) (00t t S S E G G (3) 将(1)代入上式,得到计算空间目标星下点地心经纬度()?λ,的公式,即空间目标的星下点轨迹方程为: ?? ??=---?+Ω=) sin arcsin(sin ) ()tan arctan(cos 00u i t t S u i E G ?ωλ (4) 其中? 为星下点的地理纬度,λ 为星下点的地理经度,u 是纬度幅角,ωE 为地球自转角速度。由(4)中的第二式可知,i =90?时,? 取极大值?max 。i =-90?时,? 取极小

卫星的运动 卫星相关参数,摄动力,星历,卫星位置的计算

卫星的轨道 ?一、基本概念:轨道;卫星轨道参数;正常轨道;摄动轨道 ?二、卫星的正常轨道及位置的计算 ? 1.开普勒三定律 ? 2.三种近点角 ? 3.卫星轨道六参数 ? 4.卫星的在轨位置计算 1.开普勒(Johannes Kepler)三定律 ?开普勒第一定律 人造地球卫星的运行轨道是一个椭圆,均质地球位于该椭圆的一个焦点上。 ?开普勒第二定律 卫星向径在相同时间内所扫过的面积相等。 ?开普勒第三定律 卫星环绕地球运行的周期之平方正比于椭圆轨道长半轴的立方。 2.三种近点角 ?真近点角 当卫星处于轨道上任一点s时,卫星的在轨位置便取决于sop角,这个角就被称为真近点角,以f表示。 ?偏近点角 若以长半轴a做辅助圆,卫星s在该辅助圆上的相应点为s’,连接s’o’,s’o’p

角称为偏近点角,以E表示。 ?平近点角 在轨卫星从过近地点时元t p开始,按平均角速度n0运行到时元t的弧,称为平近点角。

3.卫星轨道六参数 ?长半轴(a)—— 卫星椭圆轨道的长半轴; ?偏心率(e)—— 卫星椭圆轨道的偏心率,是焦距的一半与长半轴的比值; ?真近点角(f)——在椭圆轨道上运行的卫星S,其卫星向径OS与以焦点O指向近地点P的极轴OP的夹角。 ?轨道平面倾角(i)—— 卫星轨道平面与天球赤道平面的夹角; ?升交点赤经(Ω)—— 升交点(N),是由南向北飞行的卫星,其轨道与天球赤道的交点。地球环绕太阳公转的一圈中有一个点(即日历上表示的春分时间),它反映在天球赤道平面上的固定位置,叫做春分点。升交点赤经是春分点轴向东度量到升交点的弧度; ?近地点角距(ω)—— 是由升交点轴顺着卫星运行方向度量到近地点的弧长.

高中物理人造卫星变轨问题专题

高中物理人造卫星变轨 问题专题 集团文件版本号:(M928-T898-M248-WU2669-I2896-

人造卫星变轨问题专题 (一) 人造卫星基本原理 绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。 轨道半径r 确定后,与之对应的卫星线速度 r GM v = 、周期 GM r T 3 2π =、向心加速度2r GM a =也都是唯一确定的。如果卫星的质 量是确定的,那么与轨道半径r 对应的卫星的动能E k 、重力势能E p 和总机械能E 机也是唯一确定的。一旦卫星发生了变轨,即轨道半径 r 发生变化,上述所有物理量都将随之变化(E k 由线速度变化决定、E p 由卫星高度变化决定、E 机不守恒,其增减由该过程的能量转换情 况决定)。同理,只要上述七个物理量之一发生变化,另外六个也必将随之变化。 (二) 常涉及的人造卫星的两种变轨问题 1. 渐变 由于某个因素的影响使原来做匀速圆周运动的卫星的轨道半径发生缓慢的变化(逐渐增大或逐渐减小),由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动。

解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径r 是增大还是减小,然后再判断卫星的其他相关物理量如何变化。 1) 人造卫星绕地球做匀速圆周运动,无论轨道多高,都会受到稀薄 大气的阻力作用。如果不及时进行轨道维持(即通过启动星上小型发动机,将化学能转化为机械能,保持卫星应具有的状态),卫星就会自动变轨,偏离原来的圆周轨道,从而引起各个物理量的变化。这种变轨的起因是阻力。阻力对卫星做负功,使卫星速 度减小,卫星所需要的向心力r mv 2减小了,而万有引力2 r GMm 的 大小没有变,因此卫星将做向心运动,即轨道半径r 将减小。 由基本原理中的结论可知:卫星线速度v 将增大,周期T 将减小,向心加速度a 将增大,动能E k 将增大,势能E p 将减小,有部分机械能转化为内能(摩擦生热),卫星机械能E 机将减小。 为什么卫星克服阻力做功,动能反而增加了呢?这是因为一旦轨道半径减小,在卫星克服阻力做功的同时,万有引力(即重力)将对卫星做正功。而且万有引力做的正功远大于克服空气阻力做的功,外力对卫星做的总功是正的,因此卫星动能增加。根据E 机=E k +E p ,该过程重力势能的减少总是大于动能的增加。

北斗二号卫星导航系统介绍与应用.

北斗二号卫星导航系统介绍及应用 南京工业大学工业工程 北斗二号卫星导航系统是中国自行研制的全球卫星定位与通信系统(BDS ,是继美全球定位系统(GPS 和俄 GLONASS 之后第三个成熟的卫星导航系统。系统由空间端、地面端和用户端组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力,已经初步具备区域导航、定位和授时能力,定位精度 10m ,授时精度优于 100ns 。 2012年 12月 27日,北斗二号系统空间信号接口控制文件正式版正式公布,北斗导航业务正式对亚太地区提供无源定位、导航、授时服务。 北斗二号卫星导航系统由空间端、地面端和用户端三部分组成。空间端包括 5颗静止轨道卫星和 30颗非静止轨道卫星。地面端包括主控站、注入站和监测站等若干个地面站。用户端由北斗用户终端以及与美国 GPS 、俄罗斯 GLONASS 、欧盟 GALILEO 等其他卫星导航系统兼容的终端组成。 北斗二号卫星导航系统是在北斗一号的基础上建设的卫星导航系统, 但其并不是北斗一号的简单延伸, 完整构成的北斗二号卫星导航系统是一个类似于 GPS 和GLONASS 的全球导航系统。 一.研发背景 1. 重要的战略意义 战略意义一:建设北斗卫星导航系统, 是提高我国国际地位的重要载体战略意义二:是促进和推动经济社会发展的强大动力。战略意义三:是推动我国信息化建设的重要保证。战略意义四:是应对重大自然灾害的生命保障。战略意义五:是增强武器效能,维护国家安全的根本命脉 v 战略意义七:是我国履行航天国家国际责任的需要。战略意义八:对提升中国航天的能力, 推动航天强国建设意义重大。 2. 北斗一号卫星导航系统及其不足

常用遥感数据的遥感卫星基本参数大全

常用遥感数据的遥感卫星基本参数大全

常用遥感数据的遥感卫星基本参数大全 常用, 遥感数据, 遥感卫星, 基本参数, 大全 1、CBERS-1 中巴资源卫星 CBERS-1 中巴资源卫星由中国与巴西于1999年10月14日合作发射,是我国的第一颗数字传输型资源卫星 卫星参数: 太阳同步轨道轨道高度:778公里,倾角:98.5o 重复周期:26天平均降交点地方时为上午10:30 相邻轨道间隔时间为 4 天扫描带宽度:185公里星上搭载了CCD传感器、IRMSS红外扫描仪、广角成像仪,由于提供了从20米-256米分辨率的11个波段不同幅宽的遥感数据,成为资源卫星系列中有特色的一员。 红外多光谱扫描仪:波段数: 4波谱范围:B6:0.50 –1.10(um)B7:1.55 –1.75(um)B8:2.08 – 2.35(um)B9:10.4 – 12.5(um)覆盖宽度:119.50公里空间分辨率:B6 – B8:77.8米B9:156米 CCD相机:波段数: 5波谱范围:B1:0.45 –0.52(um)B2:0.52 –0.59(um)B3:0.63 –0.69(um)B4:0.77 –0.89(um)B5:0.51 – 0.73(um)覆盖宽度:113公里空间分辨率:19.5米(天底点)侧视能力:-32 士32 广角成像仪:波段数: 2波谱范围:B10:0.63 –0.69(um)B11:0.77 –0.89(um)覆盖宽度:890公里空间分辨率:256米 CBERS-1卫星于1999年10月14日发射成功后,截止到2001年10月14日为止,它在太空中己运行2年,围绕地球旋转10475圈,向地面发送了大量的遥感图像数据,已存档218201景0级数据产品。 CBERS-1卫星的设计寿命是2年,但据航天专家测定CBERS-1卫星在轨道上运行正常。有效载荷除巴西研制的宽视场成像仪于2000年5月9日因电源系统故障失效外,其余均工作正常,而且目前星上的所有设备均工作在主份状态,备份设备还未启用,星上燃料绰绰有余。因此,虽然卫星设计寿命是2年,但航天专家设计时对各个器件都打有超期服役的余量,从CBERS-1卫星目前的运行情况来,其寿命肯定要远远大于2年。所以欢迎用户继续踊跃使用CBERS-1的数据。 2002年我国将发射CBERS-2卫星,用户期望的中巴地球资源卫星在太空中双星运行的壮观将会实现。 2、法国SPOT卫星 法国SPOT-4卫星轨道参数: 轨道高度:832公里 轨道倾角:98.721o 轨道周期:101.469分/圈 重复周期:369圈/26天 降交点时间:上午10:30分 扫描带宽度: 60 公里 两侧侧视:+/-27o 扫描带宽:950公里 波谱范围:

北斗卫星系统

北斗卫星导航系统 北斗卫星导航系统(BDS)是中国正在实施的自主发展、独立运行的全球卫星导航系统,致力于向全球用户提供高质量的定位、导航、授时服务,并能向有更高要求的授权用户提供进一步服务。中国在2003年完成了具有区域导航功能的北斗卫星导航试验系统,之后开始构建服务全球的北斗卫星导航系统,于2012年起向亚太大部分地区正式提供服务,并计划至2020年完成全球系统的构建。 北斗卫星导航系统、美国全球定位系统、俄罗斯格洛纳斯系统和欧盟伽利略定位系统为联合国卫星导航委员会认定的全球卫星导航 系统四大核心供应商。 目录 1 历史与发展 早期研究 试验系统 中国加入欧盟伽利略计划 正式系统 东盟各国加入合作 2 试验系统

] 系统组成 性能 3 正式系统 亚太服务 全球服务 4 系统构成 空间段 地面段 用户段 5 原理 空间定位原理 ) 有源与无源定位 精度 6 技术

卫星平台 卫星制造与发射 时间系统 信号传输 7 应用 开放服务 授权服务 应用状况 } 1、历史与发展 早期研究 1970年代,中国开始研究卫星导航系统的技术和方案,但之后这项研究计划被取消。 1983年,中国航天专家陈芳允提出使用两颗静止轨道卫星实现区域性的导航功能,1989年,中国使用通信卫星进行试验,验证了其可行性,之后的北斗卫星导航试验系统就是依据此方案进行。

试验系统 1994年,中国正式开始北斗卫星导航试验系统(北斗一号)的研制,并在2000年发射了两颗静止轨道卫星,实现了区域性的导航功能。2003年又发射了一颗备份卫星,完成了北斗卫星导航试验系统的组建。 中国加入欧盟伽利略计划 2003年09月,中国打算加入欧盟的伽利略定位系统计划,并在接下来的几年中投入了亿欧元的资金。由此,人们相信中国的北斗系统只会用于自己的武装力量。中国与欧盟在2004年10月09日正式签署伽利略计划技术合作协议。 、正式系统 2004年,中国启动了具有全球导航能力的北斗卫星导航系统的建设(北斗二号),并在2007年发射一颗中地球轨道卫星,进行了大量试验。2009年起,后续卫星持续发射,并在2011年开始对中国和周边地区提供测试服务, 2012年完成了对亚太大部分地区的覆盖并正式提供卫星导航服务。 中国为北斗卫星导航系统制定了“三步走”发展规划,从1994年开始发展的试验系统(第一代系统)为第一步,2004年开始发展的正式系统(第二代系统)分为两个阶段,即第二步与第三步。至

相关文档
最新文档